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Abstract: Rolling bearings are a vital component of mechanical equipment. It is crucial to implement
rolling bearing fault diagnosis research to guarantee the stability of the long-term action of mechanical
equipment. Conversion of rolling bearing vibration signals into images for fault diagnosis research
has been a practical diagnostic approach. The current paper presents a rolling bearing fault diagnosis
method using symmetrized dot pattern (SDP) images and a deep residual network with convolutional
block attention module (CBAM-DRN). The rolling bearing vibration signal is first visualized and
transformed into an SDP image with distinct fault characteristics. Then, CBAM-DRN is utilized
to derive characteristics directly and detect faults from the input SDP images. In order to prevent
conventional time-frequency images from being limited by their inherent flaws and avoid missing the
fault features, the SDP technique is employed to convert vibration signals into images for visualiza-
tion. DRN enables adequate extraction of rolling bearing fault characteristics and prevents training
difficulties and gradient vanishing in deep level networks. CBAM assists the diagnostic model in
concentrating on the image’s more distinctive parts and preventing the interference of non-featured
parts. Finally, the method’s validity was tested with a composite fault dataset of motor bearings
containing multiple loads and fault diameters. The experimental results reflect that the presented
approach can attain a diagnostic precision of over 99% and good stability and generalization.

Keywords: rolling bearings; intelligent fault diagnosis; symmetrized dot pattern (SDP); deep residual
network (DRN); attention mechanisms

1. Introduction

Vibrational faults are common in large machinery and equipment, affecting their
normal operation and increasing maintenance costs. In severe cases, it can even cause
mechanical damage and substantial economic losses or cause casualties. Rolling bearings
are an essential mechanical equipment component and one of the most frequently faulty
components. Faults in rolling bearings can deviate the entire mechanical system from
normal working conditions, leading to downtime, production stoppage, and equipment
damage [1]. In order to detect faults in time, different signals are collected using sensors to
analyze and diagnose the operating conditions of rolling bearings. The development of
rolling bearing (RB) fault diagnosis (FD) research significantly affects the long-term stable
efficiency of mechanical equipment [2,3].

The rolling bearing fault diagnosis (RBFD) research is based on feature extraction
and pattern recognition. The temperature signal, electrical signal, acoustic emission signal,
vibration signal, and other signals can be employed for the feature extraction stage [4]. Due
to its ability to respond rapidly to variations in the state of mechanical equipment, vibration
signal analysis has the advantages of high accuracy and easy acquisition. Thus, as one of
the primary analysis methods, it has been employed to derive bearing fault characteristics.
With the rapid progress in signal processing technology, many methods such as time,
frequency, and time-frequency domain analyses have been extensively utilized in the
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rolling bearing vibration signals’ processing and analysis [5–8]. In the pattern recognition
stage, methods such as BP neural networks [9], fuzzy neural networks [10], and support
vector machines (SVM) [11] have also been extensively utilized in the RBFD. Nevertheless,
the mentioned models belong to a shallow network structure, resulting in the lack of the
model’s fault diagnosis ability and generalization [12].

By constructing a multi-layer nonlinear network structure, deep learning methods can
effectively simulate and approximate any complex function. Since fault characteristics can
be derived adaptively from the primary data, it has been extensively utilized in several
areas in recent years. The convolutional neural network (CNN), one of the representative
branches of deep learning, has been utilized by many researchers in the RBFD [13]. Taking
the primary multi-channel signals as the input, She et al. presented a multi-channel deep
CNN using the exponential decay learning rate for verifying the RBs’ health status [14].
Janssens et al. applied the raw frequency domain data as the input to a CNN model to
achieve the RBFD in four kinds of rotating machinery operating conditions [15].

According to the characteristics of CNN suitable for image recognition, the vibration
signals of rolling bearings can be transformed into feature images for the RBFD. This
approach transforms the RBFD problem into a multi-classification problem of rolling
bearing vibration signal images efficiently and accurately [16]. The time-frequency analysis
approaches like Short Time Fourier Transform (STFT), Wavelet Transform (WT), and Wigner-
Vill Distribution (WVD) are generally employed to transform the vibration signal into
feature images to apply the input into the CNN model [17–21]. However, due to linear
time-frequency analyses approaches such as STFT and WT with unstable time-frequency
resolution, the non-linear time-frequency analysis methods represented using WVD are
susceptible to inherent cross-term interference [16]. Therefore, some vibration signal
visualization methods, such as the axial trajectory method [22] and Symmetrized Dot
Pattern (SDP) analysis [23], were applied to vibration signal feature extraction. SDP analysis
provides a simple and intuitive way of converting the original vibration signal into an
image comprising mirrored symmetry points in polar coordinates. In order to better reflect
the vibration signal’s changing features, it is directly converted into SDP images in polar
coordinates. Sun et al. adopted the SDP analysis to transform the vibration signals and
classify different vibration signals of RBs by combining the improved Manhattan distance
and the improved Chebyshev distance, respectively [24,25]. Zhu et al. transformed time
series data from multiple sensors into SDP images and employed CNN to identify rotor
vibration faults with different vibration states [26]. Gu et al. utilized the SDP to visualize
the angular domain denoised reconstructed signals and DCNN to classify the formed
SDP images to achieve RBFD under various working conditions [27]. However, extracting
features from faulty signals is insufficient because the employed CNN model only contains
a limited number of convolutional and pooling layers.

