
Citation: Alkhoury, L.; Choi, J.;

Chandran, V.D.; De Carvalho, G.B.;

Pal, S.; Kam, M. Dual Wavelength

Photoplethysmography Framework

for Heart Rate Calculation. Sensors

2022, 22, 9955. https://doi.org/

10.3390/s22249955

Academic Editor: Jinseok Lee

Received: 29 October 2022

Accepted: 14 December 2022

Published: 17 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Dual Wavelength Photoplethysmography Framework for Heart
Rate Calculation
Ludvik Alkhoury 1 , JiWon Choi 1 , Vishnu D. Chandran 2 , Gabriela B. De Carvalho 2 and Saikat Pal 1,2

and Moshe Kam 1,*

1 Department of Electrical and Computer Engineering, Newark College of Engineering, New Jersey Institute of
Technology, Newark, NJ 07102, USA

2 Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology,
Newark, NJ 07102, USA

* Correspondence: kam@njit.edu

Abstract: The quality of heart rate (HR) measurements extracted from human photoplethysmography
(PPG) signals are known to deteriorate under appreciable human motion. Auxiliary signals, such
as accelerometer readings, are usually employed to detect and suppress motion artifacts. A 2019
study by Yifan Zhang and his coinvestigatorsused the noise components extracted from an infrared
PPG signal to denoise a green PPG signal from which HR was extracted. Until now, this approach
was only tested on “micro-motion” such as finger tapping. In this study, we extend this technique to
allow accurate calculation of HR under high-intensity full-body repetitive “macro-motion”. Our Dual
Wavelength (DWL) framework was tested on PPG data collected from 14 human participants while
running on a treadmill. The DWL method showed the following attributes: (1) it performed well
under high-intensity full-body repetitive “macro-motion”, exhibiting high accuracy in the presence
of motion artifacts (as compared to the leading accelerometer-dependent HR calculation techniques
TROIKA and JOSS); (2) it used only PPG signals; auxiliary signals such as accelerometer signals were
not needed; and (3) it was computationally efficient, hence implementable in wearable devices. DWL
yielded a Mean Absolute Error (MAE) of 1.22|0.57 BPM, Mean Absolute Error Percentage (MAEP)
of 0.95|0.38%, and performance index (PI) (which is the frequency, in percent, of obtaining an HR
estimate that is within ±5 BPM of the HR ground truth) of 95.88|4.9%. Moreover, DWL yielded a
short computation period of 3.0|0.3 s to process a 360-second-long run.

Keywords: photoplethysmography (PPG); dual-wavelength PPG; green and infrared PPG; motion
artifacts reduction; heart rate calculation

1. Introduction

Multi-diagnostic wearable devices are of ongoing interest due to their ability to store
and transmit information about the wearer inexpensively and efficiently. Many wearable
sensors employ photoplethysmography (PPG), a low-cost optical technique used to detect
blood volume changes in the microvascular bed of tissues [1]. This technique enables
noninvasive detection of the cardiovascular pulse wave generated by the elastic nature of
the peripheral vascular arteries excited by the quasi-periodic contractions of the heart [2–4].
PPG signals are used in pulse oximeters—devices that measure the light absorbed by
functional hemoglobin (oxygenated and deoxygenated hemoglobin) and produce vital
signs such as heart rate (HR) or peripheral capillary oxygen saturation (SpO2) (an estimate
of the arterial oxygen saturation (SaO2) [5]). In order to obtain a PPG signal, light is
typically shone through the skin and its reflection is captured by a photo-detector. In this
study, we serially collect the reflection of light at two different wavelengths, namely, green
and infrared (IR).
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In the presence of substantial human motion, the quality of the measured PPG signal
deteriorates [6]. Much effort has been exerted to suppress motion artifacts in order to
extract high-quality vital signs from noise-contaminated PPG signals [3,7–10]. This study
contributes to this effort.

There are two main sources of motion artifacts that could contaminate a PPG signal
collected from a human in motion [9]. The first source of noise is the sensor displacement
relative to its original point of contact with the skin. This displacement could alter the
path of light, and hence modify the signal collected by the photo-detector [11]. The second
source of noise is skin and tissue deformations caused by the sensor’s movement.

