
Citation: Yousaf, M.Z.; Tahir, M.F.;

Raza, A.; Khan, M.A.; Badshah, F.

Intelligent Sensors for dc Fault

Location Scheme Based on

Optimized Intelligent Architecture

for HVdc Systems. Sensors 2022, 22,

9936. https://doi.org/10.3390/

s22249936

Academic Editor: Arshad Arshad

Received: 7 November 2022

Accepted: 13 December 2022

Published: 16 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Intelligent Sensors for dc Fault Location Scheme Based on
Optimized Intelligent Architecture for HVdc Systems
Muhammad Zain Yousaf 1,*, Muhammad Faizan Tahir 2 , Ali Raza 3 , Muhammad Ahmad Khan 4

and Fazal Badshah 1

1 School of Electrical and Information Engineering, Hubei University of Automotive Technology,
Shiyan 442002, China

2 School of Electric Power, South China University of Technology, Guangzhou 510630, China
3 School of Electrical Engineering, University of Engineering and Technology, Lahore 39161, Pakistan
4 School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
* Correspondence: zain.yousaf@huat.edu.cn

Abstract: We develop a probabilistic model for determining the location of dc-link faults in MT-HVdc
networks using discrete wavelet transforms (DWTs), Bayesian optimization, and multilayer artificial
neural networks (ANNs) based on local information. Likewise, feedforward neural networks (FFNNs)
are trained using the Levenberg–Marquardt backpropagation (LMBP) method, which multi-stage BO
optimizes for efficiency. During training, the feature vectors at the sending terminal of the dc link
are selected based on the norm values of the observed waveforms at various frequency bands. The
multilayer ANN is trained using a comprehensive set of offline data that takes the denoising scheme
into account. This choice not only helps to reduce the computational load but also provides better
accuracy. An overall percentage error of 0.5144% is observed for the proposed algorithm when tested
against fault resistances ranging from 10 to 485 Ω. The simulation results show that the proposed
method can accurately estimate the fault site to a precision of 485 Ω and is more robust.

Keywords: Levenberg–Marquardt backpropagation; protection sensor; Bayesian optimization;
modular multilevel converter

1. Introduction

To date, China celebrates the completion of 30,000 km of ultra-high-voltage lines
connecting six regional grids with a total transmission capacity of close to 150 gigawatts [1].
However, power engineers struggle to manage and regulate the impact of dc-link faults
in hybrid ac/dc systems [2]. Let us say the 8 GW dc-link from Gansu reports a fault
unexpectedly, and the protection algorithm cannot locate it. The power outage might start
a chain reaction, resulting in widespread blackouts throughout Hunan and beyond. As a
result, ensuring accurate fault location is beneficial to minimize the threat of possible failure
and is a prerequisite for the successful and safe operation of dc transmission systems [3].
Furthermore, accurate fault location estimation is important for maintaining the voltage
stability of the power system [4] and operating the electricity market efficiently [5].

The prediction of correct fault sites in dc transmission systems has been shown to be
reliable by frequency extraction, fault signal analysis, and travelling-wave (TW) approaches
in previous studies [2,3,6]. Currently, TW methods based on the concept of travelling-wave
reflections are preferred in dc transmission projects since they are highly accurate, reliable,
and have high fault resistance [7]. The advancement of TW theory has led to the devel-
opment of several signal processing techniques, such as wavelet transformation (WT) [8],
S and Hilbert–Huang transform [6,9], empirical mode decomposition (EMD) [10], etc. A
waveform’s characteristics are analyzed using approximate or detailed coefficients in WT to
predict fault locations. However, conventional TW methods require a very high sampling

Sensors 2022, 22, 9936. https://doi.org/10.3390/s22249936 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22249936
https://doi.org/10.3390/s22249936
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9138-3323
https://orcid.org/0000-0003-0947-3616
https://doi.org/10.3390/s22249936
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22249936?type=check_update&version=2

Sensors 2022, 22, 9936 2 of 26

frequency to accurately predict fault location, which leads to expensive computation in the
power grid [11].

Researchers have begun exploring intelligent algorithms to rectify computation burden
and noise handling capabilities [12]. With the alienation coefficient and the Wigner distri-
bution function [13], an effective transmission line protection mechanism for underground
cables is proposed in [14] and implemented for a renewable-energy-based grid. In addition,
machine-learning tools such as the radial basis function neural network (RBFNN) [15], sup-
port vector machine (SVM) [16,17], extreme machine learning [18], k-means cluster [19], etc.,
are also utilized. These algorithms can self-learn and modify weights and thresholds while
training with historical data. Therefore, they are suitable for complex networks such as
multiterminal high-voltage direct-current (MMC-MT-HVdc) systems, where constructing a
feasible intelligent algorithm can be challenging.

Because of the enlargement of the structure and the extraordinary growth in the
number of learning parameters in MMC-MT-HVdc networks, these intelligent algorithms
experience slow convergence and computational burden [20]. Downsampling learning
parameters may resolve the above issue but may eliminate valuable features. It is, therefore,
imperative to find an algorithm for fault location with high accuracy, minimal computa-
tional burden, and low sensitivity to noise [21,22]. With this in mind, this work combines
the discrete wavelet transform (DWT) [23], Bayesian optimization (BO) [24], and multilayer
feedforward neural network (FFNN) to locate the dc-link faults.

A multilayer FFNN model based on BO is trained and evaluated using the selected
features. BO is well-known as a powerful technique for optimizing black-box functions
when closed-form expressions or surrogate models are unavailable [24]. A study in the
literature found that BO provided a higher convergence rate than standard tuning methods
after the neural network was adjusted [25,26]. The multi-stage BO introduced in this work
reduces the computational burden by reducing the number of simulations needed to find
the optimal design for any given neural network. As a result, it provides a well-tuned
multilayer FFNN that can achieve improved response with better accuracy.

To simulate numerous fault scenarios, a four-terminal MT-HVdc system is developed
in PSCAD/EMTDC, and the proposed model is investigated in a Matlab® environment.
Meanwhile, the proposed algorithm is compared to intelligent adversaries such as back-
propagation neural networks (BP-NNs) and conventional FFNNs. The test results show
that the suggested model performs with the highest fault localization accuracy.

Under the circumstances above, the main contribution of this study is:

• Our initial goal is to create a learning-based algorithm that relies on only one end
of the communication link for fault location. Hence, eliminating reliance on the
communication link.

• In general, a signal detected by a sensor is invariably interfered with by the surround-
ing environment or modified by the detecting equipment during the detection process,
increasing failure chances. The DWT-based signal analysis model is used to eliminate
interference from the observed signal to improve signal analysis and recognition.

• The energy or norm of the current and voltage signals at each frequency band gives a
unique signature for different fault locations and has been found to be robust against
noise. Therefore, it is used as an extracted feature for pattern recognition.

• The proposed algorithm must be able to locate internal faults with high fault impedances
at further distances.

The remainder of the paper is organized in the following way.
Section 2 discusses the mathematical model derivation from a simple backpropagation

algorithm to the improvised backpropagation algorithm. It also discusses the implementation
of the proposed framework as well. Meanwhile, Section 3 introduces the conditions and
properties of the chosen system model, which has been developed to capture fault data under
dynamic fault scenarios. Section 4 covers the methodologies utilized to analyze input features
extracted under dynamic fault scenarios. It also covers a denoising scheme that is used to
denoise features before training and data preprocessing. Section 5 presents comparisons and

Sensors 2022, 22, 9936 3 of 26

analyses against adversaries. Finally, Section 6 concludes with a summary of the proposed
algorithm. An overview of the proposed method is presented in the next section.

2. Proposed Framework

Figure 1 illustrates the architecture with the proposed methodology. During fault lo-
calization, the proposed method has two stages. In the first one, the captured fault window
is filtered using discrete wavelets to rectify the noise issue, set to 10 ms. After denoising, the
measured time-domain segment is transformed into a time-frequency domain by splitting
it into low- and high-frequency components with a DWT-based multi-resolution analysis
(MRA) technique.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 26

Section 2 discusses the mathematical model derivation from a simple backpropaga-
tion algorithm to the improvised backpropagation algorithm. It also discusses the imple-
mentation of the proposed framework as well. Meanwhile, Section 3 introduces the con-
ditions and properties of the chosen system model, which has been developed to capture
fault data under dynamic fault scenarios. Section 4 covers the methodologies utilized to
analyze input features extracted under dynamic fault scenarios. It also covers a denoising
scheme that is used to denoise features before training and data preprocessing. Section 5
presents comparisons and analyses against adversaries. Finally, Section 6 concludes with
a summary of the proposed algorithm. An overview of the proposed method is presented
in the next section.

2. Proposed Framework
Figure 1 illustrates the architecture with the proposed methodology. During fault lo-

calization, the proposed method has two stages. In the first one, the captured fault win-
dow is filtered using discrete wavelets to rectify the noise issue, set to 10 ms. After de-
noising, the measured time-domain segment is transformed into a time-frequency domain
by splitting it into low- and high-frequency components with a DWT-based multi-resolu-
tion analysis (MRA) technique.

Figure 1. Proposed architecture.

The multilayer neural network receives decluttered information from voltage and
current signals as inputs. It then estimates the fault site using the activation function. Le-
venberg–Marquardt backpropagation (LMBP) is implemented instead of a standard back-
propagation algorithm with a performance function. It is a function of the ANN regression
model and ground truth of fault sites. The Levenberg–Marquardt method is used to up-
date the weight and bias. The Jacobian matrix of the performance function with respect to
the weight and bias variables is calculated via the proposed backpropagation algorithm.
After updating the weight and bias, the multilayer ANN is applied to determine the fault
site. The multi-stage BO procedure is conducted prior to the update, aiming to increase
accuracy during training and to provide an optimal multilayer FFNN by optimizing hy-
perparameters. The hyperparameters, unlike internal parameters (weights, bias, etc.), are
set before the neural network is trained, and they influence the neural network’s perfor-
mance. Regulating them via the trial-and-error method lengthens the training set-up time
and may reduce accuracy. Hence, optimizing these hyperparameters enhances the accu-
racy and convergence speed [24]. In the following sub-section, the detailed architecture of
the proposed algorithm is described.

Figure 1. Proposed architecture.

The multilayer neural network receives decluttered information from voltage and
current signals as inputs. It then estimates the fault site using the activation function.
Levenberg–Marquardt backpropagation (LMBP) is implemented instead of a standard
backpropagation algorithm with a performance function. It is a function of the ANN
regression model and ground truth of fault sites. The Levenberg–Marquardt method is used
to update the weight and bias. The Jacobian matrix of the performance function with respect
to the weight and bias variables is calculated via the proposed backpropagation algorithm.
After updating the weight and bias, the multilayer ANN is applied to determine the fault
site. The multi-stage BO procedure is conducted prior to the update, aiming to increase
accuracy during training and to provide an optimal multilayer FFNN by optimizing
hyperparameters. The hyperparameters, unlike internal parameters (weights, bias, etc.),
are set before the neural network is trained, and they influence the neural network’s
performance. Regulating them via the trial-and-error method lengthens the training set-up
time and may reduce accuracy. Hence, optimizing these hyperparameters enhances the
accuracy and convergence speed [24]. In the following sub-section, the detailed architecture
of the proposed algorithm is described.

2.1. Feedforward Neural Network (FFNN)

This study uses a feedforward neural network with a single hidden layer to model
because a neural network with a single hidden layer can handle the most complex functions
(i.e., one input layer, one output layer, and one hidden layer) [27]. In a multilayer FFNN,
the basic building block is a neuron that mimics a biological neuron’s functions and
behavior [27]. The schematic structure based on the neuron is shown in Figure 2.

