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Abstract: Parkinson’s disease (PD) is one of the most prevalent neurological diseases, described by
complex clinical phenotypes. The manifestations of PD include both motor and non-motor symptoms.
We constituted an experimental protocol for the assessment of PD motor signs of lower extremities.
Using a pair of sensor insoles, data were recorded from PD patients, Elderly and Adult groups.
Assessment of PD patients has been performed by neurologists specialized in movement disorders
using the Movement Disorder Society—Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)-Part
III: Motor Examination, on both ON and OFF medication states. Using as a reference point the
quantified metrics of MDS-UPDRS-Part III, severity levels were explored by classifying normal,
mild, moderate, and severe levels of PD. Elaborating the recorded gait data, 18 temporal and spatial
characteristics have been extracted. Subsequently, feature selection techniques were applied to reveal
the dominant features to be used for four classification tasks. Specifically, for identifying relations
between the spatial and temporal gait features on: PD and non-PD groups; PD, Elderly and Adults
groups; PD and ON/OFF medication states; MDS-UPDRS: Part III and PD severity levels. AdaBoost,
Extra Trees, and Random Forest classifiers, were trained and tested. Results showed a recognition
accuracy of 88%, 73% and 81% for, the PD and non-PD groups, PD-related medication states, and PD
severity levels relevant to MDS-UPDRS: Part III ratings, respectively.

Keywords: gait analysis; Parkinson’s disease; ON/OFF medication; MDS-UPDRS; severity levels;
insoles; pressure sensors

1. Introduction

Parkinson’s Disease (PD) is one of the most prevalent neurological diseases. The global
prevalence of PD patients is expected to reach 12 million cases by 2040 [1]. The pathophysi-
ology of PD is extensively researched and has been linked with genetic and environmental
risk factors [2]. The main neuropathological hallmarks of PD include neuroinflamma-
tion, degeneration of dopaminergic neurons in the substantia nigra pars compacta, and
accumulation of misfolded α-synuclein proteins as intra-cytoplasmic Lewy bodies and
neurites [3,4]. The manifestations of PD include both motor and non-motor symptoms.
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The cardinal motor symptoms of PD are bradykinesia, rigidity, tremor, and postural in-
stability [2,5], whilst the non-motor symptoms include depression, cognitive decline and
dementia, sleep disorders, dysphagia, constipation, urinary dysfunction, and orthostatic
hypotension, among others [5–8]. At the moment, there is no cure for PD, however, the
therapeutic process includes among others the admission of drugs for symptomatic re-
lief, mainly focusing on dopamine replacement strategies [9]. Based on patient’s clinical
characteristics, treatment may include surgical approaches, such as deep brain stimulation
(DBS) [10]. The diagnosis of Parkinson’s disease is, until today, mainly based on the clinical
assessment of the patient [11]. The Movement Disorder Society—Unified Parkinson’s
Disease Rating Scale (MDS-UPDRS) is considered the gold standard for the assessment and
monitoring of Parkinson’s disease [12], followed by the well-established Hoehn and Yahr
(HY) scale [13].

Gait analysis is critical for managing and monitoring the progression of PD symptoms.
Wearable sensor-enabled systems have been developed to extract numerous aspects of
PD motor symptoms, such as gait abnormalities, imbalance problems and tremor, which
cannot be derived merely from the clinical picture of the patient [14]. There is evidence
that gait patterns differentiate between PD patients and healthy controls [15,16]. There
has been a surge of interest in using machine learning and deep learning approaches that
utilize sensor signals (i.e., accelerometers, gyroscopes, pressure sensors) and/or videos to
monitor and forecast PD progression [14,17–24]. However, video-based motion analysis
systems require expensive equipment and are limited in equipped-indoor environments,
while wearable sensors are a more affordable solution, providing a method for long-
term monitoring under real-life conditions [25–28]. These research results demonstrate
promising potential for the deployment of systems for the monitoring and management
of PD, based on sensor signals and machine-learning methods. Although a lot of studies
focus on motor symptoms, and specifically, gait analysis, and there are standardized
assessment tests, we observe that a comprehensive protocol is lacking, i.e., the studies are
exploring only one type of test, they include walking at normal pace only, they often use
unbalanced datasets, and in several cases a control group is lacking. Another important
aspect that needs to be considered is the need for the parallel assessment of PD participants
by specialized clinicians using state-of-the-art quantification metrics, such as the MDS-
UPDRS [12]. These issues are also observed, in full or in part, in the limited number of
publicly available datasets that include sensor-based gait data and focus on PD patients,
as shown in Table 1. Specifically, the Gait in Parkinson’s Disease dataset [29], includes the
vertical ground reaction force records of a large number of participants (93 PD patients
and 73 healthy controls) along with demographic information and scores of PD scales
(the H and Y staging and/or the UPDRS), however only self-selected pace of walking
for 2 min was recorded, with a subset of participants to also perform a dual tasking test,
while ON/OFF medications states were not addressed. The Daphnet Freezing of Gait Data
Set [30], encompass 3D acceleration data derived from sensors on lower extremities, while
participants performed three different tests elaborating the activities of walking straight
with 180◦ turn, random walking with stops and 360◦ turns and, simulating activities of
daily living, while participants’ performance has been rated with the use of H and Y scale.
However, only 10 PD patients (who present the FoG symptom) were recorded, there was no
control group, ON/OFF medication states were not addressed, and only self-selected pace
of walking was examined. Finally, The Smart-Insole Dataset [16], includes data derived
from pressure sensor insoles, while participants performed two different sets of tests
elaborating different walking speeds, however the performance of the participants has been
rated using four items of the MDS-UPDRS, the dataset is small (8 PD patients, 9 elderly
and 13 adults are included), while ON/OFF medications states were not addressed. These
issues introduce limitations and make the comparative analysis of results very difficult, if
not impossible. Moreover, the assessment of PD patients in ON and OFF medication states
has been highlighted as an aspect that needs further investigation [31]. Finally, for the
accurate automated detection of PD patients’ mild-stage motor symptoms, it is important to
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classify the different severity levels of the disease using as a reference point the quantified
metrics that are applied in clinical practice.

Table 1. Details of publicly available datasets that include sensor-based gait data and focus on PD
patients.

Details Gait in Parkinson’s Disease
Dataset

Daphnet Freezing of Gait Data
Set Smart-Insole Dataset

No. and Groups of
participants

93 PD patients/
73 Healthy controls 10 PD patients

8 PD patients
9 Elderly
13 Adults

Types of tests
Walking for 2 min/

Dual tasking: a subset of
participants

Walking straight with 180◦

turn/Random walking with stops
and 360◦ turns/Simulating ADLS

Walking straight with 180◦

turn/Modified Timed Up
and Go Test

Test for FoG No Yes No

Walking pace Normal-self-selected Normal-self-selected Slow, Normal,
High—self-selected

Assessment with PD
scales H and Y staging and/or UPDRS H and Y 4 items of the

MDS-UPDRS
ON and OFF medication

states Not addressed Not addressed Not addressed

In such a context, the present work contributes to the challenging task of PD monitor-
ing, by introducing a computational pipeline for identifying relations between the spatial
and temporal gait features, PD-related medication states and disease severity levels, as
well as for separating PD patients from non-PD groups. To this end, we elaborate on a
comprehensive experimental protocol for the assessment of PD motor signs of the lower
extremities, as presented in Section 2. The protocol is based on literature findings regarding
the most popular tests employed in the domain, and on the description of relevant items of
MDS-UPDRS-Part III: Motor Examination, while it encompasses the assessment of different
walking speeds. Recordings have been obtained from PD patients, and two control groups,
elderly and adults. For PD patients, both, ON and OFF medication states have been exam-
ined. Clinical assessment has been performed by neurologists specialized in movement
disorders, utilizing the MDS-UPDRS-Part III: Motor Examination. Gait-related spatial and
temporal characteristics were extracted from the raw pressure sensor data, and feature
analysis techniques have been deployed, as described in Section 3. Furthermore, a set of
machine learning algorithms were explored for the classification of the different groups of
participants (PD, Elderly, Adults); ON and OFF medication states; and diseases severity
levels based on the MDS-UPDRS: Part III ratings, the results of which are presented in
Section 4.

2. Methodology

For the needs of this study, 44 participants, including PD patients, Elderly, and Adults,
performed the Smart-Insole Gait Assessment Protocol, while wearing a pair of pressure
sensor insoles. Informed consent was obtained from all subjects involved in the study.
PD Patients were recruited from the Movement Disorders Clinic, Patras University Hos-
pital, Greece, while the Elderly and Adults were enrolled at the Hellenic Mediterranean
University, Crete, Greece. The Smart-Insole Gait Assessment Protocol has received ethical
approval from the Patras University Hospital Research Ethics Committee (Approval num-
ber: 279/14.05.2021) and the Hellenic Mediterranean University Research Ethics Committee
(Approval number: 9/01.04.2020).

2.1. Materials and Setup

For data acquisition, a validated sensor insole system [16,32–34], namely, the Moticon
SCIENCE [35], was used. The insole system, as shown in Figure 1, incorporates 16 capacitive
type pressure sensors, a 6-Axis Inertial Measurement Unit (IMU) sensor for acceleration
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and angular rate data, while it includes the units of power supply, storage, and data
transmission into the insole. For the recordings, a sampling rate 100 Hz was employed.
Each generated file includes the timestamp (ms) among with, the pressure of the 16 sensors
(N/cm2), the acceleration in the x, y, z axes (g), the angular rate inωx,ωy,ωz (dps), and
the computed by Moticon, total force (N) and center of pressure in the x, y coordinates. To
avoid inconsistencies in the material setup, lightweight and flexible pairs of shoes were
purchased in which the insoles were fitted. The participant’s performance was captured
with the use of two cameras placed at the middle and end of the inquest route.
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Figure 1. The Moticon Science Sensor Insole (Model Insole 3). (a), shows the arrangement of the 16
pressure sensors and the positioning of the 3-axis acceleration sensor. (b) shows the positioning of
the angular rate sensors. Reproduced with permission from Moticon ReGo AG [35].