Zhang et al. [9] proposed an HR calculation method that uses a dual-wavelength
sensor that comprises an IR and a green PPG signal. The IR PPG signal was employed to
develop a noise source that was used to denoise the green PPG signal from which an HR
level was extracted.

The HR calculation algorithm presented in [9] was tested on “micromotion artifacts”
such as “finger tapping” and “fist opening and closing”. In the current study, we examined
the applicability of a related approach for more substantial movements and dynamic
scenarios. Motivated by the sensor architecture proposed in [9], we expanded the HR
calculation technique to high-intensity full-body repetitive “macro-motion” exercise data.
The resulting Dual Wavelength (DWL) method collects green and IR PPG data from a
dual-wavelength wrist unit and processes them to estimate the participant’s heart rate.
The performance of DWL was documented in an extensive motion experiment involving
fourteen (14) human participants. There were three separate experiments. In the first (SNR
experiment), we used all fourteen (14) participants. In the second experiment (wrist-based
heart rate calculation), we used eleven (11) participants due to sensor failure on three of the
participants. In the third experiment (palm-based heart rate calculation), we used twelve
(12) participants due to sensor failure on two of the participants.

Figure 1 shows the essentials of the DWL method. It consists of five (5) stages; 1. Pre-
processing, 2. Motion-artifact detection, 3. Motion-artifact frequency components identification, 4.
Denoising, and 5. Heart rate estimation. The inputs to the DWL system are green and IR PPG
channels measured from a wrist-unit constructed for this study (see Section 2.1). The output
is an HR level. First, the green and IR PPG signals are normalized by dividing the signal’s
AC component by its DC component. We then check whether significant motion noise is
present in the PPG signals (Section 2.3.2). If the signals appear noise-free, the normalized
green PPG signal is directly used to calculate an HR value. If the signals appear noise
contaminated, we then extract the noise components from the IR PPG signal. These noise
components are removed from the noisy green PPG signal. We employ a Cascading
Adaptive Noise Cancellation (C-ANC) architecture that uses a QR-decomposition-based
least-squares lattice (QRD-LSL) algorithm [12] to denoise the green PPG signal before it
is used for HR calculation. A separate decision mechanism validates the HR estimate,
and corrects it when noise levels are excessively high to produce a meaningful estimate.

Figure 1. Summary of the DWL method.
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The rest of this paper is organized as follows. In Section 2, we present the materials
and methods we employ in this study. Section 2.1 describes the experimental settings along
with the sensors’ suite. In Section 2.2, we use experimental data to present the rationale
for choosing the IR PPG signal as noise reference signal. Section 2.3 introduces the DWL
framework; a method for (1) denoising the green PPG using the noise components extracted
from an IR PPG signal, and (2) computing HR levels. Lastly, in Section 2.4, we review
alternative HR calculation methods that use auxiliary sensors as a noise source, namely
accelerometers. These methods are TROIKA [7] and JOSS [8]. Section 3 presents the results
of the DWL framework. In Section 3.1, we define the performance metrics used to compare
the performance of the DWL method to that of our implementations of TROIKA and
JOSS. In Section 3.2, we compare the actual performance of the DWL method to that of our
implementations of TROIKA and JOSS. The comparison is made with respect to (1) the heart
rate ground truth computed from an electrocardiography (ECG) signal, and (2) the heart
rate levels obtained using TROIKA and JOSS. Section 3.3 validates the DWL framework by
testing its performance on experimental data collected from the palms (instead of wrists)
of the same participants during a second run (validation run). In Section 4, we conclude
that the DWL method provides several desirable features, including the following: (1) the
DWL framework uses only PPG signals; auxiliary signals (such as accelerometers used by
TROIKA and JOSS) are not needed and (2) the DWL framework appears to exhibit high
accuracy and lower computational burden in the presence of motion artifacts as compared
to TROIKA and JOSS.