Sensors 2022, 22, 9936 4 of 26

Sensors 2022, 22, x FOR PEER REVIEW 4 of 26

2.1. Feedforward Neural Network (FFNN)
This study uses a feedforward neural network with a single hidden layer to model

because a neural network with a single hidden layer can handle the most complex func-
tions (i.e., one input layer, one output layer, and one hidden layer) [27]. In a multilayer
FFNN, the basic building block is a neuron that mimics a biological neuron’s functions
and behavior [27]. The schematic structure based on the neuron is shown in Figure 2.

Figure 2. Structure of the multi-input neuron.

Usually, a neuron has multiple inputs. Each element of the input vector p = [p1, p2, K,
pR] is weighted by elements w1, w2, K, wj of the weight matrix 𝑊. Next, the bias of each
neuron is summed with the weighted inputs to form the net-input n, expressed as: 𝑛 = ∑ 𝑤௝ோ௝ୀଵ 𝑝௝ + 𝑏 = 𝑊௣ + 𝑏. (1)

Following that, net-input n is sent via an activation function f, which results in the
neuron’s output 𝑎. Mathematically expressed as: 𝑎 = 𝑓(𝑛) (2)

In this work, the activation function is based on the hyperbolic tangent sigmoid trans-
fer function. The following equation presents it. 𝑓(𝑥) = ଶଵା௘షమ𝒙 − 1 (3)

With reference to Figure 2, the multi-input FFNN executes the following equation: 𝑎ଶ = 𝑓ଶ(∑ 𝑤ଵ,௜ଶ௦௜ୀଵ 𝑓ଵ൫∑ 𝑤௜,௝ଵ 𝑝௝ோ௝ୀଵ + 𝑏௜ଵ൯ + 𝑏ଶ) (4)

The output of the neural network is represented by 𝑎ଶ. R stands for the number of
inputs, the number of neurons in the hidden layer is denoted by S, and the jth input is
represented by 𝑝௝. The activation functions of the output and hidden layers are repre-
sented by f2 and f1, respectively. The bias of the ith neuron is defined by 𝑏௜ଵ, whereas the
bias of the neuron in the output layer is represented by 𝑏ଶ. The weight 𝑤௜,௝ଵ 𝑝௝ represents
the connection between the jth input and the ith neuron of the hidden layer. Meanwhile,
the weight connecting the ith hidden layer source to the output layer neuron is denoted
by 𝑤ଵ,௜ଶ .

2.2. Backpropagation Algorithm
Following the definition of the FFNN, the next step is to create an algorithm for train-

ing such networks. To train the established multilayer FFNN, an error backpropagation
algorithm based on the steepest descent technique is typically utilized [28]. For the

Figure 2. Structure of the multi-input neuron.

Usually, a neuron has multiple inputs. Each element of the input vector p = [p1, p2, K,
pR] is weighted by elements w1, w2, K, wj of the weight matrix W. Next, the bias of each
neuron is summed with the weighted inputs to form the net-input n, expressed as:

n = ∑R
j = 1 wj pj + b = Wp + b. (1)

Following that, net-input n is sent via an activation function f, which results in the
neuron’s output a. Mathematically expressed as:

a = f (n) (2)

In this work, the activation function is based on the hyperbolic tangent sigmoid
transfer function. The following equation presents it.

f (x) =
2

1 + e−2x − 1 (3)

With reference to Figure 2, the multi-input FFNN executes the following equation:

a2 = f 2(∑s
i = 1 w2

1,i f 1(∑R
j = 1 w1

i,j pj + b1
i) + b2) (4)

The output of the neural network is represented by a2. R stands for the number of
inputs, the number of neurons in the hidden layer is denoted by S, and the jth input is
represented by pj. The activation functions of the output and hidden layers are represented
by f 2 and f 1, respectively. The bias of the ith neuron is defined by b1

i , whereas the bias
of the neuron in the output layer is represented by b2. The weight w1

i,j pj represents the
connection between the jth input and the ith neuron of the hidden layer. Meanwhile, the
weight connecting the ith hidden layer source to the output layer neuron is denoted by w2

1,i.

2.2. Backpropagation Algorithm

Following the definition of the FFNN, the next step is to create an algorithm for train-
ing such networks. To train the established multilayer FFNN, an error backpropagation
algorithm based on the steepest descent technique is typically utilized [28]. For the pro-
posed three-layer FFNN, we now express the function that represents the output of unit i
in layer m + 1 as:

am+1 = f m+1
(

nm+1(i)
)

(5)

Sensors 2022, 22, 9936 5 of 26

Then to propagate the function and generate net-input (nm+1(i)) to unit i, the neuron
in the first layer receives extracted features from the MT-HVdc system to provide an initial
condition for Equation (5):

a0 = p (6)

Equation (5) is further translated in matrix form for an M number of layers in a neural
network as:

am+1 = f m+1
(

Wm+1am + bm+1
)

, . . . , m = 0, 1. (7)

where am+1 and am are the outputs of the network’s (m+1)th and mth layers. bm+1 reflect
the bias vector of the network’s (m+1)th layer. Here, external inputs passing to the network
via Equation (7), the overall network’s outputs are equal to the outputs of the neurons in
the last layer:

a = a M (8)

The objective of this study is to locate the dc-link faults. Therefore, the proposed
multilayer FFNN requires a set of input–output pairs that characterize the behavior of an
MT-HVdc system under faulty settings. Mathematically expressed as:[

(p1, t1), (p2, t2), (p3, t3), . . . , . . . , . . . ,
(

pQ, tQ
)]

, pq is input and tq is the relevant
target of the network that uses for training.

(9)

After each input propagates through the multilayer FFNN during training, the net-
work output is compared to the target. While doing so, the performance index for the
backpropagation algorithm is the mean-square error (MSE), which is to be reduced by
modifying the network parameters, given as:

F(x) = E[(e2)] = E[(t− a)2] (10)

In the FFNN, x is the vector matrix containing the network weights and biases. How-
ever, in our case, the proposed network has multiple outputs. Therefore, Equation (10)
generalized to:

F(x) = E
[
(eTe)

]
= E[(t− a)T(t− a)] (11)

Since the steepest descent rule is utilized for the standard backpropagation algorithm,
the performance index F(x) can be approximated as follows:

F∧(x) = E
[
(t(k)− a(k))T(t(k)− a(k)))

]
= eT(k)e(k) (12)

The squared error replaces the expectation of the squared error in Equation (11) at
iteration step k. The steepest (gradient) descent algorithm for the estimated MSE is then:

wm
i,j(k + 1) = wm

i,j(k)− ∝
dF∧

dwm
i,j

(13)

bm
i (k + 1) = bm

i (k)− ∝
dF∧

dbm
i

(14)

∝ is the learning rate, similar to the number of neurons (S); it is also a hyperparameter.
Defined:

sm
i =

dF∧

dnm
i

(15)

Sensors 2022, 22, 9936 6 of 26

as the performance index (F∧) sensitivity (sm
i) that measures the changes in the net input of

the ith element in layer m. Next, based on the chain rule, the derivate of Equations (13) and (14)
using Equations (5), (12) and (15) can be simplified as:

dF∧

dwm
i,j

=
dF∧

dnm
i
∗

dnm
i

dwm
i,j

= sm
i ∗ am−1

j (16)

dF∧

dbm
i

=
dF∧

dnm
i
∗

dnm
i

dbm
i

= sm
i (17)

Now with the definition of gradient, the steepest descent algorithm is approximated as:

wm
i,j(k + 1) = wm

i,j(k)− ∝ ∗sm
i ∗ am−1

j (18)

bm
i (k + 1) = bm

i (k)− ∝ ∗sm
i (19)

The following recurrence relation in matrix form can be satisfied by the sensitivity [29,30]:

sm = F m
(nm)

(
Wm+1

)T
sm+1, for. m = M− 1, . . . , 2, 1. (20)

Equation (20) expresses the step used to propagate the sensitivities backward through a
neural network. Mathematically, the sensitivities propagate backward across the network as:

sM → sM−1 → · · · → s2 → s1 (21)

where

F m
(nm)=


f

m(
nm

1m
)

0 K 0
0 f

m
(nm

2m) 0
M M M
0 0 K f

m
(nm

sm)

 (22)

And

f
m
(

nm
jm

)
=

d f m
(

nm
j

)
dnm

j
(23)

Whereas a recurrence relation is initialized at the final layer as:

sM = −2F m
(

nM
)
(t− a) (24)

Now, we can summarize the overall backpropagation (BP) based on the steepest
descent algorithm as (1): First, use Equations (6)–(8) to propagate the input through the
network. (2): Next, using Equations (20) and (24), backpropagate the sensitivity. (3): Finally,
using Equations (18) and (19), update the weights and biases.

2.3. Levenberg–Marquardt Backpropagation

The backpropagation algorithm exhibits asymptotic convergence properties while
training the multilayer FFNN, which causes a slow convergence rate due to minor weight
changes around the solution. Meanwhile, Levenberg–Marquardt (LM) backpropaga-
tion [29] is a variant of Newton’s method, which inherits the stability of the steepest
descent algorithm and the speed of the Gauss–Newton algorithm [27,29,30]. Now, suppose
we want to optimize performance index F(x); then, Newton’s method is:

xk+1 = xk −A−1
k gk. (25)

Sensors 2022, 22, 9936 7 of 26

where Ak
∼= ∇2F(x)

∣∣
X = Xk

, plus gk
∼= ∇F(x) |X = Xk

. Note that ∇2F(x) represents the
Hessian matrix, and ∇F(x) denotes the gradient. Let us assume that F(x) is a sum-of-
squares function, then:

F(x) = ∑N
i = 1 v2

i (x) = vT(x)v (x). (26)

Then the gradient and Hessian matrix are expressed in matrix form as:

∇F(x) = 2 JT(x)v(x). (27)

∇2F(x) = 2 JT(x)J(x) + 2 S(x). (28)

J(x) denotes the Jacobian matrix as:

J(x)=


dv1(x)

dx1

dv1(x)
dx2

· · · dv1(x)
dxn

dv2(x)
dx1

dv2(x)
dx2

· · · dv2(x)
dxn

M M · · · M
dvN(x)

dx1

dvN(x)
dx1

· · · dvN(x)
dxn

 (29)

S(x) = ∑N
i = 1 vi(x)∇2vi(x) (30)

Assume that S(x) ≈ 0, then Equation (30) (Hessian matrix) approximate as ∇2F(x) ∼=
2 JT(x)J(x). Next, Equation (25) updates after substituting Equation (27) and the approxi-
mation of Equation (28) as:

∆xk = xk+1 − xk = −
[

JT(xk)J(xk)
]−1
∗ JT(xk)v(xk). (31)

The matrix (H = JTJ) may not be invertible using the Gauss–Newton method. This
issue can be fixed by making the following changes to the approximation Hessian matrix:

G = H + µI (32)

This modification to the Gauss–Newton method eventually leads to the LM algo-
rithm [29]:

∆xk = −
[

JT(xk)J(xk) + µkI
]−1

JT(xk)v(xk). (33)

Now, using the ∆xk direction, recalculate the approximated F(x). If a smaller number
is obtained, then the computation procedure is repeated, but the parameter µk is divided
by a factor (α > 1). If the value of F(x) does not decrease, then the value of µk for the next
iteration in the step is multiplied by α.

The calculation of the Jacobian matrix is an essential step in the LM method. The elements
of the Jacobian matrix are calculated using a slight modification to the BP algorithm to address
the NN mapping difficulty [29]. For better understanding, similar to Equation (12) for the BP
algorithm, Equation (26) is a performance index for the mapping problem in the LM algorithm,
where the error vector is vT = [v1 v2 K vN]=

[
e1,1 e2,1 K esM,1 e2,1K esM,Q

]
, and the vector x

parametric values are xT = [x1 x2 K xN]=
[
w1

1,1, w1
1,2 K , w1

S,1R . b1
1, K , b1

S1 .w2
1,1 , K , bM

SM

]
, sub-

script N defined as N = Q ∗ SM.