2.2. A Protocol for the Assessment of Gait of Parkinson’s Disease Patients Using Wearable Sensors

As previously stated, the Smart-Insole Gait Assessment Protocol for PD patients was
defined. The protocol focuses on the exploitation of bradykinesia and postural instability,
from the cardinal features of PD, and the use of an additional motor symptom that is
extensively studied because of its association with disease severity and increased risk of
falls, i.e., Freezing of Gait (FoG) [36].

In the majority of studies, the tests performed for the assessment of gait characteristics
of PD patients, are: (1) Free Walking for a predefined duration of time and at a normal pace
of walking; (2) the Timed Up and Go test (TUG test), where the participants rise from a
sitting position, walk a 3 m distance, turn, walk back and sit on a chair; (3) walking in a cor-
ridor with obstacles, and; (4) the Dual-Task test, where the participants walk and at the same
time undertake a second process, such as an arithmetic operation, conversation, transferring
an object, etc. [37–44]. For movement disorders experts, the MDS-UPDRS and particularly
Part III: Motor Examination is considered the gold standard for clinical assessment.

Therefore, in developing our research protocol, we have taken into consideration
literature findings and guidance of clinical experts and focused on six items of the MDS-
UPDRS-Part III: Motor Examination that involve lower extremities, namely 3.9-Arising
from chair, 3.10-Gait, 3.11-Freezing of gait, 3.12-Postural Stability, 3.13-Posture, 3.14-Global
spontaneity of movement. We also introduced a test for assessing FoG based on the findings
of previously published work [45]. As a result, the Smart-Insole Gait Assessment Protocol
consists of a set of five different tests, namely, the Walk Straight and Turn test, a modified
version of the Timed Up and Go test, the Static Balance test, the Retropulsion test, and
finally, the FoG and Dual Tasking test. These are described in detail in Sections 2.2.1–2.2.5.
Participants were asked to complete the tests as a continuous set of movements.
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2.2.1. The Walk Straight and Turn Test

The first test of the protocol is the Walk Straight and Turn (WST) test in which partici-
pants, starting from a standing position, walk in a straight route for 10 m, then turn back
and return to their starting position (Figure 2a). The WST Test is organized in line with
the description of the MDS-UPDRS item 3.10-Gait and contributes to the rating of items
3.11-Freezing of Gait and 3.13-Posture, whilst in parallel, it provides valuable information
for the estimation of stride amplitude and speed, as well as heel strike and turning. The
WST test is performed two times at slow, normal, and fast walking speeds, as perceived by
each participant. The importance of exploring the gait characteristics at different walking
speeds, especially for PD patients, has been revealed in several published studies [16,46,47].
Gait analysis on both slow and high speeds has shown that gait characteristics are signifi-
cantly affected and can provide valuable information for differencing gait between different
groups of participants and on PD patients with mild and moderate severity.
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2.2.2. The Modified Timed Up and Go Test

The typical form of TUG test requires participants to rise from a sitting position, walk
a 3 m distance, turn around and walk back to sit on the chair, while they are rated with
a completion time score [38]. The modified Timed Up and Go test (mTUG), shown in
Figure 2b, is configured exactly as the MDS-UPDRS item 3.9-Arising from a chair, for its
initial phase, where participants cross their arms across their chest and then stand up. Once
participants have managed to stand up, they are requested to walk a 10-m route, turn
around, walk back, and return to their sitting position. The test is performed twice, at a
normal pace of gait.

2.2.3. The Static Balance Test

For the Static Balance test, participants are requested to stand at an upright position
with their feet facing forward, at a marked distance of 30 cm, and looking straight ahead
(Figure 3a). Participants are instructed to stand motionless for 10 s with their eyes open and
then to repeat the test with their eyes closed for another 10 s. The pressure signals collected
in this test provide information concerning the center of pressure at a static position.
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2.2.4. The Retropulsion Test

The Retropulsion test, also known as pull test, is a commonly used test in clinical
practice for assessing postural stability in PD patients. The test is configured in line with the
description of the MDS-UPDRS item 3.12-Postural Stability. Participants place themselves
in the position of the Static Balance test, while the instructor, after informing the participant
what is about to happen, quickly and forcefully pulls participants from their shoulders
backward, to displace their center of gravity, so that they are forced to undertake steps
backward to retain their position (Figure 3b).

2.2.5. The FoG and Dual Tasking Test

The FoG and Dual Tasking test is in line with a previously published work by Ziegler
et al. [45], for the assessment of FoG and motor and mental Dual Tasking. For this test,
as shown in Figure 4, participants are requested to sit and relax in a chair for 30 s, then
stand up and walk for 1 m till they place themselves in a 40 cm × 40 cm square marked
on the floor, where they need to perform two, in-position, turns of 360◦, one clockwise
and one counter-clockwise; then, they walk for 2 m and walk through a narrow passage of
50 cm × 60 cm (created with the use of two chairs); once they walk out of the passage they
are requested to turn around (given a 1.2 m available space for turning); walk back through
the narrow passage and walk in a straight route until they are in a position to sit back in the
chair. This test is performed in three different versions: (a) the basic test, including only the
walking route as described; (b) the motor-dual tasking, where they perform the walking
route and at the same time hold a glass full of water in their hand; and (c) the mental-dual
tasking, where they perform the walking route and at the same time perform loudly serial
deductions of sevens starting at 100. The test is performed at a normal pace of walking as
perceived by each participant.
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2.3. Participants

In this study, 44 participants in total were included (Table 2), belonging to three
different groups: Adults, Elderly with no musculoskeletal or neurological diseases that
could affect their gait or balance, and PD patients; with age-related inclusion criteria 20–59,
above 60, and 20 years, respectively. PD participants were enrolled in both ON and OFF
medications states. Particularly, for each PD participant OFF state was recorded early
in the morning, while the ON state was recorded one hour after they had received their
medication, on the same day. Two PD participants were on a dopamine-continuous infusion
pump (D-CIP) and thus only ON states were recorded.
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Table 2. Participants details.

Group No. of
Participants

Average Age
[Years]

Age Span
[Years]

Height
[cm]

Weight
[Kg] Gender

Adults (S) 18 50 34–59 171 76 8 Females, 10 Males
Elderly (EL) 7 70 65–78 172 80 2 Females, 5 Males

PD patients (PD) 19 63 29–74 171 78 5 Females, 14 Males

2.4. Parkinson’s Disease Ratings: MDS-UPDRS/Subsets and Severity Levels

The Part III: Motor Examination of the MDS-UPDRS [12] was applied for the rating
of PD participants, on both ON and OFF states, by neurologists specialized in movement
disorders who actively participated in the recordings. The MDS-UPDRS-Part III: Motor
Examination, consists of 33 items with a maximum total score of 132, which indicates the
most severe disease state. The gait performance of the Adults and Elderly participants
was evaluated by the neurologists after examining video recordings (as in our previous
work [16]) and rated on a subset of six items of the MDS-UPDRS-Part III: Motor Examination
that involve lower extremities, namely 3.9 -Arising from a chair, 3.10-Gait, 3.11-Freezing
of gait, 3.12-Postural Stability, 3.13-Posture, and 3.14- Global spontaneity of movement
(named as Control Subset). The maximum total score of Control Subset is 24. The details of
participants and their scores at the relevant subsets are presented in Table 3.

Table 3. The participants details and their scores on different subsets. Values are presented as Means
± Standard Deviation. Participants with dopamine continuous infusion pumps (DCIP) are reported
separately.

PD OFF State PD ON State PD
DCIP EL S

No. of Participants 17 17 2 7 18
Age [years] 62 ± 11 62 ± 11 68 ± 8 70 ± 5 50 ± 6

Disease Duration [years] 10 ± 11 10 ± 11 17 ± 6 N/A N/A
LED * [mg] N/A 578 ± 174 1147 ± 671 N/A N/A

Total Score MDS-UPDRS-Part III 42 ± 21 30 ± 20 33 ± 28 N/A N/A
Total Score Control Subset ** 8 ± 7 5 ± 6 9 ± 6 2 ± 2 0 ± 1

* LED stands for Levodopa Equivalent Dose, ** The Subset-Control refers to 3.9, 3.10, 3.11, 3.12, 3.13, 3.14 items of
MDS-UPDRS-Part III.

The demanding task of early detection of Parkinson’s disease presents various chal-
lenges and is highly dependent on the severity of the disease and the expert’s experience.
For the early diagnosis of PD, accurate detection of symptoms is required whilst the disease
is at a mild severity stage. Computationally, this needs not only to detect the presence of
symptoms but also to perform a multiclass classification at different severity levels.

In the present work, we focus on the estimation of PD severity levels by calculating the
statistical significance of the computed gait characteristic, as proposed by Martínez-Martín
et al. [48] based on the ratings of part III of the MDS-UPDRS. Particularly, four severity
levels were explored in relation with the MDS-UPDRS-Part III ratings: normal (0–8), mild
(9–32), moderate (33–58) and, severe (59–132), [14,17,49].

3. Data Analysis

Gait analysis necessitates a quantitative examination of force factors, as well as time
and distance parameters, through the calculation of significant features (temporal and
spatial). Temporal characteristics can be further analyzed as pure temporal, phase temporal,
or spatiotemporal. In our study, the phase-temporal characteristics have been normalized
based on the duration of the gait cycle, while the spatial characteristics were determined
by taking into consideration the overall distance travelled in each test. The mathematical
formulas used for the estimation of the gait temporal and spatial characteristics are de-
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scribed in detail in [16]. Prior to the analysis of the recorded data, precise annotation of
data regarding the gait cycle events, namely Heel Strike-Foot Flat-Heel Rise-Toe Off-Heel
Strike, was performed. We employed a hybrid model of automated labeling and manual
cross-checks using the signals and videos captured. For the automated annotation of gait
events, we adopted a previously developed gait event detection algorithm which is based
on pressure parameters and transition states of gait characteristic events, as reported in [16].