2. Materials and Methods

In this section, the materials and methods employed in this work are presented.
In Section 2.1, we present the sensors used for data collection. We also describe the exercise
protocol followed during data collection. In our framework, noise components are extracted
from an IR PPG signal. In Section 2.2, we show using experimental data, the rationale
behind the choice of IR PPG signal as a reference noise source. In Section 2.3, the DWL
framework is introduced and described in detail (along with its five (5) stages, namely,
pre-processing, Motion-artifact detection, Motion-artifact frequency components identification,
Denoising, and Heart rate estimation). We compare the performance of the DWL method to
alternative HR calculation methods that use auxiliary sensors as a noise source, namely
accelerometers. These methods are TROIKA [7] and JOSS [8]. In Section 2.4, we present the
framework of these two alternative HR calculation methods.

2.1. Experimental Protocol and Sensors Suite

We conducted a high-intensity full-body exercise experiment where we collected PPG,
electrocardiography (ECG), and tri-axial accelerometer data. Accelerometers measured
accelerations in three orthogonal directions X, Y, and Z, simultaneously [13]. Readings
were obtained from fourteen (14) human participants while they were standing or running
on a split-belt instrumented treadmill (Bertec Corp., Columbus, OH) [14]. First, a multi-
wavelength wrist oximeter unit was strapped around the participant’s wrist. The wrist
unit encloses two green LEDs (of wavelength λG = 520 nm) and two IR LEDs (of wave-
length λIR = 940 nm), as well as a photo-detector. Additionally, a tri-axial accelerometer
sensor was placed on the participant’s arm (right above the PPG wrist-unit) and secured in
place using athletic tape. Lastly, an ECG sensor was mounted onto the participant’s chest
using adhesive electrodes. Athletic tape was wrapped around each participant’s chest to
ensure the sensor’s stability and good skin contact. Table 1 shows all the instruments and
sensors used in the experiment. Both ECG and accelerometer data were recorded using
the Delsys EMGworks Software. Multi-wavelength PPG wrist-unit data were recorded
using an Arduino UNO. All signals were sampled at 100 Hz. Raw data were processed
using MATLAB 2022b (Mathworks, Natick, MA) [15]. All raw data are available through
the Github repository in [16].
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The ECG signal was used to calculate the HR “ground truth” values. We manually
labeled the R peaks for all ECG signals. The HR ground truth at time step l, HRGT(l), is
obtained using the relationship

HRGT(l) =
1

δR−R(l)
, (1)

where δR−R(l) is the average time difference between each two consecutive R peaks present
within the 8-second-long window, at time step l.

The experimental protocol we followed during data collection was conducted in
accordance with the Declaration of Helsinki, and approved by the Institutional Review
Board of the New Jersey Institute of Technology (protocol code 2108010504; approved on 14
September 2021). All participants were physically fit, healthy, and athletic volunteers. Each
participant was asked to run on a treadmill following an exercise profile that comprises six
(6) stages. At each stage, the treadmill speed—hence the exercise intensity—was varied as
follows:

• Stage 1: The participant stood steady on the treadmill for 1 min (here, the treadmill’s
speed was 0 km/h). During this stage, clean physiological signals were collected.

• Stage 2: The participant ran at a speed of 6 km/h (about 3.7 mph) for 1 min (here,
the treadmill’s speed was 6 km/h).

• Stage 3: If the participant was comfortable, the treadmill’s speed was increased
gradually to 12 km/h (about 7.5 mph), for 1 min. At any time, if the participant was
not comfortable, the treadmill’s speed was reduced to the participant’s comfort zone.

• Stage 4 (same as stage 2): The participant ran at a speed of 6 km/h (about 3.7 mph) for
1 min (here, the treadmill’s speed was 6 km/h).

• Stage 5 (same as stage 3): If the participant was comfortable, the treadmill’s speed
was increased gradually to 12 km/h (about 7.5 mph), for 1 min. At any time, if the
participant was not comfortable, the treadmill’s speed was reduced to the participant’s
comfort zone.

• Stage 6: The participant stood steady on the treadmill for a duration of 1 min (here,
the treadmill’s speed was 0 km/h).

Table 1. Instruments used for data collection in the exercise experiment.