Sensors 2022, 22, 9936 8 of 26

Similarly, the n subscript is defined as n = S1(R + 1)+S2(S1 + 1
)
+ . . .+SM(SM−1 + 1

)
in the Jacobian matrix. Now making all these substitutions in Equation (29) of the Jacobian
matrix as:

J(x)=



de1,1
dw 1

1,1

de1,1
dw 1

1,2
· · · de1,1

dw 1
S1,R

de1,1
db 1

1
· · ·

de2,1
dw 1

1,1

de2,1
dw 1

1,2
· · · de2,1

dw 1
S1,R

de2,1
db 1

1
· · ·

M M M M
deSM ,R
dw 1

1,1

deSM ,R
dw 1

1,2
· · ·

deSM ,R
dw 1

S1,R

deSM ,R
db 1

1
· · ·

de 1,2
dw 1

1,1

de 1,2
dw 1

1,2
· · · de 1,2

dw 1
S1,R

de 1,2
db 1

1
· · ·

M M · · · M M · · ·


(34)

Until now, the standard BP algorithm has been used to calculate the Jacobian matrix
terms as follows:

dF∧(x)
dxI

=
deT

q eq

dxI
(35)

Meanwhile, in the LM algorithm, the terms for the elements of the Jacobian matrix can
be calculated using the following:

[J]h,I =
dvh
dxI

=
dek,q

dwi,j
(36)

Thus, rather than computing the derivatives of the squared errors as in standard
backpropagation, we are calculating the derivatives of the errors in this modified Levenberg–
Marquardt algorithm. Similar to the concept for standard backpropagation sensitivities, a
new Marquardt sensitivity is defined as follows:

[J]h,I =
dek,q

dwm
i,j

=
dek,q

dnm
i,j
∗

dnm
i,j

dwm
i,j

= s
∧m
i,h ∗ am−1

j,q (37)

if xI is a bias,

[J]h,I =
dek,q

dbm
i

=
dek,q

dnm
i,q
∗

dnm
i,q

dbm
i

= s
∧m
i,h (38)

As previously stated, the Marquardt sensitivity can be determined using the same
recurrence relation as the standard sensitivities. However, toward the conclusion of the
final layer, there is only one modification for calculating the new Marquardt sensitivity:

s
∧M
i,h =

dek,q

dnM
i,q

=
d
(

tk,q − aM
k,q

)
dnM

i,q
=

daM
k,q

dnM
i,q

(39)

for i = k , it is
s
∧M
i,h = − f

∧M
(

nM
i,q

)
(40)

for i 6= k, it is equal to zero. Note that f
∧M and its matrix can be defined with the help of

Equations (22) and (23). In the proposed model, when extracted features from the MT-HVdc
network are applied to the multilayer FFNN as an input (pq) and the corresponding output
(aM

q) is processed, the LMBP algorithm is initialized with the following:

S
∧M
q = −F

∧M
(

nM
q

)
(41)

Sensors 2022, 22, 9936 9 of 26

Each column of the matrix in Equation (41) is a sensitivity vector that must propagate
back through the network to generate one row of the Jacobian matrix. The columns are
propagated backward as follows:

S
∧m
q = F

∧m
(

nm
q

)(
Wm+1

)
S
∧m+1
q (42)

The augmentation that follows then obtains all of the Marquardt sensitivity matrices
for the overall layers.

S
∧m = [S

∧m

1
...S
∧m

2
...S
∧m

3
...S
∧m

4
...K

...S
∧m

Q] (43)

The proposed algorithm based on Levenberg–Marquardt’s backpropagation algorithm
for fault allocation is given for clarity in Table 1.

Table 1. LMBP algorithm.

LMBP Algorithm for the Fault Location Process

a. With initial weights and bias (randomly generated), all extracted features should be fed into the FFNN as inputs. The outputs
of the corresponding features are computed in the network using Equations (6) and (7), followed by error prediction using
eq = tq − aM

q .

b. Using F(x) = ∑Q
q = 1 (tq − aq)

T(tq − aq), calculate the sum of squared errors for all inputs with the Q targets in the training
set.

c. After initializing with Equation (41), calculate the sensitivity using Equation (42) and augment the individual matrices into
the Marquardt sensitivities using Equation (43). Meanwhile, Equations (37) and (38) are used to determine elements of the
Jacobian matrix.

d. Then, to obtain ∆x k, update Equation (33) to adjust weights and biases.
e. Using x k + ∆x k recalculate the total of the squared errors. If the newly generated error value is less than the previous one,

then divide µk by α and return to step a with x k+1 = x k + ∆x k. If the recalculated value does not decrease, then multiply
µk by α and return to step c with the new weights.

2.4. Parameter Optimization

Hyperparameters should be distinguished from internal parameters such as weights
and biases that are taken into account by the Levenberg–Marquardt backpropagation
algorithm in the FFNN model. However, finding values for hyperparameters is a non-
convex optimization process for optimal fitting. This is because, like the MT-HVdc system,
most existing systems do not have linear responses to their control parameters. From the
standpoint of optimization, the problem can be presented as follows:

minxεXd f (x), where xεX ⊂ < (44)

x is the input vector (control parameters) of dimension d. f (x) is an objective function
that depicts a multiscale system with high dimensional control parameters functioning
under high-speed channels, such as an FFNN-based relaying model under dynamic condi-
tions to protect the MT-HVdc grid. It is not a simple task to create a precise and accurate
model of such systems in this situation. As a result, it is necessary to approach the problem
in Equation (44) using the black-box settings shown in Figure 3.

Sensors 2022, 22, 9936 10 of 26

Sensors 2022, 22, x FOR PEER REVIEW 9 of 26

The augmentation that follows then obtains all of the Marquardt sensitivity matrices
for the overall layers. 𝑺^௠ = [𝑺ଵ̂೘ ⋮ 𝑺ଶ̂೘ ⋮ 𝑺ଷ̂೘ ⋮ 𝑺ସ̂೘ ⋮ 𝐾 ⋮ 𝑺ொ̂೘] (43)

The proposed algorithm based on Levenberg–Marquardt’s backpropagation algo-
rithm for fault allocation is given for clarity in Table 1.

Table 1. LMBP algorithm.

LMBP Algorithm for the Fault Location Process
a. With initial weights and bias (randomly generated), all extracted features should be fed into the FFNN as inputs.

The outputs of the corresponding features are computed in the network using Equations (6) and (7), followed by
error prediction using 𝑒௤= 𝑡௤ − 𝑎௤ெ.

b. Using 𝐹(𝒙) = ∑ (𝑡௤ − 𝑎௤)்(𝑡௤ − 𝑎௤)ொ௤ୀଵ , calculate the sum of squared errors for all inputs with the Q targets in the
training set.

c. After initializing with Equation (41), calculate the sensitivity using Equation (42) and augment the individual ma-
trices into the Marquardt sensitivities using Equation (43). Meanwhile, Equations (37) and (38) are used to deter-
mine elements of the Jacobian matrix.

d. Then, to obtain Δ𝒙 ௞, update Equation (33) to adjust weights and biases.
e. Using 𝒙 ௞ + Δ𝒙 ௞ recalculate the total of the squared errors. If the newly generated error value is less than the

previous one, then divide 𝜇௞ by α and return to step a with 𝒙 ௞ାଵ = 𝒙 ௞ + Δ𝒙 ௞. If the recalculated value does not
decrease, then multiply 𝜇௞ by α and return to step c with the new weights.

2.4. Parameter Optimization
Hyperparameters should be distinguished from internal parameters such as weights

and biases that are taken into account by the Levenberg–Marquardt backpropagation al-
gorithm in the FFNN model. However, finding values for hyperparameters is a non-con-
vex optimization process for optimal fitting. This is because, like the MT-HVdc system,
most existing systems do not have linear responses to their control parameters. From the
standpoint of optimization, the problem can be presented as follows: 𝑚𝑖𝑛௫ఢ௑೏ 𝑓(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝑥𝜖𝑋 ⊂ ℜ (44)𝑥 is the input vector (control parameters) of dimension 𝑑. 𝑓(𝑥) is an objective func-
tion that depicts a multiscale system with high dimensional control parameters function-
ing under high-speed channels, such as an FFNN-based relaying model under dynamic
conditions to protect the MT-HVdc grid. It is not a simple task to create a precise and
accurate model of such systems in this situation. As a result, it is necessary to approach
the problem in Equation (44) using the black-box settings shown in Figure 3.

Figure 3. Optimization of black-box systems. Figure 3. Optimization of black-box systems.

2.4.1. Black-Box Settings

In most black-box systems, including MT-HVdc grids relaying models, it is not easy to
acquire f (x) gradient information at an arbitrary value of x. However, gradient information
is not required when employing BO based on Gaussian processes (GPs) [31]. As a result, it
is a promising and appropriate candidate for black-box optimization. While optimizing,
BO is an active learning method that chooses the next observation to maximize the reward
for solving Equation (45). Its foundation is Bayes’ Theorem.

P(f |D1:t) ∝ P(D1:t| f)P(f) (45)

P(f), P(f |D1:t) and P(D1:t| f) are probabilities of prior, posterior, and likelihood based
on the current observations, i.e., D1:t = [(x1, y1), (x2, y2), .., (xt, yt)]. Various predictive
and distributional models can be used as priors in BO, but the GP is preferred due to its
practical and theoretical advantages [31].

2.4.2. Gaussian Process (GP)

In the GP, the surrogate model replicates the behaviors of the expensive underlying
function. While doing this, the underlying function f (x) that requires optimization is
represented in BO as a collaborative and multidimensional Gaussian process. The mean
(µ) and covariance (K) functions are calculated using:

f1:t = N (µ(x1:t),K(x1:t)) (46)

In BO, Equation (46) illustrates the process in which the predictive GP is trained.
It is worth noting that, unlike other machine-learning algorithms, the goal of BO is to
properly forecast where global extrema are situated in the sample space based on previous
observations rather than to develop predictors that cover the entire sample space. Further-
more, the problem in Equation (44) is solved using black-box settings, implying that we
do not have any prior information about the underlying function. Therefore, to improve
the regression quality of the GP, we use a popular kernel/covariance function called the
automatic relevance determination Matern 5/2 function in conjunction with a zero-mean
GP for P(f), given as:

K(x) =

k(x1, x1) · · · k(x1, xt)
...

. . .
...

k(xt, x1) · · · k(xt, xt)

 (47)

k
(
xi, xj

)
= σ2

f (1 +
√

5r +
5
3

r2)e−
√

5r (48)

where r = (∑D
d = 1

(
xi,d − xj,d)

2
/σ2

d))
1/2; σf and σd are hyperparameters of K(x). These

hyperparameters are modified throughout the training phase to reduce the GP’s negative-
log marginal likelihood using the global or local method. Each parameter in an ARD-type
kernel has a scaling parameter that must be set. If the σd of one parameter is larger than the

Sensors 2022, 22, 9936 11 of 26

others after the GP-based predictive model has been trained, then it can be assumed that a
change in this parameter has less sensitivity on the prediction. Furthermore, if a certain
parameter has a greater effect, then the proposed solution in BO will alter the training
process to reduce σd of that parameter in comparison to others. These advantages make the
underlying function more interpretable and serve as an implicit sensitivity analysis.

2.4.3. Acquisition Function

Since the original function f (x) is hard to estimate, based on a predefined strategy
and auxiliary optimization, an acquisition function u(x) is obtained to find the next point
xt+1 of the solution. It is worth noting that u(x) does not require any additional points;
instead, it relies on past sample knowledge to make predictions at candidate points.