3.1. Gait Features Extraction

In the present work, we exploit data from the signal segment that corresponds to the
straight-line walking of the mTUG test and the WST test, when the latter is executed in
Slow, Normal and High speeds. Specifically, two recordings per test were analyzed for each
participant. The distance of straight-line walking is 10 m ± the distance that corresponds
to one step, since some participants turned slightly before or slightly after the marked 10 m
aisle. This fluctuation has a small influence on the estimated values of the spatial features
when the range of step counts (14.35–22.48) is considered (see Table 4). To verify this, we
performed a cross-check by adding or subtracting one step, on our calculations. We observe
that such a fluctuation results in modifications to the estimations restricted to the second
decimal place.

The estimated temporal and spatial gait characteristics (18 in total) are presented in
Table 4 for the different participants groups, i.e., Adults (S), Elderly (EL), PD patients (PD).
Table 5 shows the relevant features for the PD group of participants in relation to the ON
and OFF medication states, whereas Table 6 presents those for the PD group of participants
relative to their Severity Level, estimated using the MDS-UPDRS: Part III. The results are
presented as mean values together with standard deviation, rounded to two decimal places.

For the analysis of the collected data, we firstly extracted and examined the spatial and
temporal gait characteristics of all different participant groups on WST-Slow, Normal, High
and the mTUG tests, as shown in Table 4. Participants were instructed to perform both the
WST-Normal and the mTUG tests using a normal walking rate. However, we retained the
tests’ data separately so that it would be feasible to conduct future comparative studies
and to examine the effect of prior physical activity that is noted in the mTUG test (rising
from a chair with arms crossed on the chest).

Normal gait speed, in terms of comfort, has been reported to be approximately
1.30 m/s for adults of 60 years [50], approximately 1.20 m/s and 0.95 m/s for the el-
derly aged between 70–79 years and 80–99 years, respectively [51], while for PD patients
with a mean age of 65 years, normal gate speed has been reported to be approximately
0.95 m/s [52]. In our work, the control groups (S and EL), and PD group both have a mean
age of 60 years, and we recorded an average gait velocity of approximately 1.22 m/s and
0.97 m/s, respectively. In the mTUG test, we observed an increase in gait velocity for all
groups, although they have been instructed to employ a normal pace of walking (as in
WST-Normal test).

Examination of the estimated features on the different groups and tests shows that
different speeds of gait affect the results. Particularly, for all groups of participants, as
we move from WST-Slow to Normal and to High tests, and therefore the gait velocity
of participants increases, we observe that all temporal characteristics decrease, while the
swing phase (%) and the spatial characteristics increase (Table 4). We observe a similar
behavior when the results from WST-Slow to the mTUG tests are examined.
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Table 4. Results, for each different group of participants, of the estimated temporal and spatial characteristics of straight-line walking, of mTUG and WST- Slow,
Normal and High tests. Values are presented as Means ± Standard Deviation.

Type of Test WST Slow WST Normal WST High mTUG

Group of Participants S EL PD S EL PD S EL PD S EL PD

Number of
Recordings * 68 28 124 68 28 128 68 28 128 68 28 124

Left Step Duration (s) 0.66 ± 0.09 0.69 ± 0.12 0.68 ± 0.13 0.60 ± 0.08 0.58 ± 0.07 0.60 ± 0.08 0.51 ± 0.07 0.49 ± 0.05 0.54 ± 0.09 0.56 ± 0.06 0.53 ± 0.07 0.57 ± 0.09
Right Step Duration

(s) 0.66 ± 0.11 0.71 ± 0.12 0.69 ± 0.12 0.56 ± 0.06 0.57 ± 0.04 0.60 ± 0.08 0.52 ± 0.08 0.49 ± 0.04 0.55 ± 0.07 0.52 ± 0.06 0.54 ± 0.05 0.56 ± 0.07

Step Duration (s) 0.66 ± 0.09 0.70 ± 0.11 0.68 ± 0.12 0.58 ± 0.06 0.58 ± 0.05 0.60 ± 0.07 0.51 ± 0.08 0.49 ± 0.04 0.55 ± 0.06 0.54 ± 0.05 0.54 ± 0.05 0.57 ± 0.06
Stride Duration (s) 1.32 ± 0.18 1.40 ± 0.23 1.37 ± 0.24 1.16 ± 0.11 1.15 ± 0.09 1.20 ± 0.14 1.05 ± 0.14 0.97 ± 0.07 1.09 ± 0.12 1.08 ± 0.09 1.07 ± 0.10 1.14 ± 0.12

Steps Number 18.65 ± 1.40 18.64 ± 2.00 22.48 ± 6.52 16.00 ± 1.74 16.25 ± 1.46 19.52 ± 5.09 14.35 ± 1.52 14.39 ± 1.64 17.59 ± 5.13 15.91 ± 1.58 15.93 ± 1.76 19.54 ± 5.64
Single Support Time

(s) 1.03 ± 0.24 1.21 ± 0.34 1.07 ± 0.31 0.87 ± 0.12 0.86 ± 0.08 0.90 ± 0.16 0.83 ± 0.19 0.78 ± 0.31 0.82 ± 0.10 1.14 ± 2.38 0.81 ± 0.10 0.90 ± 0.17

Double Support Time
(s) 0.36 ± 0.15 0.39 ± 0.17 0.40 ± 0.16 0.35 ± 0.31 0.28 ± 0.08 0.32 ± 0.10 0.28 ± 0.10 0.23 ± 0.14 0.27 ± 0.08 0.27 ± 0.05 0.26 ± 0.06 0.28 ± 0.09

Stance Time (s) 0.84 ± 0.14 0.89 ± 0.17 0.87 ± 0.19 0.73 ± 0.10 0.71 ± 0.07 0.75 ± 0.11 0.64 ± 0.12 0.59 ± 0.06 0.66 ± 0.10 0.67 ± 0.07 0.66 ± 0.10 0.71 ± 0.10
Swing Time (s) 0.49 ± 0.06 0.52 ± 0.07 0.50 ± 0.08 0.45 ± 0.06 0.46 ± 0.05 0.47 ± 0.06 0.41 ± 0.06 0.39 ± 0.06 0.44 ± 0.04 0.43 ± 0.04 0.44 ± 0.05 0.46 ± 0.05

Single Support (%) 76.26 ± 11.64 84.63 ± 13.40 76.90 ± 12.04 72.49 ± 6.33 73.59 ± 7.26 73.80 ± 7.82 72.83 ± 6.23 72.80 ± 9.65 74.70 ± 7.12 74.96 ± 4.07 74.21 ± 5.57 73.45 ± 5.92
Double Support (%) 26.85 ± 8.65 27.37 ± 9.50 28.30 ± 7.35 26.44 ± 5.94 23.77 ± 5.70 25.85 ± 5.79 25.80 ± 6.63 23.76 ± 9.45 24.26 ± 5.20 24.15 ± 4.14 23.56 ± 4.13 23.96 ± 6.11

Stance Phase (%) 62.74 ± 3.08 62.74 ± 3.03 63.13 ± 3.53 61.84 ± 3.80 60.52 ± 3.14 61.06 ± 2.69 60.87 ± 4.01 60.17 ± 5.80 59.86 ± 3.15 60.65 ± 2.31 60.25 ± 3.28 60.39 ± 3.47
Swing Phase (%) 37.26 ± 3.08 37.26 ± 3.03 36.87 ± 3.53 38.16 ± 3.80 39.48 ± 3.14 38.94 ± 2.69 39.13 ± 4.01 39.72 ± 5.96 40.14 ± 3.15 39.35 ± 2.31 39.75 ± 3.28 39.61 ± 3.47

Gait Velocity (m/s) 0.91 ± 0.15 0.86 ± 0.19 0.78 ± 0.26 1.23 ± 0.21 1.22 ± 0.16 0.99 ± 0.25 1.52 ± 0.21 1.64 ± 0.25 1.24 ± 0.29 1.30 ± 0.18 1.34 ± 0.23 1.06 ± 0.28
Step Length (m) 0.57 ± 0.06 0.57 ± 0.06 0.50 ± 0.13 0.69 ± 0.16 0.66 ± 0.07 0.58 ± 0.14 0.75 ± 0.09 0.76 ± 0.09 0.65 ± 0.17 0.67 ± 0.07 0.67 ± 0.07 0.58 ± 0.13

Stride Length (m) 1.18 ± 0.13 1.17 ± 0.14 1.03 ± 0.29 1.39 ± 0.19 1.39 ± 0.15 1.18 ± 0.30 1.55 ± 0.18 1.58 ± 0.21 1.34 ± 0.35 1.39 ± 0.15 1.42 ± 0.18 1.19 ± 0.27
Step Frequency

(steps/min) 88.67 ± 12.31 83.17 ± 12.99 85.84 ± 12.31 97.52 ± 12.26 98.75 ± 7.78 96.74 ±
10.68 110.95 ± 13.40 115.51 ± 8.26 105.30 ±

10.41 106.22 ± 10.02 105.73 ± 10.70 101.67 ±
9.56

Walk Ratio
(mm/step/min) 6.62 ± 1.30 6.98 ± 1.05 5.89 ± 1.62 6.94 ± 1.32 6.74 ± 0.89 6.05 ± 1.78 6.93 ± 1.38 6.60 ± 1.08 6.14 ± 1.57 6.40 ± 0.99 6.41 ± 0.95 5.70 ± 1.31

* Number of recordings varies, since some have been excluded due technical reasons (i.e., lack of video synchronization). For PD participants ON and OFF states have been handled as
separate recordings. One PD patient and one Adult (S group) were completely excluded, while some single recordings of other participants were also excluded.
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Table 5. Results, for PD group of participants relative to ON and OFF medication state, of the estimated temporal and spatial characteristics of straight-line walking
of mTUG and WST- Slow, Normal and High tests. Values are presented as Means ± Standard Deviation.