With the increasing volume of bearing condition monitoring data, researchers have
employed the more powerful feature extraction capabilities of Deep Residual Networks
(DRN) to diagnose faults of bearings in complex operating conditions to process more
information. An approach using time-frequency analysis and the deep residual network
was presented for the FD of planetary gearboxes [28]. Ref. [29] trained a deep ResNet for
RBFD via the raw vibration signals as the model input. The results indicated its superiority
to traditional CNN models. In [30], a multi-scale kernel-based residual convolutional
network was presented for motor fault diagnosis considering the machine’s non-smooth
conditions. The results indicated the superiority of the method over traditional approaches.
Nevertheless, the RBFD using DRN as a diagnostic model has not been widely studied,
while the diagnostic performance could still be improved using attention mechanisms,
fine-tuned network architectures, and other methods.

According to the mentioned analysis, the current paper proposes an RBFD approach
using the SDP image and deep residual network with convolutional block attention module
(CBAM-DRN). Firstly, the bearing vibration signal is converted into an intuitive SDP image
with apparent features. Then, the diagnostic model of CBAM-DRN is established to extract
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features and classify faults using the SDP image. The DRN model avoids the performance
degradation of normal networks due to the high number of layers. The added CBAM
attention mechanism allows the model to focus on regions with more significant fault
characteristics, reducing the interference of redundant information. Finally, motor-bearing
datasets containing different loads and fault diameters verify the proposed method through
experiments. The presented approach has better diagnostic accuracy and generalization
performance than the traditional models. The advantages of the proposed bearing fault
diagnosis approach as follows.

(1) Transforming bearing fault diagnosis research to the classification of bearing fault
images and proposing an intelligent fault diagnosis approach by combining SDP
images with the CBAM-DRN method.

(2) The optimal SDP parameters are selected to visualize the bearing vibration signal and
convert it to the SDP images with obvious fault characteristics.

(3) Combining the advantages of attention mechanism and deep residual network, the
approach can automatically and comprehensively extract the deep fault features in
the image and improve the diagnostic accuracy.

The rest of the paper is divided into the following sections. Section 2 describes the
basic theory of the method used in this paper. Section 3 describes the proposed method
for bearing fault diagnosis using SDP images and CBAM-DRN. Section 4 gives the data
set and model parameter settings used, validates the effectiveness and superiority of
the proposed approach, and presents the experimental results and comparative analysis.
Finally, conclusions are given in Section 5.

2. Theory

This section introduces the fundamental theory of the SDP, DRN and CBAM methods
used in this paper.

2.1. SDP Method

Using the SDP method to generate images, the variation in the sampled signals’
amplitude and frequency can be verified via differences in the images. Since it does not
need to undergo time-frequency analysis and only operates on time-domain signals, it has
the advantages of simplicity, convenience, and fast calculation.

For the time series X = {x1, x2, . . . , xi, . . . , xn}, X can be transformed into a point in
the polar space P(r(i), φ(i), ϕ(i)), as presented in Figure 1, where r(i) represents the polar
coordinate radius, and φ(i) and ϕ(i) stand for the angles at which the polar coordinate
rotates counterclockwise and clockwise along with the initial line, respectively.
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By varying the initial line’s rotation angle, a set of signals
(

xi, x(i+L)

)
can form a mirror

symmetric point image in polar coordinates. The calculation formula is as the following:

r(i) =
xi − xmin
xminmax

(1)

φ(i) = θ +
x(i+L) − xmin

xminmaxg
(2)

ϕ(i) = θ −
x(i+L) − xmin

xminmaxg
(3)

where xmax and xmin are the maximum and minimum values of the sampled data, respec-
tively, L is the time interval (usually between 1–10), θ is the initial line rotation angle (values
for 360 m/n, m = 1, · · · , n, where n represents the number of mirror symmetry planes,
usually set as 6), and g is the angle magnification factor (usually set as less than θ). The
differences between SDP images with various vibration forms are generally described by
the arm thickness, shape features, geometric center, curvature, point concentration area,
and other elements in the images.

2.2. Deep Residual Network (DRN)

CNN is a type of feedforward neural network that contains convolutional calculation.
Its nonlinear layer comprises multiple convolutional and activation layers, which can better
fit very complex nonlinear functions. For noise-laden signals, such as bearing vibration
signals, increasing the number of network layers allows the CNN to learn a richer set
of fault features. However, deeper CNNs are more challenging to train and suffer from
gradient disappearance/explosion and performance degradation. He et al. [31] presented a
deep residual network (DRN) to address the mentioned issues. DRN is proposed based on
CNN, as presented in Figure 2, an 18-layer residual network. The DRN mainly includes
multiple residual blocks, each having multiple convolutional layers with a similar number
of output channels, followed by the BN and activation layers.
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Figure 2. The ResNet-18 framework.

The residual block structure calculates the residuals through identity mapping, which
can directly transfer part of the upper information to the last layers for fusion. The typical
residual block framework is presented in Figure 3, where F = W2σ(W1x), and σ, represents
the Relu activation function, while the bias term is eliminated for continence. The residual
block structure is conducive to the backpropagation of gradients, thus effectively updating
the weights and biases and ensuring that the model can learn features as it increases in
depth. The degradation problem of ordinary networks generated by an excessive number
of layers is solved, avoiding the model’s precision degradation.
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Figure 3. Residual block structure.

The convolution layer is employed for feature extraction, where a convolution kernel
convolves the feature vector output from the previous layer to learn a comprehensive
feature representation. The mathematical model is described as the following:

xl
j = f ( ∑

i∈Mj

xl−1
i × kl

ij + bl
j) (4)

where Mj represents the input feature vector, l is the number of layers in the network, k
represents the convolution kernel, b indicates the network bias, and xl

j and xl−1
i represent

the l layer output and input, respectively. The convolutional layer has the advantages of
sparse connection and weight sharing.