µ(xt+1) = kTK−1 f1:t (49)

σ2(xt+1) = k(xt+1, xt+1)−kTK−1k (50)

Then predictive distribution at the next point is given as:

P(ft+1|D1:t, xt+1) ∼ N
(

µ(xt+1), σ2(xt+1)
)

(51)

The most prominent acquisition functions in BO are the probability of improvement,
upper confidence bound and expected improvement per second. However, we propose an
expected improvement per second-plus in this paper. In comparison, it allows for faster
model building and optimization, and the term ‘plus’ prevents a region from overexploiting
(more search for a global minimum). Expected improvement (EI) is given as:

µ(EI) =
(

µ(x)− f
∧∗ − ζ

)
Φ(Z) + σ(x)φ(Z) (52)

where f
∧∗ is the best point observed so far. ζ is a hyperparameter for µ(EI), Z =

(
µ(x)− f

∧∗

−ζ)/σ(x), φ(.) and Φ(.) are the probability density function and cumulative distribution
function of normal distribution. Further interpreted in EI per second (EIpS) as:

EIpS(x) = µ(EI)/µS(x) (53)

where µS(x) is the posterior mean of the timing Gaussian process model, respectively.
The next sampling point xt+1 is found by minimizing the expected improvement per
second-plus EIpSp(x) acquisition function.

xt+1 = argmin EIpSp
(

µ(xt+1), σ2(xt+1)
)

(54)

In doing so, the proposed acquisition function escapes the local objective function
minimum and searches for a global minimum by setting σf (x) to be the posterior objective
function (P(f |D1:t)) standard deviation at point x. Let σNP be the additive noise posterior
standard deviation so that σ2

Q(x) = σ2
F(x) + σ2

NP. The positive exploration ratio is denoted
by tσNP. After each iteration, the acquisition function evaluates if the next point x satisfies
σf (x) < tσNPσNP. If this is the case, then the acquisition function will announce that
x is overexploiting and adjust its kernel function by multiplying θ by the number of
iterations [32]. When compared to EIpS(x), this adjustment increases the variation σQ for
points between observations. It then creates a new point using the newly fitted kernel
function. However, if the new point x is still being overexploited, then the function
multiplies θ by a factor of ten and tries again. This process is repeated five times, with the
goal of generating a point x that is not overexploited. The new x is accepted as the next
exploration ratio by the proposed acquisition function. As a result, it manages the tradeoff
between examining new points, searching for a better global solution, and focusing on

Sensors 2022, 22, 9936 12 of 26

nearby already investigated points. The whole process optimizes the FFNN structure in a
much faster and more efficient manner with a reduced computation burden.

2.4.4. Implementation of Proposed Framework

The steps to train the FFNN model with the LMBP algorithm and optimize network
hyperparameters with the Bayesian algorithm are demonstrated in Figure 4.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 26

Figure 4. Proposed Framework.

In step 1, fault location and impedance are modified to create the training and testing
datasets for several simulations. Additionally, data events are labeled and normalized ac-
cording to criteria to improve the training process in this mode. The ANN hyperparame-
ters are determined by feeding the training dataset into BO’s AI model until the maximum
number of iterations is reached. The AI model is updated each time the maximum number
of iterations is reached. In step 2, the optimal hyperparameters of the ANN, which gives
the minimum root-mean-square error (RMSE), are selected by BO, and the FFNN is
trained for the given training data with the help of the LMBP algorithm. In step 3, the
trained ANN model is evaluated on a different testing dataset from the training dataset.

To prevent overfitting, K-fold cross-validation was used during the assessment with

K = 5. RMSE =ට ଵோ೥ ∑ (𝑦௡ − 𝑦௡∘)ோ೥௡ୀଵ , Rz stands for the data size, yn for the actual output, and 𝑦௡∘ represents the predicted output. The proposed framework can now be implemented;
a system model will be presented in the next section, which enables the collection and

Figure 4. Proposed Framework.

In step 1, fault location and impedance are modified to create the training and testing
datasets for several simulations. Additionally, data events are labeled and normalized
according to criteria to improve the training process in this mode. The ANN hyperparame-
ters are determined by feeding the training dataset into BO’s AI model until the maximum
number of iterations is reached. The AI model is updated each time the maximum number
of iterations is reached. In step 2, the optimal hyperparameters of the ANN, which gives
the minimum root-mean-square error (RMSE), are selected by BO, and the FFNN is trained

Sensors 2022, 22, 9936 13 of 26

for the given training data with the help of the LMBP algorithm. In step 3, the trained ANN
model is evaluated on a different testing dataset from the training dataset.

To prevent overfitting, K-fold cross-validation was used during the assessment with

K = 5. RMSE =
√

1
Rz

∑Rz
n = 1(yn − y◦n), Rz stands for the data size, yn for the actual output,

and y◦n represents the predicted output. The proposed framework can now be implemented;
a system model will be presented in the next section, which enables the collection and
analysis of input features for fault types, matching the theoretical foundation to real-world
fault scenarios, and using intelligent computation to train and evaluate the framework’s
effectiveness.

3. System Model

The electrical power from two offshore wind farms is transferred to two onshore
converters through dc transmission, as shown in Figure 5 [33]. A boundary is defined by
installing current limiter inductors at the end of a dc line. Other test grid settings and
MMC parameters are provided in Tables 2 and 3. The cable specifications are provided
in Table 4. It is a single-end scheme, which means that information will be gathered near
circuit breakers and inductor lines.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 26

analysis of input features for fault types, matching the theoretical foundation to real-world
fault scenarios, and using intelligent computation to train and evaluate the framework’s
effectiveness.

3. System Model
The electrical power from two offshore wind farms is transferred to two onshore con-

verters through dc transmission, as shown in Figure 5 [33]. A boundary is defined by in-
stalling current limiter inductors at the end of a dc line. Other test grid settings and MMC
parameters are provided in Tables 2 and 3. The cable specifications are provided in Table
4. It is a single-end scheme, which means that information will be gathered near circuit
breakers and inductor lines.

Figure 5. Configuration of MMC-based dc grid.

Table 2. Converter parameters.

Station
Rated dc

Voltage [kV]
Rated Capacity

[MVA]
Arm Capacitance

Carm (µF)
Arm Inductance

Larm [mH]
Arm Resistance

Rarm [Ω]
Bus Filter

Reactor [mH]
MMC1 ±320 900 29.3 84.8 0.885 10
MMC2 ±320 900 29.3 84.8 0.885 10
MMC3 ±320 900 29.3 84.8 0.885 10
MMC4 ±320 1200 39.0 63.6 0.67 10

Table 3. AC/dc System parameters.

dc System Link12 Link13 Link34 Link24
Length [km] 100 200 100 150

Inductance [mH] 100 100 100 100
ac system AC 1 AC 2 AC 3 AC 4

Rated voltage [kV] 400 400 400 400
Reactance Xac [Ω] 17.7 17.7 17.7 13.4
Resistance Rac [Ω] 1.77 1.77 1.77 1.34

Transformer µk [pu] 0.15 0.15 0.15 0.15

Figure 5. Configuration of MMC-based dc grid.

Table 2. Converter parameters.

Station Rated dc
Voltage [kV]

Rated Capacity
[MVA]

Arm
Capacitance

Carm (µF)

Arm
Inductance
Larm [mH]

Arm
Resistance
Rarm [Ω]

Bus Filter
Reactor [mH]

MMC1 ±320 900 29.3 84.8 0.885 10
MMC2 ±320 900 29.3 84.8 0.885 10
MMC3 ±320 900 29.3 84.8 0.885 10
MMC4 ±320 1200 39.0 63.6 0.67 10

Sensors 2022, 22, 9936 14 of 26

Table 3. AC/dc System parameters.

dc System Link12 Link13 Link34 Link24

Length [km] 100 200 100 150
Inductance [mH] 100 100 100 100

ac system AC 1 AC 2 AC 3 AC 4
Rated voltage [kV] 400 400 400 400
Reactance Xac [Ω] 17.7 17.7 17.7 13.4
Resistance Rac [Ω] 1.77 1.77 1.77 1.34

Transformer µk [pu] 0.15 0.15 0.15 0.15

Table 4. Cable parameters.

Cable Outer Radius [mm] [Ωm] Єre1 [-] µre1 [-] Link34

Core 19.5 1.7 × 10−8 – 1
Insulation 48.7 – 2.3 150 1

Sheath 51.7 2.2 × 10−7 – 100 1
Insulation 54.7 – 2.3 AC4 1

Armor 58.7 1.8 × 10−7 – 400 10
Insulation 63.7 – 2.3 13.4 1

Model Output

As shown in Table 5, the examined system model has several outputs that can be
used to determine fault distance from a relay contact point. Additionally, it shows fault
resistances and fault types along with a total of 714 dc-link fault scenarios (k) for training.
By doing so, dc-link faults are categorized into pole-to-pole (PTP) and pole-to-ground
(PTG) faults. It is important to note that a dc-link problem is an internal fault, so the criteria
(dVdc/dT) should be applied when an internal failure occurs. By activating this criterion,
the trained algorithm begins sampling relevant values for the 10 ms time window and
estimating the fault distance. Note that the fault detection strategy is selective in nature.

Table 5. Internal fault scenarios for training data.

Transient Period Training
Samples Fault Resistance (Ω) Fault Distance (km) Noise (dB)

10 ms 357 0.01, 25, 50, . . . , 375, 400 1, 10, 20, . . . , 180, 190, 198 20, 25, 30

Total faulty sample = 357/each fault type; dc-link faults are first classified into two parts: pole to pole and pole to ground fault.
Therefore, total training samples = k = (Fint = 357 ∗ 2) = 714. Fault distance is noted from MMC1 to MMC 3 and MMC1 to MMC2,
respectively.

4. Data Processing

The fact that the initial travelling waves of the voltage and current induced by the
dc-link faults from the system above contain helpful information about fault distance
is exploited in this study [7]. However, noise interference is expected, considering the
dynamic disturbances associated with the MT-HVdc system. Therefore, the following
sub-section discusses the noise suppression mechanism before processing data for the
regression model.

4.1. Signal Processing

The implementation of the DWT to suppress noises from a measured signal is shown
in Figure 6 [34].

Sensors 2022, 22, 9936 15 of 26Sensors 2022, 22, x FOR PEER REVIEW 15 of 26

Figure 6. Signal denoising.

4.1.1. Setting Numbers of Decomposition Layers
Transforming discrete wavelets into more decomposition layers helps separate noise

from the original signal, resulting in better signal filtering. We have chosen eight levels to
keep the balance between signal processing burden and robustness against noise, corre-
sponding to the frequency band of 195.3–390.6 Hz at a sampling frequency of 50 kHz.

4.1.2. Selection of Mother Wavelet Function
The next critical step in the denoising scheme is choosing a mother wavelet. A litera-

ture review and practical results presented in the previous studies show that Daubechies
(dB) is an appropriate mother wavelet for analyzing fault signals [35]. It is suggested that,
in this study, the Pearson correlation coefficient be used to determine the correlation be-
tween the Daubechies wavelet function and the cable fault signals in order to determine
the best mother wavelet function. The mother wavelet function is written as follows: ∅ = ∑൫𝑋 − 𝑋൯ (𝑌 − 𝑌) ට∑൫𝑋 − 𝑋൯ଶ ൫𝑌 − 𝑌൯ଶ ൗ (55)

Figure 6. Signal denoising.

4.1.1. Setting Numbers of Decomposition Layers

Transforming discrete wavelets into more decomposition layers helps separate noise
from the original signal, resulting in better signal filtering. We have chosen eight lev-
els to keep the balance between signal processing burden and robustness against noise,
corresponding to the frequency band of 195.3–390.6 Hz at a sampling frequency of 50 kHz.