Type of Test WST Slow WST Normal WST High mTUG

PD Medication State OFF ON OFF ON OFF ON OFF ON

Number of Recordings * 60 64 60 68 60 68 56 68

Left Step Duration (s) 0.70 ± 0.14 0.66 ± 0.11 0.61 ± 0.08 0.59 ± 0.08 0.55 ± 0.09 0.53 ± 0.08 0.58 ± 0.08 0.57 ± 0.10
Right Step Duration (s) 0.71 ± 0.13 0.66 ± 0.10 0.61 ± 0.09 0.59 ± 0.07 0.55 ± 0.07 0.55 ± 0.07 0.56 ± 0.06 0.56 ± 0.08

Step Duration (s) 0.71 ± 0.13 0.66 ± 0.10 0.61 ± 0.07 0.59 ± 0.06 0.55 ± 0.06 0.54 ± 0.06 0.57 ± 0.05 0.57 ± 0.06
Stride Duration (s) 1.41 ± 0.26 1.33 ± 0.20 1.22 ± 0.15 1.18 ± 0.12 1.10 ± 0.13 1.08 ± 0.11 1.14 ± 0.10 1.13 ± 0.13

Steps Number 22.38 ± 5.27 22.69 ± 7.40 19.10 ± 4.47 19.88 ± 5.58 16.83 ± 3.77 18.26 ± 6.04 19.14 ± 4.22 19.87 ± 6.60
Single Support Time (s) 1.10 ± 0.32 1.03 ± 0.30 0.91 ± 0.17 0.88 ± 0.15 0.84 ± 0.12 0.80 ± 0.08 0.92 ± 0.17 0.87 ± 0.16

Double Support Time (s) 0.41 ± 0.19 0.39 ± 0.12 0.32 ± 0.11 0.31 ± 0.09 0.26 ± 0.09 0.28 ± 0.07 0.28 ± 0.07 0.29 ± 0.10
Stance Time (s) 0.91 ± 0.22 0.84 ± 0.15 0.76 ± 0.12 0.73 ± 0.09 0.66 ± 0.12 0.66 ± 0.08 0.71 ± 0.09 0.71 ± 0.11
Swing Time (s) 0.52 ± 0.08 0.49 ± 0.08 0.48 ± 0.05 0.47 ± 0.07 0.45 ± 0.05 0.43 ± 0.04 0.48 ± 0.05 0.45 ± 0.05

Single Support (%) 77.55 ± 12.52 76.29 ± 11.64 73.78 ± 8.04 73.81 ± 7.68 75.70 ± 7.97 73.82 ± 6.20 73.49 ± 4.01 73.42 ± 7.16
Double Support (%) 27.69 ± 8.70 28.88 ± 5.83 25.59 ± 6.11 26.07 ± 5.54 23.34 ± 5.26 25.08 ± 5.05 23.30 ± 4.80 24.50 ± 7.00

Stance Phase (%) 63.43 ± 4.05 62.85 ± 2.98 61.03 ± 2.66 61.09 ± 2.73 59.42 ± 3.57 60.24 ± 2.69 59.76 ± 3.17 60.90 ± 3.63
Swing Phase (%) 36.57 ± 4.05 37.15 ± 2.98 38.97 ± 2.66 38.91 ± 2.73 40.58 ± 3.57 39.76 ± 2.69 40.24 ± 3.17 39.10 ± 3.63

Gait Velocity (m/s) 0.76 ± 0.27 0.80 ± 0.25 1.00 ± 0.26 0.99 ± 0.24 1.27 ± 0.30 1.21 ± 0.28 1.06 ± 0.26 1.07 ± 0.30
Step Length (m) 0.50 ± 0.14 0.50 ± 0.13 0.59 ± 0.16 0.56 ± 0.12 0.67 ± 0.19 0.63 ± 0.15 0.58 ± 0.11 0.58 ± 0.14

Stride Length (m) 1.03 ± 0.32 1.03 ± 0.27 1.21 ± 0.34 1.16 ± 0.26 1.38 ± 0.39 1.31 ± 0.32 1.19 ± 0.24 1.19 ± 0.30
Step Frequency (steps/min) 83.62 ± 12.91 87.92 ± 11.43 95.25 ± 10.82 98.05 ± 10.46 104.61 ± 10.76 105.91 ± 10.14 100.81 ± 7.84 102.38 ± 10.78
Walk Ratio (mm/step/min) 6.04 ± 1.80 5.74 ± 1.41 6.33 ± 2.14 5.81 ± 1.35 6.26 ± 1.38 6.02 ± 1.72 5.73 ± 1.15 5.68 ± 1.44

* Number of recordings varies, since some have been excluded due technical reasons (i.e., lack of video synchronization). One PD patient was excluded, while some single recordings of
other participants were also excluded.
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Table 6. Results of the estimated temporal and spatial characteristics, for PD group of participants relative to the Severity Levels and MDS-UPDRS- Part III, of
straight-line walking of WST-Slow-Normal-High and mTUG tests. Values are presented as Means ± Standard Deviation.

Type of Test WST-Slow WST-Normal WST-High mTUG

Severity Level * Mild Moderate Mild Moderate Mild Moderate Mild Moderate

Number of Recordings ** 64 60 68 60 68 60 64 60

Left Step Duration (s) 0.67 ± 0.1 0.69 ± 0.15 0.59 ± 0.07 0.61 ± 0.09 0.53 ± 0.1 0.55 ± 0.06 0.56 ± 0.09 0.59 ± 0.09
Right Step Duration (s) 0.67 ± 0.11 0.70 ± 0.14 0.59 ± 0.07 0.61 ± 0.09 0.56 ± 0.08 0.54 ± 0.06 0.56 ± 0.06 0.57 ± 0.08

Step Duration (s) 0.67 ± 0.09 0.70 ± 0.14 0.59 ± 0.05 0.61 ± 0.08 0.55 ± 0.06 0.55 ± 0.05 0.56 ± 0.05 0.58 ± 0.06
Stride Duration (s) 1.34 ± 0.19 1.40 ± 0.28 1.18 ± 0.11 1.22 ± 0.16 1.09 ± 0.13 1.09 ± 0.1 1.12 ± 0.1 1.15 ± 0.13

Steps Number 19.00 ± 2.95 26.20 ± 7.22 17.12 ± 2.37 22.23 ± 5.93 15.32 ± 2.11 20.17 ± 6.24 16.98 ± 2.38 22.27 ± 6.75
Single Support Time (s) 1.06 ± 0.26 1.07 ± 0.37 0.88 ± 0.12 0.92 ± 0.20 0.80 ± 0.07 0.83 ± 0.13 0.88 ± 0.13 0.91 ± 0.2

Double Support Time (s) 0.36 ± 0.09 0.44 ± 0.2 0.30 ± 0.08 0.33 ± 0.11 0.28 ± 0.09 0.26 ± 0.07 0.27 ± 0.09 0.29 ± 0.09
Stance Time (s) 0.84 ± 0.14 0.91 ± 0.22 0.73 ± 0.08 0.77 ± 0.13 0.66 ± 0.11 0.66 ± 0.08 0.70 ± 0.09 0.73 ± 0.11
Swing Time (s) 0.52 ± 0.08 0.49 ± 0.08 0.47 ± 0.05 0.48 ± 0.07 0.43 ± 0.03 0.45 ± 0.05 0.46 ± 0.05 0.47 ± 0.05

Single Support (%) 77.83 ± 11.15 75.91 ± 12.95 74.64 ± 7.49 72.85 ± 8.14 74.19 ± 6.61 75.27 ± 7.67 73.62 ± 5.58 73.28 ± 6.32
Double Support (%) 26.52 ± 4.72 30.21 ± 9.04 25.30 ± 4.71 26.47 ± 6.80 24.91 ± 4.96 23.53 ± 5.41 23.45 ± 5.72 24.49 ± 6.51

Stance Phase (%) 61.77 ± 2.64 64.58 ± 3.8 60.76 ± 2.40 61.41 ± 2.96 60.24 ± 3.05 59.42 ± 3.22 59.96 ± 3.37 60.84 ± 3.54
Swing Phase (%) 38.23 ± 2.64 35.42 ± 3.8 39.24 ± 2.40 38.59 ± 2.96 39.76 ± 3.05 40.58 ± 3.22 40.04 ± 3.37 39.16 ± 3.54

Gait Velocity (m/s) 0.90 ± 0.23 0.65 ± 0.22 1.11 ± 0.18 0.86 ± 0.24 1.38 ± 0.2 1.07 ± 0.29 1.20 ± 0.21 0.92 ± 0.28
Step Length (m) 0.57 ± 0.11 0.43 ± 0.11 0.64 ± 0.12 0.51 ± 0.13 0.72 ± 0.16 0.56 ± 0.14 0.64 ± 0.09 0.51 ± 0.13

Stride Length (m) 1.18 ± 0.27 0.87 ± 0.23 1.31 ± 0.27 1.04 ± 0.27 1.50 ± 0.33 1.16 ± 0.29 1.32 ± 0.2 1.04 ± 0.27
Step Frequency (steps/min) 87.12 ± 11.74 84.48 ± 12.84 97.70 ± 9.02 95.65 ± 12.27 105.00 ± 10.59 105.64 ± 10.29 102.52 ± 8.4 100.76 ± 10.66
Walk Ratio (mm/step/min) 6.63 ± 1.62 5.09 ± 1.17 6.63 ± 1.80 5.39 ± 1.51 6.78 ± 1.43 5.41 ± 1.39 6.27 ± 1.08 5.10 ± 1.27

* There is no participation clustered as normal level. One PD patient rated as severe level was recorded, however he was excluded from the analysis since he need support to complete all
the tests. ** Number of recordings varies, since some have been excluded due technical reasons (i.e., lack of video synchronization). For PD participants ON and OFF states have been
handled as separate recordings. One PD patient and one Adult (S group) were completely excluded, while some single recordings of other participants were also excluded.
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The Walk Ratio is excluded from this observation. The Walk Ratio is known to be
constant at approximately 6.5 ± 0.8 (mm/step/min) for healthy adults and for those with
pathological gait should decrease [53]. This is indeed observed in our results since the
PD group has lower values when compared to those of the control groups, in all different
tests. Regarding Walk Ratio, literature findings suggest that when comparing results from
normal to slow walking speeds, increased values are expected, something that was also
observed for all groups of participants when examining the mTUG to WST-Slow test, while
when examining WST- Normal to Slow test it is noted only in the case of EL group (for S
and PD groups values are concentrated around the same level), possibly due to the smaller
differences of gait velocity between different tests, below 0.3 m/s [54,55]. Moreover, in each
test, PD patients had the lowest results regarding step and stride length, gait velocity, and
step frequency while they had the highest results on the number of steps. The percentages
of the stance and swing phases, which in a normal gait cycle are expected to be 60% and
40%, respectively, are met in most cases with a slight deviation from 0.5–1.5%. All of these
observations are in line with literature findings [31,54–57].