Batch Normalization (BN) is a method of normalizing each layer of input to be consis-
tent in mean and variance. BN layers can accelerate the training and convergence of the
network while preventing gradient explosion/disappearance and overfitting. The activa-
tion layer adopts a rectified linear unit (ReLU) activation function, expressed as follows.

xl+1
i (j) = max

{
0, yl+1

i (j)
}

(5)

where yl+1
i (j) describes the convolution operation’s output value and xl+1

i (j) represents
the activation value of yl+1

i (j). The ReLU activation function makes the output of a portion
of neurons zero, which can enhance the network’s sparsity, alleviate overfitting, and speed
up learning.

2.3. Attention Mechanism

When using SDP images as input to a neural network, there are non-featured parts in
the images. More importantly, to improve the model’s fault feature extraction capability
and fault identification accuracy, an attention mechanism is presented in this paper to
enhance the model’s diagnostic effectiveness. The attention mechanism allocates weights
to different image regions, allowing the model to locate and focus on the regions with more
prominent fault features and suppress useless information. The current work employs the
Convolutional Block Attention Module (CBAM) as the attention mechanism [32].

CBAM is an attention unit for a feedforward convolutional neural network and its
structure is presented in Figure 4a. For the input feature map, CBAM inferred the attention
mapping sequentially through two independent sub-attention units (channel and spatial
attention). The weights obtained using the attention mechanism are then multiplied
through the input feature map for adaptive feature optimization. Given a feature map
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as input, CBAM consecutively deduces a 1D channel attentional map and a 2D spatial
attentional map. This operation is expressed as:

F′ = Mc(F)⊗ F (6)

F′′ = Ms
(

F′
)
⊗ F′ (7)

where ⊗ describes element-wise multiplication. The channel attention value will be passed
along with the spatial dimension in the multiplication process. F′′ represents the final
refined output.
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The channel attention module employs the features’ inter-channel relationships for
creating a channel attention map, where its structure is presented in Figure 4b. The channel
attention unit combines the feature map’s spatial information using average and maximum
pooling operations, generating two spaces: Fc

avg and Fc
max, which describe the average and

maximum pooled feature, respectively. Then, they feed forward into a shared multilayer
perceptron (MLP) network for generating channel attention maps Mc ∈ RC×1×1. In order
to decrease the number of parameters, the MLP hidden layer’s activation scale is set to
RC/r×1×1, where r represents the reduction ratio. The output is then summed, and the
feature vectors are output through a sigmoid function. Its channel attention is given using:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= σ(W1(W0(Fc

avg)) + W1(W0(Fc
max)))

(8)

where σ represents the sigmoid function, the MLP weights W0 ∈ RC/r×C and W1 ∈ RC×C/r

are shared for the input, and the ReLU activation function is followed by W0. AvgPool(·)
and MaxPool(·) represent average pooling and maximum pooling operations, respectively.

The spatial attention unit employs the spatial relationships between features for
generating a spatial attention map, which is complementary to channel attention. Its
structure is presented in Figure 4c. The spatial attention unit performs maximum pooling
and average pooling, operations that aggregate the feature mapping’s channel information,
generating two 2D graphs: Fs

avg ∈ R1×H×W and Fs1×H×W
max , representing the channel’s average

and maximum pooling features, respectively. Then, a standard convolutional layer is
utilized to connect and convolve for creating a 2D spatial attention map, where the spatial
attention can be determined as the following:

Ms(F) = σ
(

f 7×7([AvgPool(F); MaxPool(F)])
)

= σ( f 7×7([Fs
avg; Fs

max]))
(9)
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where σ represents the sigmoid function and f 7×7 represents the convolution operation of
the filter.

The CBAM is connected in series to the spatial attention unit after the channel attention
unit, providing a dual channel and spatial attention mechanism, which is better than
employing channel attention separately. CBAM is a lightweight, universal unit that can
be conveniently incorporated into any CNN architecture and applied to the convolutional
output of each block. The integrated application of CBAM is shown in Figure 4d.

3. Bearing Fault Diagnosis Model Using SDP Images and CBAM-DRN

Based on the above SDP technique, deep residual network (DRN), and CBAM attention
mechanism, this section proposes an intelligent RBFD approach using SDP images and the
CBAM-DRN model, where its flow chart is presented in Figure 5.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 23 
 

 

employing channel attention separately. CBAM is a lightweight, universal unit that can 
be conveniently incorporated into any CNN architecture and applied to the convolutional 
output of each block. The integrated application of CBAM is shown in Figure 4d. 

3. Bearing Fault Diagnosis Model Using SDP Images and CBAM-DRN 
Based on the above SDP technique, Deep Residual Network (DRN), and CBAM at-

tention mechanism, this section proposes an intelligent RBFD approach using SDP images 
and the CBAM-DRN model, where its flow chart is presented in Figure 5. 

 
Figure 5. The RBFD structure using SDP and CBAM-DRN. 

The diagnosis process of the intelligent RBFD approach using SDP and CBAM-DRN 
comprises three parts: (1) data acquisition and signal pre-processing; (2) SDP image da-
taset establishment; (3) feature extraction and fault diagnosis. The specific details are 
shown below. 