4.1.2. Selection of Mother Wavelet Function

The next critical step in the denoising scheme is choosing a mother wavelet. A litera-
ture review and practical results presented in the previous studies show that Daubechies
(dB) is an appropriate mother wavelet for analyzing fault signals [35]. It is suggested
that, in this study, the Pearson correlation coefficient be used to determine the correlation
between the Daubechies wavelet function and the cable fault signals in order to determine
the best mother wavelet function. The mother wavelet function is written as follows:

∅ = ∑
(
X− X

)(
Y−Y

)
/
√

∑
(
X− X

)2(Y−Y
)2 (55)

Sensors 2022, 22, 9936 16 of 26

where X is the original fault signal, X denotes the original fault signal’s average, Y denotes
the noise-eliminated fault signal, and Y denotes the noise-eliminated fault signal’s average.

4.1.3. Set the Threshold and Filter the Signal

After selecting the mother wavelet, the noise from the fault signal can be filtered out.
The Universal threshold is multiplied by the median of each decomposition layer after
wavelet decomposition to automatically set the threshold, as expressed:

λj =
σj

0.6745
∗
√

2 log nj (56)

λj is the threshold of the jth decomposition layer, σj is the median of the jth decom-
position layer, and nj is the signal length of the jth decomposition layer. After setting the
threshold, the noise is filtered out through the thresholding process. This thresholding
process usually includes soft and hard thresholds [35]. However, in this study, a hard
threshold is set to filter out the noise.

δλ
Hard =

[
x(t), i f |x(t)| > λ

0, otherwise
(57)

This equation demonstrates that the hard threshold retains a larger wavelet coefficient
while the coefficient below the threshold is set to zero. Finally, using inverse DWT (IDWT),
the signal processed by the hard threshold can be configured layer by layer into a noise-free
signal. The implementation of the proposed denoising approach with a 20 dB signal-to-
noise ratio (SNR) is shown in Figure 7.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 26

where 𝑋 is the original fault signal, 𝑋 denotes the original fault signal’s average, 𝑌 de-
notes the noise-eliminated fault signal, and 𝑌 denotes the noise-eliminated fault signal’s
average.

4.1.3. Set the Threshold and Filter the Signal
After selecting the mother wavelet, the noise from the fault signal can be filtered out.

The Universal threshold is multiplied by the median of each decomposition layer after
wavelet decomposition to automatically set the threshold, as expressed: 𝜆𝑗 = 𝜎𝑗0.6745 ∗ ඥ2 log 𝑛𝑗 (56)𝜆௝ is the threshold of the 𝑗th decomposition layer, 𝜎௝ is the median of the 𝑗th de-
composition layer, and 𝑛௝ is the signal length of the 𝑗th decomposition layer. After set-
ting the threshold, the noise is filtered out through the thresholding process. This thresh-
olding process usually includes soft and hard thresholds [35]. However, in this study, a
hard threshold is set to filter out the noise. 𝛿ఒு௔௥ௗ = ൤𝑥(𝑡), 𝑖𝑓|𝑥(𝑡)| > 𝜆 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (57)

This equation demonstrates that the hard threshold retains a larger wavelet coeffi-
cient while the coefficient below the threshold is set to zero. Finally, using inverse DWT
(IDWT), the signal processed by the hard threshold can be configured layer by layer into
a noise-free signal. The implementation of the proposed denoising approach with a 20 dB
signal-to-noise ratio (SNR) is shown in Figure 7.

Figure 7. Effect of the denoised solution on the contaminated signal of 20dB signal-to-noise ratio
(SNR).

4.2. Feature Extraction Set-Up
After selecting and denoising the signal, the feature extraction stage is critical for

data-driven-based fault detection and location estimation problems. Extracted features
are measurable data taken from the transient of the current- and voltage-filtered signals
to create a feature vector. This feature vector should be dimensionally compact to success-
fully implement the learning and generalization processes in the estimation algorithms
for fault location. The feature extraction stage is divided into two sub-stages. The first
stage involves decomposing all generated samples for each fault location up to eight levels
using DWT-MRA to obtain wavelet coefficients. The wavelet coefficients are Aj approxi-
mation and Dj detail levels. For each type of fault location, vectors of D1–D8 and A8 coef-
ficients are obtained. The second stage of feature extraction involves providing effective
and appropriate statistical parameters for feature vector creation to reduce the collected
data and improve estimation performance.

Figure 7. Effect of the denoised solution on the contaminated signal of 20 dB signal-to-noise ratio (SNR).

4.2. Feature Extraction Set-Up

After selecting and denoising the signal, the feature extraction stage is critical for
data-driven-based fault detection and location estimation problems. Extracted features
are measurable data taken from the transient of the current- and voltage-filtered signals to
create a feature vector. This feature vector should be dimensionally compact to successfully
implement the learning and generalization processes in the estimation algorithms for
fault location. The feature extraction stage is divided into two sub-stages. The first stage
involves decomposing all generated samples for each fault location up to eight levels using
DWT-MRA to obtain wavelet coefficients. The wavelet coefficients are Aj approximation
and Dj detail levels. For each type of fault location, vectors of D1–D8 and A8 coefficients
are obtained. The second stage of feature extraction involves providing effective and
appropriate statistical parameters for feature vector creation to reduce the collected data
and improve estimation performance.

Sensors 2022, 22, 9936 17 of 26

4.2.1. Feature Extraction Results

When a large number of high-frequency components of voltage and current signals are
fed for training, several learning tools face problems due to a limitation on the input space
dimension. These learning tools lack the capability to provide suitable learning patterns
with a large number of features. This is due to the enlargement of the structure and an
extreme increase in the number of learning parameters [11]. The regression model used
in this study is designed to train with the second norm (referred to as the norm) of the
wavelet coefficients. In general, the decomposed signal’s norm for wavelet coefficients is
determined as follows:

normDj =
√

∑n
i = 1

∣∣ Di,j
∣∣2 (58)

normAj =
√

∑n
i = 1

∣∣ Ai,j
∣∣2 (59)

j denotes the decomposition level, and the maximum level of decomposition is N. The
detail and approximate coefficients have n values at level j. Overall, the proposed energy
vector obtained from the MRA-based DWT for any current or voltage signal from a given
time window is represented as

x =
[

normD1 , normD2 , . . . , normD8 , normA8

]
(60)

Using the MRA-based DWT, norm values of current for ground faults at various sites
are calculated and presented in Figure 8, respectively. There is a distinct difference in
the approximate norms between the given fault locations at levels D6 through D8. These
differences in norms indicate that the obtained features contain distinct fingerprints for
estimating ground faults at various places. Figure 9 shows the obtained features of the
voltage signal for ground faults between locations 40 to 200 km.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 26

4.2.1. Feature Extraction Results
When a large number of high-frequency components of voltage and current signals

are fed for training, several learning tools face problems due to a limitation on the input
space dimension. These learning tools lack the capability to provide suitable learning pat-
terns with a large number of features. This is due to the enlargement of the structure and
an extreme increase in the number of learning parameters [11]. The regression model used
in this study is designed to train with the second norm (referred to as the norm) of the
wavelet coefficients. In general, the decomposed signal’s norm for wavelet coefficients is
determined as follows: 𝑛𝑜𝑟𝑚஽ೕ = ට∑ ห 𝐷௜,௝หଶ௡௜ୀଵ (58)

𝑛𝑜𝑟𝑚஺ೕ = ට∑ ห 𝐴௜,௝หଶ௡௜ୀଵ (59)𝑗 denotes the decomposition level, and the maximum level of decomposition is N.
The detail and approximate coefficients have 𝑛 values at level 𝑗. Overall, the proposed
energy vector obtained from the MRA-based DWT for any current or voltage signal from
a given time window is represented as 𝑥 = ൣ 𝑛𝑜𝑟𝑚஽భ, 𝑛𝑜𝑟𝑚஽మ , … , 𝑛𝑜𝑟𝑚஽ఴ, 𝑛𝑜𝑟𝑚஺ఴ൧ (60)

Using the MRA-based DWT, norm values of current for ground faults at various sites
are calculated and presented in Figure 8, respectively. There is a distinct difference in the
approximate norms between the given fault locations at levels D6 through D8. These dif-
ferences in norms indicate that the obtained features contain distinct fingerprints for esti-
mating ground faults at various places. Figure 9 shows the obtained features of the voltage
signal for ground faults between locations 40 to 200 km.

0

20

40

60

80

100

120

140

160

180

200

N
or

m

Decomposition level

Location 50 km
Location 40 km

Location 60 km
Location 70 km
Location 80 km
Location 90 km
Location 100 km
Location 110 km
Location 120 km
Location 130 km
Location 140 km
Location 150 km
Location 160 km
Location 170 km
Location 180 km
Location 190 km
Location 200 km

 x 103

Norm D1 Norm D2 Norm D3 Norm D4 Norm D5 Norm D6 Norm D7 Norm D8 Norm A8

Figure 8. Feature vector extracted for ground fault at various locations of the current signal. Figure 8. Feature vector extracted for ground fault at various locations of the current signal.

Sensors 2022, 22, 9936 18 of 26Sensors 2022, 22, x FOR PEER REVIEW 18 of 26

N
or

m

Decomposition level
0

2

4

6

8

10

12

14

Norm D1 Norm D2 Norm D3 Norm D4 Norm D5 Norm D6 Norm D7 Norm D8 Norm A8

Location 50 km
Location 40 km

Location 60 km
Location 70 km
Location 80 km
Location 90 km
Location 100 km
Location 110 km
Location 120 km
Location 130 km
Location 140 km
Location 150 km
Location 160 km
Location 170 km
Location 180 km
Location 190 km
Location 200 km

x 103

.

Figure 9. Feature vector extracted for ground fault at various locations of the voltage signal.

In Figure 9, the norm values for each location are significantly different in the domi-
nant frequency band between D5 and D8 and can be used as input vectors to establish
fault estimation rules. Similarly, as illustrated in Figure 10, a unique signature of the pole-
to-pole fault may be derived at different frequency bands. A schematic diagram for the
feature vector development process is shown in Figure 11.

0

2

4

6

8

10

12

14

N
or

m

Decomposition level

Location 50 km
Location 40 km

Location 60 km
Location 70 km
Location 80 km
Location 90 km
Location 100 km
Location 110 km
Location 120 km
Location 130 km
Location 140 km
Location 150 km
Location 160 km
Location 170 km
Location 180 km
Location 190 km
Location 200 km

x 103

Norm D1 Norm D2 Norm D3 Norm D4 Norm D5 Norm D6 Norm D7 Norm D8 Norm A8

Figure 10. Feature vector extracted for the PTP fault at various locations of the voltage signal.

Figure 9. Feature vector extracted for ground fault at various locations of the voltage signal.

In Figure 9, the norm values for each location are significantly different in the dominant
frequency band between D5 and D8 and can be used as input vectors to establish fault
estimation rules. Similarly, as illustrated in Figure 10, a unique signature of the pole-to-pole
fault may be derived at different frequency bands. A schematic diagram for the feature
vector development process is shown in Figure 11.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 26

N
or

m

Decomposition level
0

2

4

6

8

10

12

14

Norm D1 Norm D2 Norm D3 Norm D4 Norm D5 Norm D6 Norm D7 Norm D8 Norm A8

Location 50 km
Location 40 km

Location 60 km
Location 70 km
Location 80 km
Location 90 km
Location 100 km
Location 110 km
Location 120 km
Location 130 km
Location 140 km
Location 150 km
Location 160 km
Location 170 km
Location 180 km
Location 190 km
Location 200 km

x 103

.

Figure 9. Feature vector extracted for ground fault at various locations of the voltage signal.

In Figure 9, the norm values for each location are significantly different in the domi-
nant frequency band between D5 and D8 and can be used as input vectors to establish
fault estimation rules. Similarly, as illustrated in Figure 10, a unique signature of the pole-
to-pole fault may be derived at different frequency bands. A schematic diagram for the
feature vector development process is shown in Figure 11.