Subsequently, in order to examine the effect of ON and OFF medication states on the
performance of PD participants regarding their spatial and temporal gait characteristics,
we have extracted gait-related features for both medication states, as shown in Table 6.
In general, the behavior of the features exploring the different walking speeds is in line
with the previously described findings shown in Table 4. Regarding the ON and OFF
phases, we observe an increase of values in steps number, double support (%), and step
frequency features, and a decrease in step and stride duration, swing time, single support
(%) and Walk Ratio, features, in ON phase. Gait velocity does not appear to have a notable
effect in the ON phase, for all tests. Step and stride length slightly decrease in the WST-
Normal and High tests for the ON phase, while they remain at the same level in WST-Slow
and mTUG tests.

Subsequently, we separated the PD participants according to their disease severity
levels based on their ratings on MDS-UPDRS-Part III, by applying the cut-off values
described in Section 2.4; the relevant results are presented in Table 6. We should point
out that there are no recordings in the severe level as rated by the MDS-UPDRS-Part III.
Although we did record a PD patient (PD015) classified as severe PD, we had to exclude
the recordings because he needed support to perform the WST-High and the mTUG tests
and therefore his weight distribution and pressure factors were affected. Examining the
results for normal pace of walking, from mild to moderate levels we observe that as
the severity of the disease increases, single support (%), swing phase (%), Walk Ratio,
spatial and spatiotemporal characteristics decrease, while all the rest increase. These
observations are also met in the case of WST-Slow with the difference that swing time
decreases. For WST-High, features behavior differentiate from WST-Normal observations
in moderate severity with the swing time, single support (%), and swing phase (%) to
increase, while with the double support time, the double support (%), and the stance phase
(%) to decrease. Regarding Walk Ratio, we observe that on moderate severity levels it is, in
all tests, decreased (spanning from 5.09 ± 1.17 to 5.41 ± 1.39), which agrees with literature
findings in pathological gait, 5.36 ± 0.86, Ref. [53], in comparison with mild severity levels
(spanning from 6.63 ± 1.62 to 6.78 ± 1.43), which overlaps with literature on normal gait
of healthy adults (6.5 ± 0.8) [53]. Therefore, the results indicate that as the severity level
increases, the Walk Ratio decreases, however, for mild stages of the disease it may not be
indicative.

In what follows we focus on feature selection techniques to reveal the dominant
features for model training, which are described in Section 3.2; the results of which are
presented in Section 4. In so doing, we also take into consideration literature findings
regarding the importance of a deeper study of the ON/OFF medication states and disease
severity levels [17,31,48].
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3.2. Feature Selection and Model Training

In the context of our computational pipeline, feature selection techniques were applied
to reveal the dominant features to be used for model training. We focus our analysis
on identifying relations between the spatial and temporal gait features, the PD-related
medication states, and disease severity levels. Specifically, we focused on four classification
tasks. We initially focused on separating PD patients from non-PD patients in a binary
classification problem. Non-PD patients are the elderly and adult subjects in our recordings.
We then split the elderly and adults in a three-class classification problem, i.e., PD patients,
elderly, and adult participants. The next classification problem focused on differentiating
PD patients based on their medication state, the ON and OFF states. Finally, we focused
on the MDS-UPDRS Part III ratings and the relevant PD severity levels, i.e., normal, mild,
moderate, and severe, as described in detail in Section 2.4. However, our recordings include
data from PD patients in only two severity levels, i.e., mild, and moderate. Although we
did record a patient rated at the severe level, we had to exclude his recordings since he
needed support to complete all of the tests and therefore this would induce bias.

Feature-wise normalization was conducted prior to model fitting to address the possi-
ble issue of biased behavior, which result from uneven contribution of variables measured
on different scales to the model-fitting and model-learned functions [58]. After extracting
the gait data, we scaled each feature to a range of 0 to 1 using the MinMaxScaler function.
In addition, we created a correlation matrix displaying the correlation coefficients between
the variables as a preliminary data interpretation tool and as input for a more sophisti-
cated investigation a Linear Mixed Model Analysis. The input data for each classification
approach are the most significant features, selected among the 18 extracted gait temporal
and spatial features based on the correlation matrix and the LMM analysis, presented in
Section 4.1.

Considering the relevant literature and the size and properties of our dataset, we
selected three well-known and widely used classifiers to explore their performance. More
specifically, AdaBoost (AB), Extra Trees (ET), and Random Forest (RF) classifiers were
trained and tested during the classification procedure [59]. To fine-tune the hyperparame-
ters of each classifier we performed a GridSearch iterating 1000 times through the training
data, to find the combination of parameters that maximizes the overall performance and
accuracy. Finally, we split the data into training and testing, with the number of the test
data being 20% of the total number of examples, according to the Pareto principle [60].
We first train our model on the training set and then we use the data from the testing set
to measure the accuracy of the resulting model. It is important to mention that we took
into consideration that the test set is large enough to yield statistically meaningful results,
and that it is representative of the dataset. We evaluated the models using the metric of
accuracy. Furthermore, we validated the models using a k-fold cross-validation (k = 5).
Choosing the right k-value is important as it can affect the level of accuracy, variance,
and bias of a model. According to the literature [61], choosing a k-value of 5 or 10 has
proven to provide a low bias and a modest variance. The larger the value of k becomes
it becomes more computationally impractical, therefore in our work we chose k = 5 as
more computationally efficient. The models were built using Python (3.8 Python packages,
version numpy 1.17.2, sklearn 0.21.3, pandas 0.25.1).

4. Results

In this section, the results of the Statistical analysis and the Machine Learning analysis,
which have been performed seeking to identify relations between gait parameters and
(a) PD vs. non-PD groups, and (b) PD-related medication states, and severity levels, are
presented.

4.1. Statistical Analysis

Our dataset consists of dependent observations since there are multiple samples of the
same participant in the same group and/or medication state and/or severity level. Thus,
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an analysis that assumes independent observations in each class or between the classes
themselves, such as ANOVA, cannot be employed. To determine which gait features are
affected by the existence of the disease, the medication state or the severity level of PD, a
Mixed Linear Model (MLM) analysis with Bonferroni adjustment, and with the disease
group (Adults, Elderly, and PD patients), medication state or MDS-UPDRS:Part III, as a
fixed factor, and participant ID as a random factor was employed for each test. The level of
statistical significance was set at p < 0.05. We present the results of MLM analysis regarding
the statistical significance of features derived from slow, normal, and high-pace walking
(elaborating the WST Slow, Normal, High tests and mTUG), to explore the effect of gait
velocity in differentiating gait patterns.

The mixed linear model analysis revealed significant correlations of features between
ON/OFF medication states and between severity levels based on the MDS-UPDRS-Part
III Total Score, as shown in Table 7, for each different type of test. The results indicate
the importance of using different gait velocities since different features are identified as
being significant for each type of test. This allows for not only examining the behavior of
features in relation to different gait velocities but also comparing results with the literature
by exploiting a range of velocities, as the normal pace of walking may differ significantly
per participant.

Table 7. Features affected in a statistically significant manner (p < 0.05), elaborating WST Slow-
Normal-High and mTUG tests, relevant to the ON/OFF medication state and MDS-UPDRS-Part III
ratings in relation to the severity levels.