Data acquisition and signal pre-processing: Vibration sensors are installed at suitable 
locations on the target-rotating machinery to collect the vibration signals during bearing 
operation. The bearing vibration signal is pre-processed through denoising and normali-
zation. The sample expansion is then performed using the uniform sliding step segmen-
tation method to increase the number of available vibration samples. 
(1) SDP image dataset establishment: The SDP approach is adopted for converting bear-

ing vibration samples into SDP images with simple structures and distinctive fea-
tures and resizing them to the appropriate size. The SDP image dataset is then created 
and randomly categorized into training and test sets. 

(2) Feature extraction and fault diagnosis: The proposed CBAM-DRN diagnosis model 
is established. The model is trained on the training set to obtain the ability to extract 
different fault state features of bearings, and the softmax classifier is then utilized for 
detecting different bearing faults. The whole network model is trained end-to-end 
using backpropagating SGD. Finally, the diagnostic efficiency of the presented ap-
proach is evaluated through the trained diagnostic model on the test set. 

4. Comparison and Analysis 
The current section presents the detailed results and analysis of the comprehensive 

experiments. The data used in the experiment and the parameter architecture of the diag-
nostic model are represented in detail in Section 4.1. In Section 4.2, the impact of several 
input images on the RBFD accuracy is analyzed and compared, followed by a comparison 
of the diagnostic efficiency of various rolling bearing fault diagnosis methods and an 
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The diagnosis process of the intelligent RBFD approach using SDP and CBAM-DRN
comprises three parts: (1) data acquisition and signal pre-processing; (2) SDP image
dataset establishment; (3) feature extraction and fault diagnosis. The specific details are
shown below.

Data acquisition and signal pre-processing: Vibration sensors are installed at suitable
locations on the target-rotating machinery to collect the vibration signals during bearing
operation. The bearing vibration signal is pre-processed through denoising and normaliza-
tion. The sample expansion is then performed using the uniform sliding step segmentation
method to increase the number of available vibration samples.

(1) SDP image dataset establishment: The SDP approach is adopted for converting
bearing vibration samples into SDP images with simple structures and distinctive
features and resizing them to the appropriate size. The SDP image dataset is then
created and randomly categorized into training and test sets.

(2) Feature extraction and fault diagnosis: The proposed CBAM-DRN diagnosis model is
established. The model is trained on the training set to obtain the ability to extract
different fault state features of bearings, and the softmax classifier is then utilized
for detecting different bearing faults. The whole network model is trained end-to-
end using backpropagating SGD. Finally, the diagnostic efficiency of the presented
approach is evaluated through the trained diagnostic model on the test set.
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4. Comparison and Analysis

The current section presents the detailed results and analysis of the comprehensive
experiments. The data used in the experiment and the parameter architecture of the
diagnostic model are represented in detail in Section 4.1. In Section 4.2, the impact of
several input images on the RBFD accuracy is analyzed and compared, followed by a
comparison of the diagnostic efficiency of various rolling bearing fault diagnosis methods
and an analytical evaluation of the diagnostic effectiveness of the several methods. In
Section 4.3, the applicability of the method proposed in this paper is tested using other
bearing fault data sets. All experiments are completed on PC, through the Windows
10 operating system, Intel(R) Xeon(R) 3204 CPU, and Nvidia GeForce GTX 3080 GPU.
MATLAB 2017a was employed for vibration signal processing and SDP image construction.
The network model is implemented using Python 3.6 in the Keras structure with TensorFlow
as the back end.

In order to analyze the efficiency of the presented approach, classification accuracy
was utilized to compare and verify the efficiency of the diagnostic models. Classification
accuracy is the ratio between the number of correctly categorized samples and the whole
number of samples in the test samples, expressed with the following equation.

Accuracy =
NCT
NAT

× 100% (10)

where NCT and NAT represent the number of truly categorized samples and the whole
number of samples, respectively.

4.1. Experimental Setup
4.1.1. Data Description

The experimental data of rolling bearings employed in the current paper are from
the Bearing Data Center, Electrical Engineering Laboratory, Case Western Reserve Uni-
versity (CWRU), whose test device is presented in Figure 6. The test device comprises
a 2-horsepower (hp) motor, a power test meter, a torque sensor/translator, and the cor-
responding electrical control unit. Three different levels of damage were pre-set on the
inner ring, outer ring, and rolling element of the bearing under test, with fault diameters
of 0.007′′, 0.014′′, and 0.021′′, respectively, all with a fault depth of 0.011′′. Each bearing
was tested separately in experiments at loads of 0–3 hp. The experimental data contains
vibration signals with various damage levels for three states of the bearing: inner ring fault
(IF), outer ring fault (OF), and rolling element fault (BF). The CWRU test bearings and data
descriptions are shown in Table 1.
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Table 1. CWRU test device and data description.

Parameter
Bearing Position

Drive End Fan End

Bearing type 6205-2RS JEM SKF 6203-2RS JEM SKF
Inside Diameter 0.9843′′ 0.6693′′

Outside diameter 2.0472′′ 1.5748′′

Thickness 0.5906′′ 0.4724′′

Pitch diameter 1.537′′ 1.122′′

Ball number 9 8
Ball diameter 0.3126′′ 0.2656′′

Motor speed (0–3 hp) 1797/1772/1750/1730 rpm 1797/1772/1750/1730 rpm
Sampling frequency 12/48 kHz 12 kHz

Fault diameter 0/0.007′′/0.014′′/0.021′′ 0/0.007′′/0.014′′/0.021′′

In this paper, the rolling bearing at the drive end is employed as the research object,
and the RBs’ vibration signals with various fault diameters (0.007′′, 0.014′′, 0.021′′) are
analyzed and tested at a 12 kHz sampling frequency and under various loads (0–3 hp).
In order to assess the efficiency of the presented approach, an experimental dataset was
created, as presented in Table 2.