0

2

4

6

8

10

12

14

N
or

m

Decomposition level

Location 50 km
Location 40 km

Location 60 km
Location 70 km
Location 80 km
Location 90 km
Location 100 km
Location 110 km
Location 120 km
Location 130 km
Location 140 km
Location 150 km
Location 160 km
Location 170 km
Location 180 km
Location 190 km
Location 200 km

x 103

Norm D1 Norm D2 Norm D3 Norm D4 Norm D5 Norm D6 Norm D7 Norm D8 Norm A8

Figure 10. Feature vector extracted for the PTP fault at various locations of the voltage signal. Figure 10. Feature vector extracted for the PTP fault at various locations of the voltage signal.

Sensors 2022, 22, 9936 19 of 26Sensors 2022, 22, x FOR PEER REVIEW 19 of 26

Figure 11. Flow chart for the development of the feature vector.

4.2.2. Training Set-Up
Following preprocessing strategies, these extracted features are standardized for

computational simplification. The decluttered training dataset is then applied to the BO-
based AI model to find the appropriate hyperparameters for the FFNN once the feature
vectors have been determined. The input vector p = (x1, x2, x3, x4) of 10 ms is designed for
the FFNN input; two inputs (x1, x2) represent the transient dc current second norm from
positive and negative poles, while the rest (x3, x4) indicate the dc voltage second norm
from positive and negative poles. This corresponds to 36 inputs for each training sample
(total training samples = k = 714). In doing so, BO’s AI model is modified each time until
the maximum number of iterations is reached. BO then selects the ideal FFNN hyperpa-
rameters that result in the lowest RMSE, and the FFNN is trained using the LMBP algo-
rithm. The final RMSE obtained is 0.0132, with a total evaluation time of 39.3428 s for 30
iterations. Some key hyperparameters of the multilayer FFNN model obtained via BO are
presented in Table 6.

Table 6. Optimized parameters.

Hyperparameters Range Fault Location Model
Learning Rate [1 × 10−2–1] 0.010037

Hidden Layers/Neurons (NHL) [1–40] 28
Momentum [0.001–0.005] 0.0028608

Epochs [20–1000] 994
Gradient [1×10−7–10−6] 1.2925 × 10−07

Validation [0–6] 4

5. Simulation Results and Discussions
A. Metric for Evaluation and Testing Set-Up

Although, during validation, the selected models’ average estimation accuracy was
98.94%. However, we tested our method for further investigation using case studies given
in Table 7. For verification and more in-depth analysis, a performance index based on
percentage error was used as follows:

Figure 11. Flow chart for the development of the feature vector.

4.2.2. Training Set-Up

Following preprocessing strategies, these extracted features are standardized for
computational simplification. The decluttered training dataset is then applied to the BO-
based AI model to find the appropriate hyperparameters for the FFNN once the feature
vectors have been determined. The input vector p = (x1, x2, x3, x4) of 10 ms is designed
for the FFNN input; two inputs (x1, x2) represent the transient dc current second norm
from positive and negative poles, while the rest (x3, x4) indicate the dc voltage second
norm from positive and negative poles. This corresponds to 36 inputs for each training
sample (total training samples = k = 714). In doing so, BO’s AI model is modified each
time until the maximum number of iterations is reached. BO then selects the ideal FFNN
hyperparameters that result in the lowest RMSE, and the FFNN is trained using the LMBP
algorithm. The final RMSE obtained is 0.0132, with a total evaluation time of 39.3428 s for
30 iterations. Some key hyperparameters of the multilayer FFNN model obtained via BO
are presented in Table 6.

Table 6. Optimized parameters.

Hyperparameters Range Fault Location Model

Learning Rate [1 × 10−2–1] 0.010037

Hidden Layers/Neurons (NHL) [1–40] 28

Momentum [0.001–0.005] 0.0028608

Epochs [20–1000] 994

Gradient [1 × 10−7–10−6] 1.2925 × 10−7

Validation [0–6] 4

5. Simulation Results and Discussions

A. Metric for Evaluation and Testing Set-Up

Although, during validation, the selected models’ average estimation accuracy was
98.94%. However, we tested our method for further investigation using case studies given

Sensors 2022, 22, 9936 20 of 26

in Table 7. For verification and more in-depth analysis, a performance index based on
percentage error was used as follows:

Percentage error =
Actual Location− Prediction location

Total lenght of transmission line
× 100 (61)

Table 7. Testing fault scenarios for testing data.

Transient Period
[10 ms]

Testing
Samples Fault Resistance (Ω) Fault Distance (km) Noise (dB)

10 ms 400 10, 35, 60, 85, . . . , 435, 460, 485 5, 15, 25, . . . , 175, 185, 195 20, 25, 45
Total faulty sample = 400/each fault type, Total testing samples = [(400) ∗ 2] = 800, Refer Table 6 for fault distance

5.1. Case 1 (Fault Location)

In Case 1 (under varying fault locations and fault resistance), the functionality of the
proposed technique was tested using the scenarios given in Table 7. After thorough training,
fault analyses were carried out with varying fault distances and resistances. Table 8 shows
the 800 test samples, absolute and percentage errors for two types of dc-link faults: PTP
and PTG. It can be observed that the percentage error for the testing dataset was found
to be 0.4927% and 0.5361% for the PTP fault and PTG fault, respectively. The proposed
technique’s total percentage error was found to be 0.5144 percent, which demonstrated that
the misclassification was well within acceptable bounds.

Table 8. Fault location estimation errors.

Fault Type Total
Faults

Max Absolute Error
(km)

Max Percentage
Error (%)

Overall Absolute
Error (km)

Overall
Percentage
Error (%)

PTP 400 2.6350 1.3174 0.9853 0.4927

PTG 400 2.6412 1.3206 1.0723 0.5361

Average Error NA NA NA 1.0288 0.5144

In addition, Figure 12 depicts the percentage inaccuracy for the proposed technique in
locating PTP faults on line 13 PTP faults with fault distances ranging from 5 km to 200 km.
With a maximum percentage error of 1.3174% at 175 km and a minimum value of 0.00103%
at 15 km, the findings revealed that the proposed algorithm had no major impact on the
variance of fault distance. Therefore, the proposed approach is suitable for locating close-in
and far-away faults.

Sensors 2022, 22, x FOR PEER REVIEW 20 of 26

 Actual Location-Prediction l

ocationPercentage error = 100
Total lenght of transmission line r ?

× (61)

Table 7. Testing fault scenarios for testing data.

Transient Period
[10 ms]

Testing
Samples

Fault Resistance (Ω) Fault Distance (km) Noise (dB)

10 ms 400 10, 35, 60, 85, …, 435, 460, 485 5, 15, 25, …, 175, 185, 195 20, 25, 45
Total faulty sample = 400/each fault type, Total testing samples = [(400) ∗ 2] = 800, Refer Table 6 for fault distance

5.1. Case 1 (Fault Location)
In Case 1 (under varying fault locations and fault resistance), the functionality of the

proposed technique was tested using the scenarios given in Table 7. After thorough train-
ing, fault analyses were carried out with varying fault distances and resistances. Table 8
shows the 800 test samples, absolute and percentage errors for two types of dc-link faults:
PTP and PTG. It can be observed that the percentage error for the testing dataset was
found to be 0.4927% and 0.5361% for the PTP fault and PTG fault, respectively. The pro-
posed technique’s total percentage error was found to be 0.5144 percent, which demon-
strated that the misclassification was well within acceptable bounds.

Table 8. Fault location estimation errors.

Fault Type Total
Faults

Max Absolute Error
(km)

Max Percentage Error
(%)

Overall Absolute
Error (km)

Overall Percentage
Error (%)

PTP 400 2.6350 1.3174 0.9853 0.4927
PTG 400 2.6412 1.3206 1.0723 0.5361

Average Error NA NA NA 1.0288 0.5144

In addition, Figure 12 depicts the percentage inaccuracy for the proposed technique
in locating PTP faults on line 13 PTP faults with fault distances ranging from 5 km to 200
km. With a maximum percentage error of 1.3174% at 175 km and a minimum value of
0.00103% at 15 km, the findings revealed that the proposed algorithm had no major impact
on the variance of fault distance. Therefore, the proposed approach is suitable for locating
close-in and far-away faults.

Figure 12. Accuracy of the proposed technique.
Figure 12. Accuracy of the proposed technique.

Sensors 2022, 22, 9936 21 of 26

5.2. Case 2 (Fint)

Apart from fault location, it is important to note that the characteristics and amplitude
of faulty signals, such as voltage and current measured at the local terminal, are also
determined by fault parameters such as fault resistance. Therefore, it is crucial to highlight
the proposed approach’s performance under diverse fault resistances. This section analyzes
the proposed algorithm’s performance for in-depth fault resistance validity ranging from 10
to 385 Ω, and the results are given in Table 9. Notably, in the event of high fault resistance,
such as 385 Ω, with an actual fault distance of 185 km, the energy of the travelling waves
tended to be on the lower side, bringing the system closer to the steady state. However,
the proposed algorithm with selected features extracted even the most minute voltage
and current information. For example, the predicted fault distances for PTP and PTG at
385 Ω were 183.63147 km and 186.93141 km, respectively. The associated misclassification
of 0.68427% and 0.96571% for each fault type was well within acceptable limits.

Table 9. Fault resistance estimation errors.

Fault
Location

Fault
Resistance (Ω) Fault Type

dc-Link
Fault Location Results

Predicted Location Absolute Error Percentage Error (%)

PTP PTG PTP PTG PTP PTG

5 km of
dc link

10 PTP PTG 5.02021 5.03022 0.02021 0.03022 0.01011 0.01511

110 PTP PTG 5.07141 5.08142 0.07141 0.08142 0.03571 0.04071

260 PTP PTG 5.63413 5.76481 0.63413 0.76481 0.31707 0.38241

35 km of
dc link

35 PTP PTG 35.05123 35.07134 0.05123 0.07134 0.025615 0.03567

235 PTP PTG 35.62858 36.10184 0.62858 1.10184 0.31429 0.55092

285 PTP PTG 35.86144 36.31471 0.86144 1.31471 0.43072 0.65736

125 km of
dc link

260 PTP PTG 126.67141 126.81487 1.67141 1.81487 0.83571 0.90744

385 PTP PTG 126.76175 126.91231 1.76175 1.91231 0.88088 0.956155

110 PTP PTG 126.01522 126.52812 1.01522 1.52812 0.50761 0.76406

185 km of
dc link

260 PTP PTG 186.94571 186.75387 1.94571 1.75387 0.972855 0.87694

385 PTP PTG 183.63147 186.93141 1.36853 1.93141 0.68427 0.96571

110 PTP PTG 186.34578 186.53681 1.34578 1.53681 0.67289 0.76841

Normal
operation X X X X NOT APPLICABLE NOT APPLICABLE NOT APPLICABLE

5.3. Case 3 (Noisy Events)

In this case, a white Gaussian was added to the testing signals to examine the proposed
fault-locating scheme under various noisy occurrences. Original signals with SNRs ranging
from 20 to 45 dB were employed to assess fault location performance. Table 10 indicates
that the proposed scheme could locate all sorts of faults with a reasonable mean percentage
error rate for close-in, mid-point of line, and far-end of line. In the case of 45 dB noise
additions at the far end of 155 km of the dc-link, the total mean percentage error was
0.72424% and 0.83147% for PTP and PTG faults. It is worth noting that the proposed
method was noise-resistant because of the denoising process with better threshold settings
and functions. This improved the estimation accuracy despite the high noise level of 20 dB
with an overall mean percentage error of 0.9411% and 0.8561% for PTP and PTG faults,
respectively.

Sensors 2022, 22, 9936 22 of 26

Table 10. Results under the different noisy event.