Statistical Significance p-Values

Related Class Medication State
ON/OFF

MDS-UPDRS-Part III/
Severity Levels

Type of Test WST
Slow

WST
Nor-
mal

WST
High mTUG WST

Slow

WST
Nor-
mal

WST
High mTUG

Left Step Duration (s) 0.010 0.923 0.665 0.257 0.154 0.276 0.300 0.679
Right Step Duration (s) 0.006 0.923 0.302 0.929 0.049 0.016 0.783 0.614

Step Duration (s) 0.003 0.274 0.216 0.477 0.055 0.110 0.349 0.959
Stride Duration (s) 0.004 0.823 0.213 0.486 0.055 0.043 0.415 0.891

Steps Number 0.018 0.073 0.000 0.021 0.018 0.001 0.434 0.132
Single Support Time (s) 0.010 0.562 0.000 0.158 0.011 0.004 0.114 0.193
Double Support Time (s) 0.454 0.677 0.023 0.651 0.504 0.753 0.124 0.915

Stance Time (s) 0.007 0.829 0.894 0.943 0.048 0.149 0.711 0.660
Swing Time (s) 0.000 0.003 0.001 0.040 0.005 0.000 0.003 0.217

Single Support (%) 0.074 0.757 0.003 0.328 0.061 0.447 0.593 0.254
Double Support (%) 0.139 0.247 0.000 0.809 0.693 0.169 0.005 0.871

Stance Phase (%) 0.458 0.289 0.013 0.290 0.611 0.006 0.041 0.811
Swing Phase (%) 0.683 0.222 0.010 0.345 0.611 0.006 0.041 0.811

Gait Velocity (m/s) 0.792 0.026 0.152 0.003 0.010 0.004 0.334 0.036
Step Length (m) 0.136 0.043 0.056 0.009 0.031 0.026 0.679 0.082

Stride Length (m) 0.179 0.037 0.091 0.012 0.055 0.042 0.630 0.060
Step Frequency

(steps/min) 0.020 0.000 0.053 0.926 0.020 0.543 0.068 0.906

Walk Ratio
(mm/step/min) 0.008 0.042 0.150 0.032 0.337 0.382 0.846 0.262

4.2. Machine Learning Analysis

We also focused on identifying relations between gait features and a participant’s
group (PD and non-PD, EL, S) or the medication state (ON/OFF). Moreover, a machine
learning analysis was performed based on the severity levels as denoted by the MDS-
UPDRS Part III Total Score. The results of the classification studies using data derived from
the Smart-Insole Gait Assessment Protocol for PD patients are presented in Table 8.
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Table 8. Classification results, reported as accuracy, elaborating the WST Slow-Normal-High and
mTUG tests. The best estimator for each classification approach is highlighted.

Classification PD-nonPD PD-EL-S Medication State ON/OFF MDS-UPDRS: Part III
Severity Levels

Type of Test WST
Slow

WST
Nor-
mal

WST
High mTUG WST

Slow

WST
Nor-
mal

WST
High mTUG WST

Slow

WST
Nor-
mal

WST
High mTUG WST

Slow

WST
Nor-
mal

WST
High mTUG

AdaBoost 0.82 0.73 0.83 0.85 0.70 0.62 0.50 0.66 0.58 0.54 0.69 0.65 0.77 0.68 0.58 0.81
Extra Trees 0.85 0.73 0.76 0.80 0.74 0.64 0.64 0.57 0.62 0.64 0.58 0.73 0.65 0.68 0.62 0.69

Random Forest 0.88 0.73 0.71 0.75 0.77 0.60 0.70 0.57 0.62 0.61 0.62 0.62 0.73 0.57 0.62 0.73

4.2.1. Participant Groups Classification, PD/non-PD and PD/EL/S

An initial and necessary classification experiment is that of distinguishing PD partici-
pants from non-PD. To do so, the EL and S groups of participants were clustered into one,
namely non-PD, to test the ability of the machine learning model. The results show that
the RF algorithm, when exploiting derived data from the WST Slow test, recognizes PD
patients from non-PD with an accuracy reaching 88%, as shown in Table 8. Moreover, high
accuracy rates are also found when exploiting the mTUG and WST High tests, with AB
providing 85% and 83% accuracy, respectively. However, in the case of the WST Normal
test the accuracy rates are lower, at 73%. These results, verify once more the need to employ
different walking speeds when it comes to gait analysis for PD patients. Overall, the AB
and RF algorithms appear to be the best-performing.

Following the binary classification, we sought to perform a three-class classification,
i.e., PD, EL, and S. As presented in Table 8, the classification accuracy reached 77%, when
using the RF classifier in the WST-Slow. In the WST-Normal, High and the mTUG tests,
the classification accuracy reached 64%, 70%, and 66%, respectively. The reduction in
the classification accuracy in comparison to the binary classification is expected since
recognizing PD from EL can be challenging due to possible pathology in gait caused by
aging in the control group EL, and mild severity of disease in the PD group. Therefore,
the results are encouraging, demonstrating the ability of the gait features to discriminate
between the three classes PD, EL and S.

4.2.2. Classification between Medication States ON/OFF

Focusing on PD patients, we moved on in attempting to distinguish PD patients
based on their medication state, i.e., ON and OFF classes. The results obtained are shown
in Table 8. The highest classification accuracy is achieved during the mTUG test with
an accuracy of 73%. Concerning the algorithms, we observe that as the walking speed
decreases, the success rate in the predictions of the algorithms also decreases, providing
evidence that the drug effect is more easily observed when the participants walk at a
higher speed. In addition, ET is the best performing classifier in three of the total four
tests. Based on the results, we also observe that in the mTUG and WST-High tests, the
difference between the OFF and ON conditions is more noticeable. This may be because
the mTUG and WST-High tests require more vigorous physical activity and therefore cause
more fatigue to the patient compared to the other tests. Specifically, the mTUG test involves
standing up with no support from upper limbs and sitting on a chair, while the WST-High
test involves walking at a fast pace. Therefore, the lack of medication (i.e., OFF state) and
the fatigue of the lower limb muscles further intensify the gait symptoms of the disease
during the conduction of WST-High and mTUG tests.

4.2.3. Parkinson’s Disease Severity Levels Based on MDS-UPDRS: Part III Ratings

The ability of machine learning algorithms to classify the PD Severity Levels based
on MDS-UPDRS:Part III ratings are presented in Table 8. Parkinson’s disease among
the severity levels of mild and moderate was exploited. The results indicate successful
prediction rates of 81% and 77% for the mTUG and WST-Slow tests, respectively. In both
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cases, AB appears as the best performing algorithm. Rates close to 73% are also observed
in the case of the RF algorithm.

5. Discussion

In this work, we exploited pressure sensor insole data, derived from three groups
of participants (Adults (S), Elderly (EL), and PD patients) performing the Smart-Insole
Gait Assessment Protocol for PD patients. We have extracted several spatial and temporal
features and employed feature selection methods to identify the most significant. A variety
of estimators were tested in attempts to separate PD patients from healthy controls and to
distinguish between PD patients’ ON/OFF medication states. Finally, we investigated the
possibility of discriminating between the severity levels of PD, derived from MDS-UPDRS:
Part III Total Score. Machine learning models were trained using gait features, while three
classification algorithms were tested, seeking to identify those with the highest success
rates.

Our statistical analysis shows that various gait extracted features can be used to dif-
ferentiate the medication state of PD patients as well as the severity levels of the disease
(Table 7). To differentiate the medication status (ON/OFF) proved to be the most challeng-
ing. Based on our findings, the ON/OFF medication state of PD patients is associated with
a variety of different gait features for each test. Notably, the Swing Time is significantly
affected by the medication state in all tests. Moreover, the Step Number and the Single
Support Time significantly correlate in the WST- Slow and High tests, while Step Frequency
and Walk Ratio significantly correlate in the WST- Slow and Normal tests. Apart from this
comparison, a number of gait features showed the potential to be useful indicators of PD
severity level, based on MDS-UPDRS Part III. Generally, it appears that Swing Time (s),
Single Support (%), Stance Phase (%), and Swing Phase (%) are the gait-related features
that are highly affected by the severity levels of the disease.

From the results presented in Table 8, the highest performance was observed during
the binary classification between PD and non-PD participants, achieving 88% by employing
the RF classifier during the WST-Slow test. However, splitting the “non-PD” class into
healthy elderly and adult subjects proved difficult, resulting in a considerable reduction of
the model’s performance, achieving a 77% accuracy with RF classifier during WST-Slow
test. In terms of predicting the medication state of PD patients, the highest performances
were observed during the mTUG and WST-High tests, with up to 73% correct predictions
when using the ET estimator. This finding confirms the results of the statistical analysis, as
these two tests require more effort from the participant and therefore cause greater physical
fatigue. Consequently, by observing the results in the test requiring a higher physical stress,
it is evident that the administration of dopamine drug enhances muscular movements and
durability during walking. Regarding the identification of severity levels based on the
MDS-UPDRS: Part III ratings, a prediction rate of 81% was observed in the mTUG test and
77% in the WST-Slow test, using the AB algorithm.

The analysis of both ON and OFF medication states is crucial to fully describe PD
patient’s performance but also to study the effect of levodopa which relates patients’
responsiveness to a large number of factors including patients PD type and PD severity
level [62,63]. Moreover, contradictory findings may be found in the literature regarding
features association with gait velocity, possibly due to the fact that the notion of “normal
gait velocity” is strongly subjective and a variety of features are pace-related [31,54,55].
Our findings indicate the presence of different dominant features in different walking
speeds (see Table 7), which is in line with literature findings indicating that the effect
of the ON phase in the spatial and temporal features is mediated by self-selected gait
velocity [64]. Therefore, these findings support our claim that recordings of slow, normal,
and high walking speeds, on both the ON and OFF phases of a patient, are required for a
comprehensive analysis, also exploring in parallel the severity levels of the disease.

Therefore, all the challenges that have been earlier identified need to be addressed
for an in-depth approach on PD gait analysis and even more so for designing an accurate
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gait-based PD monitoring system. However, there is a limitation in the confidence of the es-
timations obtained when only gait analysis is explored. We reaffirm recent findings, [65,66],
that a more robust approach should include the integration of motor symptoms from lower
and upper extremities and other non-motor symptoms, such as depression, dysarthria, and
cognitive impairment.