Table 2. Rolling Bearing fault sample dataset.

N IF OF BF

Load 0 HP/1 HP/2 HP/3 HP
Fault diameter 0 0.007 in./0.014 in./0.021 in.

Number of samples 1200 3600 3600 3600
Randomly selected samples 1200 1200 1200 1200

Training set 800 800 800 800
Testing set 400 400 400 400

The overlapping sampling technique segmented the vibration signal. Then, the four-
state bearing vibration signals were changed to SDP images through the SDP approach
described in Section 2. Under the four working conditions, 300 samples of normal bearing
vibration signals were obtained under the four loads. Each sample contained 2048 sampling
points, and 1200 samples were obtained. 3600 samples were obtained for rolling bearings
with inner ring fault, outer ring fault, and rolling element fault, respectively. In order
to achieve sample balance, all normal samples were employed in each experiment, and
1200 composite fault samples of the inner ring, outer ring, and rolling element with various
loads and fault diameters were randomly selected. Therefore, a total of 4800 samples were
adopted in each experiment in the dataset. In the experimental process, the experimental
samples were categorized into the training and test sets with a ratio of 2:1. In the training
process, 10% of the training samples were categorized into validation sets, adopted to verify
the diagnostic model’s precision to adjust some hyperparameters in the model.

4.1.2. Model Parameter Setting

This research selected an 18-layer DRN (ResNet-18) as the base model. The SDP im-
ages were resized to 224 × 224 during the model’s training step, and a CBAM-DRN model
was then established for extracting the features of different fault states for RBFD. High-
dimensional image features were extracted using a Conv1 convolutional layer containing
64 filters when the images were input in the diagnostic model. The filter size in Conv1 was
7 × 7, and the stride was 2. Then, the features were compressed by downsampling through
a maximum pooling layer of size 3 × 3 with stride 2. Next, the deep fault features were ex-
tracted through four residual block structures (Conv2_x, Conv3_x, Conv4_x, Conv5_x) with
64, 128, 256, and 512 filters, where their size was 3 × 3. Conv3_1, Conv4_1, and Conv5_1
were downsampled in stride 2, while all other convolutional layers were downsampled
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in stride 1. Shortcut connections in the model perform the constant mapping. The model
employs zero padding to increase dimensionality to maintain the feature map dimensions
unchanged before and after convolution. Finally, all feature maps were input to the fully
connected (FC) layer after an adaptive averaging pooling layer for processing and bearing
state recognition using a Softmax classifier. The DRN model parameters are presented in
Table 3. The batch size for model training was chosen as 64, the epoch was chosen as 500,
and the learning rate was chosen as 0.001. CBAM is a lightweight, general-purpose module
added to the model to improve diagnostic performance. In CBAM, the reduction ratio r in
the channel attention module was 16, and the filter size in the spatial attention module was
7 × 7.

Table 3. The architecture of the DRN diagnostic model.

Layer Name Specification Output Size

Inputs - 224 × 224
Conv1 7 × 7, 64, s = 2 112 × 112

Max pool 3 × 3, s = 2 56 × 56
Conv2_x

[
3× 3, 64
3× 3, 64

]
× 2 56 × 56

Conv3_x
[

3× 3, 128
3× 3, 128

]
× 2 28 × 28

Conv4_x
[

3× 3, 256
3× 3, 256

]
× 2 14 × 14

Conv5_x
[

3× 3, 512
3× 3, 512

]
× 2 7 × 7

Outputs - 4

4.2. Results Analysis and Discussion
4.2.1. Comparison of Diagnostic Performance of Different Input Images

The transformation equation of the SDP image indicates the importance of the param-
eters θ, L, and g. Numerous types of research have shown that the number of symmetrical
figures is most suitable when θ is chosen at 60◦, making the image’s symmetry and shape
characteristics more prominent. Properly selected parameters g and L can enhance the
graph’s resolution and intensify the differences between signals, thus better differentiating
between different vibration signals. This paper employs image correlation coefficients
to analyze the correlation between different images. For two images of size m× n, the
correlation coefficient R is described as the following.

R(A, B) = ∑m ∑n (Amn − A)(Bmn − B)√
[∑m ∑n (Amn − A)

2
][∑m ∑n (Bmn − B)2

]

(11)

where A and B are the two-dimensional gray matrices of the image. The calculated correla-
tion coefficient R between the different images takes values between 0 and 1, where R = 0
and R = 1 mean that the two images are different and identical, respectively. In order to
better select the optimal g and L to distinguish SDP images with different fault states, the
current paper considers the sum of correlation coefficients of SDP images with four fault
states as the image evaluation index, which can be expressed as:

Rsum = ∑
i 6=j
i<j

R
(

Ai, Bj
)
(i = 1, · · · , k− 1; j = 2, · · · , k; k = 4) (12)

Firstly, the bearing fault vibration signal is selected with a load of 1 hp and fault
diameter of 0.007 inches, the values of L, g, and the step length are set to be 1–10, 10–60◦,
and 1 and 5◦, respectively. Then, it is converted into SDP images, and the sum of correlation
coefficients R of the four-fault state images is obtained. The results are presented in Table 4
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and Figure 7. Rsum gets a minimum value of 2.7851 when L = 3 and g = 30◦. This indicates
that the correlation between the different fault images is minimal, and the best identifiability
is achieved when the current parameter is selected. In order to visualize the impact of
parameter selection on the SDP image, some of the images are shown in Figure 8 while
combining g and L. It can be concluded that the highest image quality can be obtained
when L = 3 and g = 30◦. As L gradually increases, the arms of the SDP image become
progressively fuller. As the value of g increases, the angle between the center of mass of the
SDP image arm and the horizontal axis becomes progressively larger. Therefore, the SDP
parameters were chosen as θ = 60◦, L = 3, and g = 30◦, respectively.