Noise
(dB)

Fault
Location

Fault
Resistance

(Ω)
Fault Type

dc-Link
Fault Location Results

Predicted Location Absolute Error Percentage Error
(%)

PTP PTG PTP PTG PTP PTG

25
5 km of
dc link

10 PTP PTG 5.04512 5.06727 0.04512 0.06727 0.02256 0.03364

110 PTP PTG 6.01202 6.03567 1.01202 1.03567 0.50601 0.51784

260 PTP PTG 6.26783 6.15872 1.26783 1.15872 0.63392 0.57936

20
45 km of
dc link

35 PTP PTG 46.06982 46.23672 1.06982 1.23672 0.53491 0.61836

235 PTP PTG 46.84612 47.03452 1.84612 2.03452 0.92306 1.01726

285 PTP PTG 47.03487 46.76324 2.03487 1.76324 1.01744 0.88162

45 155 km of
dc link

260 PTP PTG 156.96342 154.06853 1.96342 0.93147 0.98171 0.46574

385 PTP PTG 154.13647 153.02356 0.86353 1.97644 0.43177 0.98822

110 PTP PTG 154.43628 154.36571 0.56372 0.63429 0.28186 0.31715

5.4. Case 4 (Comparison with Existing Methods)

To further validate the proposed scheme’s robustness, Figure 13 replaces it with
intelligent adversaries such as the conventional FFNN and BP-NN with an original current
signal as the input under the testing conditions listed in Table 7.

Sensors 2022, 22, x FOR PEER REVIEW 22 of 26

Table 10. Results under the different noisy event.

Noise
(dB)

Fault
Location

Fault
Resistance

(Ω)
Fault Type

dc-Link
Fault Location Results

Predicted Location Absolute Error Percentage Error
(%)

PTP PTG PTP PTG PTP PTG

25 5 km of
dc link

10 PTP PTG 5.04512 5.06727 0.04512 0.06727 0.02256 0.03364
110 PTP PTG 6.01202 6.03567 1.01202 1.03567 0.50601 0.51784
260 PTP PTG 6.26783 6.15872 1.26783 1.15872 0.63392 0.57936

20 45 km of
dc link

35 PTP PTG 46.06982 46.23672 1.06982 1.23672 0.53491 0.61836
235 PTP PTG 46.84612 47.03452 1.84612 2.03452 0.92306 1.01726
285 PTP PTG 47.03487 46.76324 2.03487 1.76324 1.01744 0.88162

45
155 km of

dc link

260 PTP PTG 156.96342 154.06853 1.96342 0.93147 0.98171 0.46574
385 PTP PTG 154.13647 153.02356 0.86353 1.97644 0.43177 0.98822
110 PTP PTG 154.43628 154.36571 0.56372 0.63429 0.28186 0.31715

5.4. Case 4 (Comparison with Existing Methods)
To further validate the proposed scheme’s robustness, Figure 13 replaces it with in-

telligent adversaries such as the conventional FFNN and BP-NN with an original current
signal as the input under the testing conditions listed in Table 7.

Figure 13. Comparative analysis.

On a dual 2.9 GHz, Intel Core i7 with 16 GB RAM, the current version of the algo-
rithm implemented in Matlab® R2020a took 39.3428 s to run. Thirty ANN models were
selected, trained, and validated with this runtime. It was approximately five times faster
than a conventional FFNN configured manually with hyperparameters. The results
showed that the proposed algorithm performed better than the BP-NN and had the lowest
percentage error (i.e., 0.49%, 0.54% and 0.51%) for all fault types. In terms of percentage
error, the conventional FFNN with hyperparameters such as 15 neurons in the hidden
layer and a learning rate of 0.01 gave an average percentage error of 0.56%. This showed
that efficient features and regulating parameters in the proposed algorithm helped to in-
crease the interpretability of the spectrum generated by the wavelet.

Figure 13. Comparative analysis.

On a dual 2.9 GHz, Intel Core i7 with 16 GB RAM, the current version of the algorithm
implemented in Matlab® R2020a took 39.3428 s to run. Thirty ANN models were selected,
trained, and validated with this runtime. It was approximately five times faster than a
conventional FFNN configured manually with hyperparameters. The results showed that
the proposed algorithm performed better than the BP-NN and had the lowest percentage
error (i.e., 0.49%, 0.54% and 0.51%) for all fault types. In terms of percentage error, the
conventional FFNN with hyperparameters such as 15 neurons in the hidden layer and
a learning rate of 0.01 gave an average percentage error of 0.56%. This showed that
efficient features and regulating parameters in the proposed algorithm helped to increase
the interpretability of the spectrum generated by the wavelet.

Sensors 2022, 22, 9936 23 of 26

6. Comparison and Analysis

This section compares the proposed methodology with existing fault estimation
schemes for the MT-HVdc grid.

6.1. Non-AI-Based Methods

The proposed fault location method utilizes a continuous wavelet transform on dc
line current signals in the MT-HVdc network [36]. The technique is quite efficient; how-
ever, a high sampling frequency of 200 kHz and time-synchronized measurements are
required. Further, evaluation under high fault resistance has not been investigated thor-
oughly. Another work used time-stamped measurements to locate faults at a 200 kHz
sampling frequency [37]. The proposed model is robust against noise measurement, but
high sampling frequency and synchronized measurements could be a barrier to practical
applications. The single-ended TW-based fault location model has no synchronized mea-
surement issue [38] but has a high sampling frequency (100 kHz) [39]. In another example,
modal voltage and current measurements are sampled at 1 MHz to develop a single-end
fault location model [40]. However, it has only been tested for 100 Ω fault resistance. All
the aforementioned TW-based fault location models require a high sampling frequency for
good accuracy. Such a requirement is frequently considered a drawback. In comparison, the
proposed single-end fault location approach operates with reasonable sampling frequency
and tests against fault resistance as high as 485 Ω.

6.2. AI-Based Methods

Among the fault location approaches, learning-based techniques fall into a distinct
category. Even though such practices are commonly utilized in AC systems for fault
localization, few papers discuss their relevance to MT-HVdc networks. For example, an
extreme learning machine was proposed to locate the fault in the MT-HVdc network [41].
Voltage and current measurements were captured at a 500 kHz sampling frequency during
the learning phase to perform the wavelet transform and s-transform for feature extraction.
However, the entire scheme has been tested for fault resistance up to 100 Ω. Similarly,
the high voltage and current measurements sampled at 200 kHz and the investigation of
highly resistive faults are missing [42]. Another method applied a traditional two-ended
TW-based fault location algorithm to current measurements sampled at 5 kHz [43]. The
distance inaccuracy caused by the moderate sampling frequency was subsequently reduced
using a machine-learning approach. However, utilizing multiple distributed sensors on
long transmission added cost to the method. With the help of the ANN, the real-time
implementation of the proposed method is quite efficient. It has been proven to have a low
execution time on low-spec machines [44]. Further, all the aforementioned models do not
discuss the optimization of the machine-learning model. The proposed approach optimizes
the pre-training set-up with the help of Bayesian optimization.

7. Conclusions

At first, a novel dc fault location scheme based on AI for a meshed dc grid is proposed.
The BO-based FFNN model with DWT application is used to determine the best hyper-
parameters that improve the selected model’s performance while keeping the RMSE low.
Levenberg–Marquardt backpropagation is used to adjust weights and biases during train-
ing for the chosen multilayer FFNN model. The contribution of this work is summarized
as follows:

1. The wavelet coefficient energies of voltage and current over 10 ms are calculated and
denoised during the learning phase for feature extraction. This leads to fewer features
yet is robust for the learning model.

2. A comprehensive training dataset is collected to train the multilayer FFNN model for
different fault locations by varying fault impedance.

Sensors 2022, 22, 9936 24 of 26

3. The performance of this model is then evaluated on data points that are not included
in the training dataset. The study results show that the fault location can be calculated
using the FFNN for fault resistance up to 485 Ω.

4. Because the signal and Gaussian noise are integrated into the FFNN training sets, the
influence of the noise-contained environment is reduced.

5. Due to plug-and-play capability, the suggested intelligent algorithm is tailored for a
multi-vendor-based fault location estimation strategy in meshed MT-HVdc grids.

6. The case studies show that the proposed scheme performs well against many variables,
such as different fault resistances, transmission line lengths, and non-ideal noise
events. Thus, that makes it feasible for practical application in the MT-HVdc grid.

In future work, variable time windows will be used to consider the effect of the fault
location, fault resistance, and computational burden. This work provides an analysis of
the fault location estimation method for HVdc cable grids that can be applied to hybrid
cable–overhead line systems as well.

Author Contributions: Conceptualization, M.Z.Y.; methodology, M.Z.Y. and M.F.T.; software, M.Z.Y.;
validation, M.A.K. and M.Z.Y.; mathematical analysis, M.A.K. and M.Z.Y.; investigation, M.F.T.;
resources, M.Z.Y. and A.R.; writing original draft preparation, M.Z.Y.; writing review and editing,
M.Z.Y. and A.R.; visualization, M.Z.Y. and A.R.; supervision, A.R.; project administration, M.A.K.,
F.B., M.F.T. and M.Z.Y.; funding acquisition, M.Z.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors extend their appreciation for the support provided by the Hubei
University of Automotive Technology (Shiyan, China) under a long-term innovation project (Project
name: BK202211).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fairley, P. China’s ambitious plan to build the world’s biggest supergrid. IEEE Spectr. 2019, 1, 35–41.
2. He, Z.-Y.; Liao, K.; Li, X.-P.; Lin, S.; Yang, J.-W.; Mai, R.-K. Natural frequency-based line fault location in HVDC lines. IEEE Trans.

Power Deliv. 2014, 29, 851–859. [CrossRef]
3. Suonan, J.; Gao, S.; Song, G.; Jiao, Z.; Kang, X. A novel fault-location method for HVDC transmission lines. IEEE Trans. Power

Deliv. 2009, 25, 1203–1209. [CrossRef]
4. Zhang, M.; Li, J.; Li, Y.; Xu, R. Deep learning for short-term voltage stability assessment of power systems. IEEE Access 2021, 9,

29711–29718. [CrossRef]
5. Xiao, D.; Chen, H.; Wei, C.; Bai, X. Statistical Measure for Risk-Seeking Stochastic Wind Power Offering Strategies in Electricity

Markets. J. Mod. Power Syst. Clean Energy 2021, 10, 1437–1442. [CrossRef]
6. Nsaif, Y.M.; Hossain Lipu, M.S.; Hussain, A.; Ayob, A.; Yusof, Y.; Zainuri, M.A.A. A Novel Fault Detection and Classification

Strategy for Photovoltaic Distribution Network Using Improved Hilbert–Huang Transform and Ensemble Learning Technique.
Sustainability 2022, 14, 11749. [CrossRef]

7. Zhang, C.; Song, G.; Wang, T.; Yang, L. Single-ended traveling wave fault location method in DC transmission line based on wave
front information. IEEE Trans. Power Deliv. 2019, 34, 2028–2038. [CrossRef]

8. Hamidi, R.J.; Livani, H. Traveling-wave-based fault-location algorithm for hybrid multiterminal circuits. IEEE Trans. Power Deliv.
2016, 32, 135–144. [CrossRef]

9. Ahmadimanesh, A.; Shahrtash, S.M. Transient-based fault-location method for multiterminal lines employing S-transform. IEEE
Trans. Power Deliv. 2013, 28, 1373–1380. [CrossRef]

10. Perveen, R.; Mohanty, S.R.; Kishor, N. Fault location in VSC-HVDC section for grid integrated offshore wind farm by EMD. In
Proceedings of the 18th Mediterranean Electrotechnical Conference (MELECON), Lemesos, Cyprus, 18–20 April 2016; IEEE:
Lemesos, Cyprus, 2016; pp. 1–5.