6. Conclusions

In this article, we utilized gait-related features and focused on the analysis and as-
sessment of the severity of Parkinson’s disease, via the deployment of feature selection
techniques, statistical analysis and machine learning algorithms. To achieve this objective,
a computational pipeline for the study of gait, based on information received from pressure
sensors incorporated into a pair of insoles, has been devised, leading to an experimental
protocol for the evaluation of PD motor symptoms of the lower extremities. The proposed
protocol is based on results from the literature concerning the most often used tests in
the field, as well as the description of pertinent items from MDS-UPDRS-Part III: Motor
Examination. Both ON and OFF states have been investigated. Using MDS-UPDRS-Part III:
Motor Examination, neurologists specializing in movement disorders conducted a clinical
evaluation. Recordings have been obtained from PD patients, elderly and adult. Gait
characteristics were extracted from the raw pressure sensor data, and a set of classification
algorithms were compared for the ability to distinguish between the participant groups,
the medication state of the PD patients, as well as the severity of the disease based on the
MDS-UPDRS Part III total score. The models demonstrated potential in classifying PD
and non-PD patients up to a rate of 88% while encouraging results have been obtained for
estimation of the severity levels of the disease by achieving an up to 81% correct predic-
tion rate during mTUG test. Our findings suggest that gait analysis can reveal valuable
information for the monitoring and management of PD. It also highlights the experimental
protocol’s potential for future investigations by possibly delving into different phenotypes
of Parkinson’s disease, thus leading to a more precise and comprehensive analysis of pheno-
typic abnormalities. Further experimentation on male/female volunteers of different ages,
clinical trials, as well as implementation of more advanced deep learning are considered a
necessity for further and future evaluation of the proposed approach.

Author Contributions: Conceptualization, C.C., V.S., Z.K., N.T., N.K., F.K., D.I.F. and M.T.; method-
ology C.C., V.S., Z.K., N.T., D.I.F. and M.T.; software, C.C. and V.S; validation, C.C., V.S., Z.K. and
N.T.; formal analysis, C.C. and V.S; investigation, C.C., V.S., Z.K., N.T., D.I.F. and M.T.; data curation,
C.C., V.S, Z.K., N.T., E.T. and E.C.; writing—original draft preparation, C.C. and V.S; writing—review
and editing, C.C., V.S., Z.K., N.T., N.K., F.K., E.T., E.C., D.I.F. and M.T.; supervision, D.I.F. and M.T.
All authors have read and agreed to the published version of the manuscript.

Funding: This research has been co-financed by the European Regional Development Fund of the
European Union and Greek national funds through the Operational Program Competitiveness,
Entrepreneurship and Innovation, under the call RESEARCH–CREATE–INNOVATE (project code:
T1EDK-01888).

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki and received ethical approval from the Patras University Hospital Re-
search Ethics Committee (Approval number: 279/14.05.2021) and from the Hellenic Mediterranean
University Research Ethics Committee (Approval number: 9/01.04.2020).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Acknowledgments: The authors gratefully thank all participants for their contribution in this work.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.



Sensors 2022, 22, 9937 18 of 20

References
1. Dorsey, E.R.; Sherer, T.; Okun, M.S.; Bloemd, B.R. The emerging evidence of the parkinson pandemic. J. Park. Dis. 2018, 8, S3–S8.

[CrossRef] [PubMed]
2. Kouli, A.; Torsney, K.M.; Kuan, W.-L. Parkinson’s Disease: Pathogenesis and Clinical Aspects; Stoker, T.B., Greenland, J.C., Eds.;

Codon Publications: Brisbane, Australia, 2018.
3. Copas, A.N.M.; McComish, S.F.; Fletcher, J.M.; Caldwell, M.A. The pathogenesis of parkinson’s disease: A complex interplay

between astrocytes, microglia, and T lymphocytes? Front. Neurol. 2021, 12, 666737. [CrossRef] [PubMed]
4. Emamzadeh, F.N.; Surguchov, A. Parkinson’s disease: Biomarkers, treatment, and risk factors. Front. Neurosci. 2018, 12, 612.

[CrossRef] [PubMed]
5. Tolosa, E.; Garrido, A.; Scholz, S.W.; Poewe, W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol. 2021, 20,

385–397. [CrossRef] [PubMed]
6. Aarsland, D.; Batzu, L.; Halliday, G.M.; Geurtsen, G.J.; Ballard, C.; Chaudhuri, K.R.; Weintraub, D. Parkinson disease-associated

cognitive impairment. Nat. Rev. Dis. Prim. 2021, 7, 1–21. [CrossRef]
7. Moya-Galé, G.; Levy, E.S. Parkinson’s disease-associated dysarthria: Prevalence, impact and management strategies. Res. Rev.

Park. 2019, 9, 9–16. [CrossRef]
8. Hallett, M. Parkinson’s disease tremor: Pathophysiology. Park. Relat. Disord. 2012, 18, S85–S86. [CrossRef]
9. Gandhi, K.R.; Saadabadi, A. Levodopa (L-Dopa). Available online: https://www.ncbi.nlm.nih.gov/books/NBK482140/ (accessed

on 5 July 2022).
10. Sharma, V.D.; Patel, M.; Miocinovic, S. Surgical treatment of parkinson’s disease: Devices and lesion approaches. Neurotherapeutics

2020, 17, 1525–1538. [CrossRef]
11. Marsili, L.; Rizzo, G.; Colosimo, C. Diagnostic criteria for Parkinson’s disease: From James Parkinson to the concept of prodromal

disease. Front. Neurol. 2018, 9, 156. [CrossRef]
12. Goetz, C.G.; Fahn, S.; Martinez-Martin, P. The MDS-sponsored Revision of the Unified Parkinson’s Disease Rating Scale. J. Mov.

Disord. 2008, 1, 1–33.
13. Hoehn, M.M.; Yahr, M.D. Parkinsonism: Onset, progression, and mortality 1967. Neurology 2001, 57, S11–S26. [PubMed]
14. Schlachetzki, J.C.M.; Barth, J.; Marxreiter, F.; Gossler, J.; Kohl, Z.; Reinfelder, S.; Gassner, H.; Aminian, K.; Eskofier, B.M.; Winkler,

J.; et al. Wearable sensors objectively measure gait parameters in Parkinson’s disease. PLoS ONE 2017, 12, e0183989. [CrossRef]
[PubMed]

15. Subramaniam, S.; Majumder, S.; Faisal, A.I.; Deen, M.J. Insole-based systems for health monitoring: Current solutions. Sensors
2022, 22, 438. [CrossRef] [PubMed]

16. Chatzaki, C.; Skaramagkas, V.; Tachos, N.; Christodoulakis, G.; Maniadi, E.; Kefalopoulou, Z.; Fotiadis, D.; Tsiknakis, M. The
smart-insole dataset: Gait analysis using wearable sensors with a focus on elderly and Parkinson’s patients. Sensors 2021, 21, 2821.
[CrossRef]

17. Lu, M.; Zhao, Q.; Poston, K.L.; Sullivan, E.V.; Pfefferbaum, A.; Shahid, M.; Katz, M.; Kouhsari, L.M.; Schulman, K.; Milstein, A.;
et al. Quantifying Parkinson’s disease motor severity under uncertainty using MDS-UPDRS videos. Med. Image Anal. 2021, 73,
102179. [CrossRef]

18. Mandal, I.; Sairam, N.; Mandal, I.; Sairam, N. New machine-learning algorithms for prediction of Parkinson’s disease. Int. J. Syst.
Sci. 2014, 45, 647–666. [CrossRef]

19. Ahlrichs, C.; Lawo, M. Parkinson’s disease motor symptoms in machine learning: A review. Health Inform. Int. J. 2013, 2, 1–18.
[CrossRef]

20. Skaramagkas, V.; Andrikopoulos, G.; Kefalopoulou, Z.; Polychronopoulos, P. A study on the essential and parkinson’s arm tremor
classification. Signals 2021, 2, 201–224. [CrossRef]

21. Skaramagkas, V.; Andrikopoulos, G.; Kefalopoulou, Z.; Polychronopoulos, P. Towards differential diagnosis of essential and
parkinson’s tremor via machine learning. In Proceedings of the 2020 28th Mediterranean Conference on Control and Automation
(MED), Saint-Raphaël, Saint-Raphaël, France, 15–18 September 2020; Institute of Electrical and Electronics Engineers (IEEE): New
York, NY, USA, 2020; pp. 782–787. [CrossRef]

22. Papadopoulos, A.; Kyritsis, K.; Klingelhoefer, L.; Bostanjopoulou, S.; Chaudhuri, K.R.; Delopoulos, A. Detecting parkinsonian
tremor from IMU data collected in-the-wild using deep multiple-instance learning. Available online: https://zenodo.org/record/
3519213 (accessed on 3 February 2022).

23. Goschenhofer, J.; Pfister, F.M.J.; Yuksel, K.A.; Bischl, B.; Fietzek, U.; Thomas, J. Wearable-based parkinson’s disease severity
monitoring using deep learning. Lect. Notes Comput. Sci. 2019, 11908, 400–415. [CrossRef]

24. Ibrahim, A.; Zhou, Y.; Jenkins, M.E.; Trejos, A.L.; Naish, M.D. The design of a parkinson’s tremor predictor and estimator using a
hybrid convolutional-multilayer perceptron neural network. In Proceedings of the 2020 42nd Annual International Conference of
the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; Institute of Electrical and
Electronics Engineers (IEEE): New York, NY, USA, 2020; Volume 2020, pp. 5996–6000. [CrossRef]

25. Hobert, M.A.; Maetzler, W.; Aminian, K.; Chiari, L. Technical and clinical view on ambulatory assessment in Parkinson’s disease.
Acta Neurol. Scand. 2014, 130, 139–147. [CrossRef]

http://doi.org/10.3233/JPD-181474
http://www.ncbi.nlm.nih.gov/pubmed/30584159
http://doi.org/10.3389/fneur.2021.666737
http://www.ncbi.nlm.nih.gov/pubmed/34122308
http://doi.org/10.3389/fnins.2018.00612
http://www.ncbi.nlm.nih.gov/pubmed/30214392
http://doi.org/10.1016/S1474-4422(21)00030-2
http://www.ncbi.nlm.nih.gov/pubmed/33894193
http://doi.org/10.1038/s41572-021-00280-3
http://doi.org/10.2147/JPRLS.S168090
http://doi.org/10.1016/S1353-8020(11)70027-X
https://www.ncbi.nlm.nih.gov/books/NBK482140/
http://doi.org/10.1007/s13311-020-00939-x
http://doi.org/10.3389/fneur.2018.00156
http://www.ncbi.nlm.nih.gov/pubmed/11775596
http://doi.org/10.1371/journal.pone.0183989
http://www.ncbi.nlm.nih.gov/pubmed/29020012
http://doi.org/10.3390/s22020438
http://www.ncbi.nlm.nih.gov/pubmed/35062398
http://doi.org/10.3390/s21082821
http://doi.org/10.1016/j.media.2021.102179
http://doi.org/10.1080/00207721.2012.724114
http://doi.org/10.5121/hiij.2013.2401
http://doi.org/10.3390/signals2020016
http://doi.org/10.1109/MED48518.2020.9182922
https://zenodo.org/record/3519213
https://zenodo.org/record/3519213
http://doi.org/10.1007/978-3-030-46133-1_24
http://doi.org/10.1109/EMBC44109.2020.9176132
http://doi.org/10.1111/ane.12248