Table 4. Rsum for various values of g and L.

Rsum
L

1 2 3 4 5 6 7 8 9 10

g

10 4.0028 4.5171 3.5341 4.3481 4.3549 4.4003 4.341 4.469 4.285 4.4811

15 3.7231 4.252 3.2602 4.1074 4.0653 4.1177 4.0536 4.2099 4.0599 4.2167

20 3.5362 4.0108 3.0841 3.9168 3.8576 3.8739 3.8531 3.994 3.856 4.027

25 3.3971 3.7948 2.9303 3.7248 3.6974 3.6697 3.6885 3.7802 3.6601 3.8729

30 3.2341 3.6471 2.7851 3.5613 3.492 3.4949 3.5161 3.6293 3.5084 3.707

35 3.1911 3.5825 2.8481 3.5338 3.4521 3.4038 3.4877 3.5632 3.4645 3.6694

40 3.3582 3.6836 2.908 3.6467 3.4855 3.4428 3.5542 3.6165 3.5497 3.8109

45 3.4755 3.775 3.0452 3.7529 3.5234 3.5306 3.696 3.7344 3.6244 3.9127

50 3.5534 3.7574 3.2209 3.7712 3.6399 3.6695 3.8707 3.8275 3.7168 3.8744

55 3.5099 3.7156 3.4368 3.7473 3.7752 3.77 3.8618 3.8429 3.7418 3.778

60 3.3923 3.62 3.3685 3.6054 3.6948 3.6718 3.6545 3.6918 3.6719 3.5684
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Figure 8. SDP images for various values of g and L.

According to the above analysis, the optimal parameters are selected to generate SDP
images for RBFD. In order to clarify the benefits of the SDP images used in the current
paper for RBFD tasks, rolling bearing vibration signals were converted into SDP images,
Short Time Fourier Transform (STFT) images, Wigner-Ville Distribution (WVD) images,
Hilbert-Huang Transform (HHT) images, and greyscale images of vibration signals [33],
respectively, as input into CBAM-DRN for fault diagnosis research. Under 1 hp load, the
different types of input images for the early fault of an RB (i.e., fault diameter of 0.007′′

for inner ring, outer ring, and rolling element faults) are shown in Figure 9 as examples.
Each experiment was performed ten times to eliminate the effect of accidental errors. The
performance was assessed using the average accuracy of the ten results. Figure 10 shows the
detailed diagnostic accuracies for the ten experiments. The mean accuracies and standard
deviations are shown in Table 5.

The experimental results reflect that the highest detection precision is achieved using
the same diagnostic model with SDP images as input. Diagnostic accuracy is around 95%
for both STFT and WVD images as input. The diagnostic accuracy of HHT images as input
is lower than SDP images, but higher than STFT images and WVD images, while accuracy
is lower for greyscale images of vibration signals. The results indicate the excellent fault
diagnosis capability of the presented approach. Since the SDP images are obtained by
transforming the vibration signal into a coordinate system, the vibration signal’s fault
features are not lost, and the different bearing faults can be characterized very well. In
contrast, STFT and WVD are both time-frequency images. STFT truncates the vibration
signal by adding a window function, while its selection influences the time-frequency
image. WVD is a nonlinear time-frequency analysis method, which generates cross-talk
terms when dealing with complex non-smooth signals and cannot accurately reflect the
signal’s time and frequency information. Therefore, both the STFT and the WVD images
are missing some information about the fault characteristics of the bearing, degrading
the detection precision. In contrast to STFT images and WVD images, HHT images are
obtained using the Hilbert Transform (HT) method after obtaining a series of Intrinsic Mode
Functions (IMF) of the vibration signal through Empirical Mode Decomposition (EMD),
since the HHT method is not limited by Heisenberg’s inaccuracy principle. Furthermore,
EMD can be adaptively time-frequency localised and can effectively extract information
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about the features of the original signal to reflect local features. Therefore, the diagnostic
accuracy of the HHT image as input is higher than that of the STFT image and the WVD
image. However, EMD decomposition has the problems of mode aliasing and end effect,
so the fault feature information in the HHT image will be affected, making its diagnosis
accuracy slightly lower than that of SDP image.
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Compared to the above methods, the vibration signal greyscale image is obtained
by converting the signal’s amplitude into the corresponding greyscale value, which con-
tains insufficient information about the bearing fault characteristics. Thus, the diagnostic
accuracy is low when employing the greyscale image as input.

It is worth noting that the average diagnostic precision of the above methods exceeds
90%, which indicates that the presented CBAM-DRN is an efficient approach with good
generalization and robustness. It also shows that the vibration signals of rolling bearings
can be transformed into images for fault diagnosis.