11. Farshad, M.; Sadeh, J. Accurate single-phase fault-location method for transmission lines based on k-nearest neighbor algorithm
using one-end voltage. IEEE Trans. Power Deliv. 2012, 27, 2360–2367. [CrossRef]

http://doi.org/10.1109/TPWRD.2013.2269769
http://doi.org/10.1109/TPWRD.2009.2033078
http://doi.org/10.1109/ACCESS.2021.3057659
http://doi.org/10.35833/MPCE.2021.000218
http://doi.org/10.3390/su141811749
http://doi.org/10.1109/TPWRD.2019.2922654
http://doi.org/10.1109/TPWRD.2016.2589265
http://doi.org/10.1109/TPWRD.2013.2248068
http://doi.org/10.1109/TPWRD.2012.2211898

Sensors 2022, 22, 9936 25 of 26

12. Samantaray, S. A systematic fuzzy rule based approach for fault classification in transmission lines. Appl. Soft Comput. 2013, 13,
928–938. [CrossRef]

13. Ola, S.R.; Saraswat, A.; Goyal, S.K.; Jhajharia, S.; Rathore, B.; Mahela, O.P. Wigner distribution function and alienation coefficient-
based transmission line protection scheme. IET Gener. Transm. Distrib. 2020, 14, 1842–1853. [CrossRef]

14. Ram Ola, S.; Saraswat, A.; Goyal, S.K.; Jhajharia, S.; Khan, B.; Mahela, O.P.; Haes Alhelou, H.; Siano, P. A protection scheme for a
power system with solar energy penetration. Appl. Sci. 2020, 10, 1516. [CrossRef]

15. Samantaray, S.; Dash, P.; Panda, G. Fault classification and location using HS-transform and radial basis function neural network.
Electr. Power Syst. Res. 2006, 76, 897–905. [CrossRef]

16. Salat, R.; Osowski, S. Accurate fault location in the power transmission line using support vector machine approach. IEEE Trans.
Power Syst. 2004, 19, 979–986. [CrossRef]

17. Luo, G.; Yao, C.; Tan, Y.; Liu, Y. Transient signal identification of HVDC transmission lines based on wavelet entropy and SVM.
J. Eng. 2019, 2019, 2414–2419. [CrossRef]

18. Malathi, V.; Marimuthu, N.; Baskar, S. Intelligent approaches using support vector machine and extreme learning machine for
transmission line protection. Neurocomputing 2010, 73, 2160–2167. [CrossRef]

19. Farshad, M. Detection and classification of internal faults in bipolar HVDC transmission lines based on K-means data description
method. Int. J. Electr. Power Energy Syst. 2019, 104, 615–625. [CrossRef]

20. Ekici, S.; Yildirim, S.; Poyraz, M. Energy and entropy-based feature extraction for locating fault on transmission lines by using
neural network and wavelet packet decomposition. Expert Syst. Appl. 2008, 34, 2937–2944. [CrossRef]

21. Jayamaha, D.; Lidula, N.; Rajapakse, A.D. Wavelet-multi resolution analysis based ANN architecture for fault detection and
localization in DC microgrids. IEEE Access 2019, 7, 145371–145384. [CrossRef]

22. Merlin, V.L.; dos Santos, R.C.; Le Blond, S.; Coury, D.V. Efficient and robust ANN-based method for an improved protection of
VSC-HVDC systems. IET Renew. Power Gener. 2018, 12, 1555–1562. [CrossRef]

23. Karmacharya, I.M.; Gokaraju, R. Fault location in ungrounded photovoltaic system using wavelets and ANN. IEEE Trans.
Power Deliv. 2017, 33, 549–559. [CrossRef]

24. Torun, H.M.; Swaminathan, M.; Davis, A.K.; Bellaredj, M.L.F. A global Bayesian optimization algorithm and its application to
integrated system design. IEEE Trans. Very Large Scale Integr. Syst. 2018, 26, 792–802. [CrossRef]

25. Chen, P.; Merrick, B.M.; Brazil, T.J. Bayesian optimization for broadband high-efficiency power amplifier designs. IEEE Trans.
Microw. Theory Tech. 2015, 63, 4263–4272. [CrossRef]

26. Park, S.J.; Bae, B.; Kim, J.; Swaminathan, M. Application of machine learning for optimization of 3-D integrated circuits and
systems. IEEE Trans. Very Large Scale Integr. Syst. 2017, 25, 1856–1865. [CrossRef]

27. Lv, C.; Xing, Y.; Zhang, J.; Na, X.; Li, Y.; Liu, T.; Cao, D.; Wang, F.-Y. Levenberg–Marquardt backpropagation training of multilayer
neural networks for state estimation of a safety-critical cyber-physical system. IEEE Trans. Ind. Inform. 2017, 14, 3436–3446.
[CrossRef]

28. Soualhi, A.; Makdessi, M.; German, R.; Echeverría, F.R.; Razik, H.; Sari, A.; Venet, P.; Clerc, G. Heath monitoring of capacitors and
supercapacitors using the neo-fuzzy neural approach. IEEE Trans. Ind. Inform. 2017, 14, 24–34. [CrossRef]

29. Hagan, M.T.; Menhaj, M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5,
989–993. [CrossRef]

30. Sadiq, M.T.; Yu, X.; Yuan, Z.; Aziz, M.Z.; Siuly, S.; Ding, W. Toward the development of versatile brain–computer interfaces.
IEEE Trans. Artif. Intell. 2021, 2, 314–328. [CrossRef]

31. Sharifzadeh, M.; Sikinioti-Lock, A.; Shah, N. Machine-learning methods for integrated renewable power generation: A compara-
tive study of artificial neural networks, support vector regression, and Gaussian Process Regression. Renew. Sustain. Energy Rev.
2019, 108, 513–538. [CrossRef]

32. Bull, A.D. Convergence rates of efficient global optimization algorithms. J. Mach. Learn. Res. 2011, 12, 2879–2904.
33. Leterme, W.; Ahmed, N.; Beerten, J.; Ängquist, L.; Van Hertem, D.; Norrga, S. A New HVDC Grid Test System for HVDC Grid

Dynamics and Protection Studies in EMT-Type Software. In Proceedings of the 11th IET International Conference on AC and DC
Power Transmission, Birmingham, AL, USA, 10–12 February 2015; IET, 2015; pp. 1–7.

34. Wang, M.-H.; Lu, S.-D.; Liao, R.-M. Fault diagnosis for power cables based on convolutional neural network with chaotic system
and discrete wavelet transform. IEEE Trans. Power Deliv. 2021, 21, 2285–2294. [CrossRef]

35. Ukil, A.; Yeap, Y.M.; Satpathi, K. Fault Analysis and Protection System Design for DC Grids; Springer: Berlin/Heidelberg, Germany, 2020.
36. Nanayakkara, O.K.; Rajapakse, A.D.; Wachal, R. Traveling-wave-based line fault location in star-connected multiterminal HVDC

systems. IEEE Trans. Power Deliv. 2012, 27, 2286–2294. [CrossRef]
37. Nanayakkara, O.K.; Rajapakse, A.D.; Wachal, R. Location of DC line faults in conventional HVDC systems with segments of

cables and overhead lines using terminal measurements. IEEE Trans. Power Deliv. 2011, 27, 279–288. [CrossRef]
38. Azizi, S.; Sanaye-Pasand, M.; Abedini, M.; Hasani, A. A traveling-wave-based methodology for wide-area fault location in

multiterminal DC systems. IEEE Trans. Power Deliv. 2014, 29, 2552–2560. [CrossRef]
39. Tzelepis, D.; Psaras, V.; Tsotsopoulou, E.; Mirsaeidi, S.; Dyśko, A.; Hong, Q.; Dong, X.; Blair, S.M.; Nikolaidis, V.C.;

Papaspiliotopoulos, V. Voltage and current measuring technologies for high voltage direct current supergrids: A technology
review identifying the options for protection, fault location and automation applications. IEEE Access 2020, 8, 203398–203428.
[CrossRef]

http://doi.org/10.1016/j.asoc.2012.09.010
http://doi.org/10.1049/iet-gtd.2019.1414
http://doi.org/10.3390/app10041516
http://doi.org/10.1016/j.epsr.2005.11.003
http://doi.org/10.1109/TPWRS.2004.825883
http://doi.org/10.1049/joe.2018.8555
http://doi.org/10.1016/j.neucom.2010.02.001
http://doi.org/10.1016/j.ijepes.2018.07.044
http://doi.org/10.1016/j.eswa.2007.05.011
http://doi.org/10.1109/ACCESS.2019.2945397
http://doi.org/10.1049/iet-rpg.2018.5097
http://doi.org/10.1109/TPWRD.2017.2721903
http://doi.org/10.1109/TVLSI.2017.2784783
http://doi.org/10.1109/TMTT.2015.2495360
http://doi.org/10.1109/TVLSI.2017.2656843
http://doi.org/10.1109/TII.2017.2777460
http://doi.org/10.1109/TII.2017.2701823
http://doi.org/10.1109/72.329697
http://doi.org/10.1109/TAI.2021.3097307
http://doi.org/10.1016/j.rser.2019.03.040
http://doi.org/10.1109/TPWRD.2021.3065342
http://doi.org/10.1109/TPWRD.2012.2202405
http://doi.org/10.1109/TPWRD.2011.2174067
http://doi.org/10.1109/TPWRD.2014.2323356
http://doi.org/10.1109/ACCESS.2020.3035905

Sensors 2022, 22, 9936 26 of 26

40. Ashouri, M.; da Silva, F.F.; Bak, C.L. On the application of modal transient analysis for online fault localization in HVDC cable
bundles. IEEE Trans. Power Deliv. 2019, 35, 1365–1378. [CrossRef]

41. Hadaeghi, A.; Samet, H.; Ghanbari, T. Multi extreme learning machine approach for fault location in multi-terminal high-voltage
direct current systems. Comput. Electr. Eng. 2019, 78, 313–327. [CrossRef]

42. Livani, H.; Evrenosoglu, C.Y. A single-ended fault location method for segmented HVDC transmission line. Electr. Power Syst. Res.
2014, 107, 190–198. [CrossRef]

43. Tzelepis, D.; Dyśko, A.; Fusiek, G.; Niewczas, P.; Mirsaeidi, S.; Booth, C.; Dong, X. Advanced fault location in MTDC networks
utilising optically-multiplexed current measurements and machine learning approach. Int. J. Electr. Power Energy Syst. 2018, 97,
319–333. [CrossRef]

44. Tsotsopoulou, E.; Karagiannis, X.; Papadopoulos, P.; Dyśko, A.; Yazdani-Asrami, M.; Booth, C.; Tzelepis, D. Time-domain
protection of superconducting cables based on artificial intelligence classifiers. IEEE Access 2022, 10, 10124–10138. [CrossRef]

http://doi.org/10.1109/TPWRD.2019.2942016
http://doi.org/10.1016/j.compeleceng.2019.07.022
http://doi.org/10.1016/j.epsr.2013.10.006
http://doi.org/10.1016/j.ijepes.2017.10.040
http://doi.org/10.1109/ACCESS.2022.3142534

	Introduction
	Proposed Framework
	Feedforward Neural Network (FFNN)
	Backpropagation Algorithm
	Levenberg–Marquardt Backpropagation
	Parameter Optimization
	Black-Box Settings
	Gaussian Process (GP)
	Acquisition Function
	Implementation of Proposed Framework

	System Model
	Data Processing
	Signal Processing
	Setting Numbers of Decomposition Layers
	Selection of Mother Wavelet Function
	Set the Threshold and Filter the Signal

	Feature Extraction Set-Up
	Feature Extraction Results
	Training Set-Up

	Simulation Results and Discussions
	Case 1 (Fault Location)
	Case 2 (Fint)
	Case 3 (Noisy Events)
	Case 4 (Comparison with Existing Methods)

	Comparison and Analysis
	Non-AI-Based Methods
	AI-Based Methods

	Conclusions
	References