Sensors 2022, 22, 9937 19 of 20

26. Dewey, D.C.; Miocinovic, S.; Bernstein, I.; Khemani, P.; Dewey, R.B.; Querry, R.; Chitnis, S.; Dewey, R.B., Jr. Automated gait and
balance parameters diagnose and correlate with severity in Parkinson disease. J. Neurol. Sci. 2014, 345, 131–138. [CrossRef]
[PubMed]

27. Kyrarini, M.; Wang, X.; Graser, A. Comparison of vision-based and sensor-based systems for joint angle gait analysis. In
Proceedings of the 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings, Turin,
Italy, 7–9 May 2015; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2015; pp. 375–379. [CrossRef]

28. Moro, M.; Marchesi, G.; Hesse, F.; Odone, F.; Casadio, M. Markerless vs. marker-based gait analysis: A proof of concept study.
Sensors 2022, 22, 2011. [CrossRef] [PubMed]

29. Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.;
Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals.
circulation 2000, 101, e215–e220. [CrossRef] [PubMed]

30. Bachlin, M.; Plotnik, M.; Roggen, D.; Maidan, I.; Hausdorff, J.M.; Giladi, N.; Troster, G. Wearable assistant for Parkinsons disease
patients with the freezing of gait symptom. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 436–446. [CrossRef]

31. Zanardi, A.P.J.; da Silva, E.S.; Costa, R.R.; Passos-Monteiro, E.; dos Santos, I.O.; Kruel, L.F.M.; Peyré-Tartaruga, L.A. Gait
parameters of Parkinson’s disease compared with healthy controls: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 752.
[CrossRef]

32. Braun, B.; Veith, N.T.; Hell, R.; Döbele, S.; Roland, M.; Rollmann, M.; Holstein, J.H.; Pohlemann, T. Validation and reliability
testing of a new, fully integrated gait analysis insole. J. Foot Ankle Res. 2015, 8, 54. [CrossRef]

33. Stöggl, T.; Martiner, A. Validation of Moticon’s OpenGo sensor insoles during gait, jumps, balance and cross-country skiing
specific imitation movements. J. Sports Sci. 2017, 35, 196–206. [CrossRef]

34. Kakarla, T.P.; Varma, K.A.; Preejith, S.P.; Joseph, J.; Sivaprakasam, M. Accuracy Enhancement of Total Force by Capacitive Insoles.
In Proceedings of the 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Istanbul,
Turkey, 26–28 June 2019; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2019. [CrossRef]

35. Moticon-SCIENCE. Available online: https://www.moticon.de/ (accessed on 12 September 2022).
36. Bloem, B.R.; Hausdorff, J.M.; Visser, J.E.; Giladi, N. Falls and freezing of Gait in Parkinson’s disease: A review of two intercon-

nected, episodic phenomena. Mov. Disord. 2004, 19, 871–884. [CrossRef]
37. Brognara, L.; Palumbo, P.; Grimm, B.; Palmerini, L. Assessing gait in Parkinson’s disease using wearable motion sensors: A

systematic review. Diseases 2019, 7, 18. [CrossRef]
38. Podsiadlo, D.; Richardson, S. The timed ‘Up & Go’: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc.

1991, 39, 142–148. [CrossRef]
39. Herman, T.; Giladi, N.; Hausdorff, J.M. Properties of the ‘Timed Up and Go’ test: More than meets the eye. Gerontology 2011, 57,

203–210. [CrossRef] [PubMed]
40. McGrath, D.; Greene, B.R.; Doheny, E.P.; McKeown, D.J.; de Vito, G.; Caulfield, B. Reliability of quantitative TUG measures

of mobility for use in falls risk assessment. In Proceedings of the Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, Boston, MA, USA, 30 August 2011–3 September 2011; Institute of Electrical and Electronics
Engineers (IEEE): New York, NY, USA, 2011; Volume 2011, pp. 466–469. [CrossRef]

41. Mariani, B.; Jiménez, M.C.; Vingerhoets, F.J.G.; Aminian, K. On-shoe wearable sensors for gait and turning assessment of patients
with Parkinson’s disease. IEEE Trans. Biomed. Eng. 2013, 60, 155–158. [CrossRef] [PubMed]

42. Snijders, A.H.; Weerdesteyn, V.; Hagen, Y.J.; Duysens, J.; Giladi, N.; Bloem, B.R. Obstacle avoidance to elicit freezing of gait
during treadmill walking. Mov. Disord. 2010, 25, 57–63. [CrossRef] [PubMed]

43. Jacobs, J.V.; Horak, F.B.; Tran, V.K.; Nutt, J.G. Multiple balance tests improve the assessment of postural stability in subjects with
Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2006, 77, 322–326. [CrossRef] [PubMed]

44. Brauer, S.G.; Woollacott, M.H.; Lamont, R.; Clewett, S.; O’Sullivan, J.; Silburn, P.; Mellick, G.D.; Morris, M.E. Single and dual
task gait training in people with Parkinson’s Disease: A protocol for a randomised controlled trial. BMC Neurol. 2011, 11, 90–96.
[CrossRef]

45. Ziegler, K.; Schroeteler, F.; Ceballos-Baumann, A.O.; Fietzek, U.M. A new rating instrument to assess festination and freezing gait
in Parkinsonian patients. Mov. Disord. 2010, 25, 1012–1018. [CrossRef]

46. Kluge, F.; Gaßner, H.; Hannink, J.; Pasluosta, C.; Klucken, J.; Eskofier, B.M. Towards mobile gait analysis: Concurrent validity and
test-retest reliability of an inertial measurement system for the assessment of spatio-temporal gait parameters. Sensors 2017, 17,
1522. [CrossRef]

47. Combs, S.A.; Diehl, M.D.; Filip, J.; Long, E. Short-distance walking speed tests in people with Parkinson disease: Reliability,
responsiveness, and validity. Gait Posture 2014, 39, 784–788. [CrossRef]

48. Martínez-Martín, P.; Rodriguez-Blazquez, C.; Alvarez, M.; Arakaki, T.; Arillo, V.C.; Chaná, P.; Fernández, W.; Garretto, N.;
Castrillo, J.C.M.; Rodríguez-Violante, M.; et al. Parkinson’s disease severity levels and MDS-Unified Parkinson’s Disease Rating
Scale. Park. Relat. Disord. 2015, 21, 50–54. [CrossRef]

49. Kefalopoulou, Z.; Chatzaki, V.; Skaramagkas, C.; Chroni, E.; Tachos, N.; Fotiadis, D.I.; Tsiknakis, M. Pressure Sensor Insole
Gait Assessment for Parkinson’s Disease Patients: A Pilot Study [Abstract]. Movement Disorder 2022 International Congress. 2022.
Volume 37. Available online: https://www.mdsabstracts.org/abstract/pressure-sensor-insole-gait-assessment-for-parkinsons-
disease-patients-a-pilot-study/ (accessed on 20 October 2022).

http://doi.org/10.1016/j.jns.2014.07.026
http://www.ncbi.nlm.nih.gov/pubmed/25082782
http://doi.org/10.1109/MeMeA.2015.7145231
http://doi.org/10.3390/s22052011
http://www.ncbi.nlm.nih.gov/pubmed/35271158
http://doi.org/10.1161/01.CIR.101.23.e215
http://www.ncbi.nlm.nih.gov/pubmed/10851218
http://doi.org/10.1109/TITB.2009.2036165
http://doi.org/10.1038/s41598-020-80768-2
http://doi.org/10.1186/s13047-015-0111-8
http://doi.org/10.1080/02640414.2016.1161205
http://doi.org/10.1109/MeMeA.2019.8802146
https://www.moticon.de/
http://doi.org/10.1002/mds.20115
http://doi.org/10.3390/diseases7010018
http://doi.org/10.1111/j.1532-5415.1991.tb01616.x
http://doi.org/10.1159/000314963
http://www.ncbi.nlm.nih.gov/pubmed/20484884
http://doi.org/10.1109/IEMBS.2011.6090066
http://doi.org/10.1109/TBME.2012.2227317
http://www.ncbi.nlm.nih.gov/pubmed/23268531
http://doi.org/10.1002/mds.22894
http://www.ncbi.nlm.nih.gov/pubmed/19938174
http://doi.org/10.1136/jnnp.2005.068742
http://www.ncbi.nlm.nih.gov/pubmed/16484639
http://doi.org/10.1186/1471-2377-11-90
http://doi.org/10.1002/mds.22993
http://doi.org/10.3390/s17071522
http://doi.org/10.1016/j.gaitpost.2013.10.019
http://doi.org/10.1016/j.parkreldis.2014.10.026
https://www.mdsabstracts.org/abstract/pressure-sensor-insole-gait-assessment-for-parkinsons-disease-patients-a-pilot-study/
https://www.mdsabstracts.org/abstract/pressure-sensor-insole-gait-assessment-for-parkinsons-disease-patients-a-pilot-study/


Sensors 2022, 22, 9937 20 of 20
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