4.2.2. Performance Comparison of Various Fault Diagnosis Approaches

In order to clarify the efficiency of the presented approach, its diagnostic performance
has been compared with traditional approaches using a similar data set. Among them, the
CNN diagnostic model consists of five alternately connected convolutional and pooling
layers, an FC layer, and a softmax classifier. The convolutional kernel size is 3 × 3, the
number of convolutional kernels is 16, 32, 32, 64, and 128, the pooling layer employs a
maximum pooling of 2 × 2, and the number of nodes in the FC layer is 1024. The SVM
diagnostic model adopts a Gaussian radial basis function (RBF) as the kernel function. The
BPNN diagnostic model is structured as 512-256-128-64-4, and the activation function is
ReLU. The inputs to the SVM and BPNN are the texture feature parameters of the SDP
images. All experiments were performed ten times to eliminate the effect of accidental
errors. The mean accuracy of the results of ten experiments was utilized for evaluating the
diagnostic efficiencies of all approaches. Figure 11 shows the detailed diagnostic accuracies
for the ten experiments. Mean accuracies and standard deviations are shown in Table 6.
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Table 6. Diagnosis results of different methods.

Methods Model Average Accuracy (%) Standard Deviation (%)

A CBAM-DRN
(Proposed method) 99.32 0.1664

B CBAM-CNN 95.51 0.5718
C DRN 96.72 0.3593
D CNN 93.36 0.6656
E SVM 77.56 1.5295
F BPNN 67.16 3.4178

The experimental results show that the highest mean diagnostic precision among all
experimental methods is the proposed method A (99.32%), followed by method C (96.72%),
method B (95.51%), method D (93.36%), method E (77.56%), and method F (67.16%). The
mean precision of the presented approach exceeds the results of several other approaches,
indicating its good fault diagnosis performance. The experimental results indicate the
excellent stability of the presented diagnostic approach based on SDP images and CBAM-
DRN, as shown by the slight standard deviation of the diagnostic accuracy attained from
various experiments. Also, it can be found from the experimental results that the diagnostic
performance of the methods using the DRN model (A,C) is superior to those using the
CNN model (B,D), indicating the superiority of the DRN model to the CNN model in the
RBFD task. This is because DRNs have more intermediate layers than CNN models, which
allows them to extract more in-depth fault features. Moreover, the DRN employs residual
connectivity to allow the model to learn features even when increasing depth, which solves
the performance degradation problem arising from ordinary CNNs when the number of
layers increases. As presented in Table 6, methods A, B, C, and D all have good diagnostic
accuracies. However, their comparison indicates that method A has a higher diagnostic
precision than method C and method B has a higher diagnostic precision than method
D. This is because methods A and B both add the CBAM attention mechanism, which
gives different weights to different regions of the feature image, allowing the diagnostic
model to locate and focus more on the image parts with more prominent fault features,
thus effectively improving the diagnostic precision of the fault diagnosis model.

Notably, approaches A, B, C, and D, which employed DRN or CNN models, all
had average accuracies above 90%, while methods E and F, which used SVM or BPNN
models, all had accuracies below 80%. This is because both DRN and CNN are deep
diagnostic models. Compared to shallow models such as SVM and BPNN, deeper models
can extract more and deeper fault features, thus effectively characterizing the complex
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mapping relationships between bearing vibration signals and fault states. Moreover,
since the data samples employed in the experiments were randomly selected from a
composite fault dataset with different loads and fault diameters, the deeper model with
better generalization capability for fault diagnosis can achieve higher diagnostic accuracy.
Besides, compared with SDP images directly input into the deep model, artificial feature
extraction and complex signal processing approaches determine the diagnostic efficiency
of conventional approaches like SVM and BPNN. This experiment adopts the texture
feature parameter of the SDP image as the input for the SVM and BPNN, introducing
uncertainty due to human interference in the extraction process. Furthermore, texture
features are manually extracted features designed for a specific diagnostic model, which is
time-consuming, labor-intensive, and not universal.

In order to analyze the classification of the above fault diagnosis methods in more
detail, the classification results of the different diagnosis methods were counted during
the first experiment to attain the confusion matrix, as shown in Figure 12. The vertical
coordinate of each confusion matrix indicates the classification’s actual label, and the
horizontal coordinate indicates the predicted label. The elements on the main diagonal
of the confusion matrix indicate the number of samples in the current category that were
correctly classified. The confusion matrix of the presented approach provides a better
classification of samples for each type of health status and the highest number of correctly
classified samples, indicating its high classification accuracy. This illustrates the validity
and applicability of the presented diagnostic approach for distinguishing between different
types of rolling bearing health states.
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In order to further clarify the efficiency of the presented diagnostic approach and get a
more intuitive understanding of its feature extraction and fault classification capabilities,
the t-SNE technique [34] was utilized to downscale and visualize the fault features extracted
for CBAM-DRN and other methods using deep models, as presented in Figure 13.
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The visualization of the CBAM-DRN shows that features of the same type are ag-
gregated with small intra-class distances, while the fault features of different states are
effectively separated using the diagnosis method with large inter-class distances. In con-
trast, other methods confuse and misclassify the feature maps of different fault categories.
It indicates that the presented approach has better fault feature extraction and classification
capability under the multi-load and multi-fault diameter conditions. It is proved that
different bearing faults can be well represented by transforming bearing vibration signals
into SDP images without losing the critical fault feature information in vibration signals. It
also shows that the SDP image has more representative and discriminative fault feature
information than the manually extracted fault features.

4.3. Validation of Diagnostic Method Applicability

In order to verify the applicability of the proposed bearing fault diagnosis method
when applied to different types of bearings, experiments were conducted using a bearing
fault database from South Ural State University [35,36]. The experimental rig used to collect
the bearing fault data is shown in Figure 14. The rig contains two bearing assemblies
with a 1′′ shaft. The shaft is supported by a bearing assembly and is rotated using an AC
motor drive. The bearings were selected from the commercial ER-16 K bearing from MB
Manufacturing. The normal bearing is on the left side of the test bench and the faulty
test bearing is on the right side. The AC motor is fixed to the shaft using a jaw coupling
adjacent to the normal bearing. A rotation indicator is used to measure the frequency of the
rotating shaft. The WAS-prototype contains three one-axis MEMS-accelerometers ADXL-
001 (Analog Devices) mounted on the shaft end of the test bearing for signal acquisition.
Different bearing fault states are simulated by applying mechanical damage to the test
bearing with a rotating tool.
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Figure 14. Bearing fault experiment rig and faulty bearings.

When sampling the bearing signals, the shaft of the experimental rig was rotated
at 1200 rpm (20 Hz) and 1080 rpm (18 Hz), respectively, with a sampling frequency of
31.175 kHz. The database contains five types of bearing operating data. These are normal
condition (N), inner ring fault (IF), outer ring fault (OF), rolling element fault (RF) and
compound fault (CF) which contains all three faults at the same time. In this paper,
the bearing vibration signal at 20 Hz is selected for experimental analysis. Firstly, the
acquired bearing vibration signals are pre-processed, and the vibration signals are divided
into samples using overlapping sampling techniques. Then the five states of the bearing
vibration signals are converted to SDP images using the SDP method, as shown in Figure 15.
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The bearing vibration signals of different operating conditions were processed to
obtain SDP image samples. Separately, 1500 samples were randomly selected from each
category to build the experimental data set as shown in Table 7. Each sample contains
3897 sampling points. The dataset contains SDP images of normal and four fault state
bearings, with images sized to 224 × 224, and a total of 7500 samples. In the experiment,
the training set and the test set were divided into a 2:1 ratio for the experimental samples.

Table 7. Bearing failure sample data set.

Fault State Training Set Testing Set

N 1000 500
IF 1000 500
OF 1000 500
BF 1000 500
CF 1000 500

Validation of the applicability of the bearing fault diagnosis method proposed in
this paper based on the above data set. The SDP image conversion parameters and the
CBAM-DRN diagnostic model used in the research is set with the same parameters as
in the previous section. To illustrate the effectiveness and applicability of the proposed
method, the diagnostic performance of the proposed method was compared with other
methods such as CNN, SVM, and BPNN based on the same dataset, and their parameter
set was the same as in the previous section. In order to eliminate the effects of chance
errors, 10 trials were carried out for each method. The average accuracy of the results of the
10 trials was used as an indicator of the effectiveness of each method to assess its diagnostic
performance, and the experimental results are shown in Figure 16 with Table 8.
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Table 8. Experimental results of different fault diagnosis methods.

Model CBAM-DRN CBAM-CNN DRN CNN SVM BPNN

Average
accuracy (%) 99.65 94.95 95.85 92.28 75.16 64.96

Standard
deviation (%) 0.2423 0.9637 0.5695 1.1247 2.7934 3.2452

From the experimental results, it can be seen that the bearing fault diagnosis method
proposed in this paper can still achieve the highest diagnostic accuracy (99.65%) compared
to other diagnostic methods. The proposed method has the smallest standard deviation
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of diagnostic accuracy, indicating that the method has good stability. It is shown that
the residual linking and attention mechanism used in the proposed method enables the
diagnostic model to extract comprehensive and deep fault features from the SDP images,
thus effectively improving the diagnostic accuracy.

To better illustrate the good diagnostic accuracy and classification accuracy of the
bearing fault diagnosis method proposed in this paper, we give the confusion matrix of the
classification results of the proposed method in the first experiment, as shown in Figure 17.
It is clear from this that the proposed method can accurately classify various types of fault
samples, which indicates that the proposed diagnostic method can effectively diagnose
and classify different types of rolling bearing health conditions.
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All the above results illustrate that the rolling bearing fault diagnosis method based
on SDP images and CBAM-DRN diagnosis model proposed in this paper can also achieve
outstanding fault diagnosis accuracy on other bearing data sets and can accurately classify
bearing faults in different states. It is evidenced that the fault diagnosis method proposed in
this paper has good applicability and can be well applied to different categories of bearing
fault diagnosis tasks.

5. Conclusions

For accurate RBFD in rotating machinery, the current work presents an RBFD approach
using SDP images and CBAM-DRN. The method converts rolling bearing vibration signals
into SDP images and employs them as input. CBAM-DRN is then employed as a diagnostic
model to diagnose faults in rolling bearings.

The SDP method can quickly visualize the bearing vibration signal and convert it
into an SDP image with intuitive and significant fault features. The DRN overcomes the
performance degradation caused by stacking layers in a normal CNN and entirely derives
the fault characteristics in the image using the deep structure. Besides, the incorporated
attention mechanism can make the diagnostic model focus more on the significant compo-
nents of the fault features, suppressing useless information and enhancing the performance
of fault diagnosis. Finally, the effect of various input images and fault diagnosis methods
on the RBFD accuracy is verified through the motor-bearing composite fault dataset. The
experimental results reflect that the presented approach provides a recognition rate higher
than 99% for bearing fault samples with different loads and fault diameters, as well as good
generalization and robustness.

At the same time, the severe noise disturbance in the actual operating situations will
be considered, and the application of the RBFD approach to the rotating equipment in
the actual working conditions will be researched. This provides an excellent diagnostic
capability for them even in the complex environment of industrial sites.
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