Instrument/Sensor Manufacturer Reference

Split-belt Instrumented Treadmill Bertec Corp. (Columbus, OH, USA) Catalog in [14]
IR LED (TSAL6100) Vishay Intertechnology Inc. (Malvern, PA, USA) Datasheet in [17]
Green LED (A-U5MUGC12) Light House LEDs LLC (Medical Lake, WA, USA) Datasheet in [18]
Photo-detector (OPT101) Texas-Instrument Inc. (Dallas, TX, USA) Datasheet in [19]
Delsys Trigno Avanti (tri-axial accelerometer) Delsys Inc. (Natick, MA, USA) Catalog in [20]
Trigno EKG Biofeedback sensor (ECG) Delsys Inc. Catalog in [21]

2.2. Infrared PPG Signal as Noise Reference Signal

According to [9], IR PPG signals are more affected by motion artifacts than green PPG
signals. To verify this behavior in our experiment, we calculated the signal-to-noise (SNR)
ratios for both the green and IR PPG signals. The SNR is defined as

SNR(in dB) = 10 log10

(Pdesired signal

Pnoise

)
, (2)

where Pdesired signal and Pnoise are the power of the participant’s heart rate component and
motion artifact components, respectively. In order to calculate an SNR value, the desired
and noise signal components should be identified and separated. At this stage, we used the
participant’s HR ground truth (obtained from an ECG signal, collected simultaneously with
the PPG signals) using Equation (1), in order to determine the desired signal component.
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The desired signal and noise components were obtained, respectively, from the green
and IR PPG signals. First, the green and IR signals were normalized by dividing their AC
component by their DC component. The desired signal component (the component that
contains heart rate information) of the normalized PPG signal was obtained by applying
two bandpass filters centered at the participant’s HR frequency (fundamental frequency)
and its second harmonic [9]. During this step the participant’s HR was obtained from
the ECG signal. The noise component was obtained by subtracting the desired signal
component from the normalized signal.

We calculated the SNR values of the green and IR PPG signals for all fourteen (14)
participants in the following manner. Every 2 s, the preceding 8-second-long PPG segment
was used to obtain an SNR value. In total, each participant had between 175 and 177
SNR values for each PPG signal (green and IR signals). The first and last minute of the
collected PPG data were omitted since these data segments were noise-free. SNR values for
all participants were grouped together and their distribution is presented in Figure 2 as
boxplots [22].

In our experiment, the SNR mean value of the IR PPG, µIR
SNR = −8.5 dB (black dot

in Figure 2), was less than the SNR mean value of the green PPG signal, µG
SNR = −4.8 dB

(green dot in Figure 2). These results are statistically significant for a level of significance
α = 0.01. This difference supports the choice of IR PPG as a noise reference signal using
experimental data.

Figure 2. SNR values of IR and green PPG signals, respectively, calculated from all fourteen (14)
participants. The dots represent the mean value of SNR. The red bars represent the median value of
SNR. The red ‘+’ signs represent outliers.

2.3. DWL Framework

The proposed DWL framework consists of the following stages (Figure 1), A. Pre-
processing, B. Motion-artifact Detection, C. Motion-artifact Frequency Components Identification,
D. Denoising, and E. Heart Rate Estimation. The inputs to the system are raw green and
IR PPG signals measured using the dual-wavelength PPG wrist-unit sensor (described
in Section 2.1). The output is an HR estimate, ĤR(l) at time step l (the initial time step

is l = 1). We refer to the average of the latest Z estimates of the heart rate as ĤR(Z)
(l),

namely

ĤR(Z)
(l) =

1
Q

Q−1

∑
q=0

ĤR(l − q) | Q = min{Z, l}. (3)

Figure 3 is a block diagram of the DWL method. The system produced a new estimate
of HR at every time step (ĤR(l) at time step l). The time between two subsequent windows
in our study was 2 s. In addition, the system produces three search ranges. They are; the
“narrow search range”, ∆n(l + 1); the “medium search range”, ∆m(l + 1); and the “wide
search range”, ∆w(l + 1). Ranges ∆m(l + 1) and ∆n(l + 1), which are used in the motion-
artifact frequency components identification process of Section 2.3.3, are centered at ĤR(l).
The range ∆w(l + 1), which is used in the heart rate estimation process of Section 2.3.5,
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is centered at ĤR(6)
(l), the average of the 6 previous heart rate estimates. The ranges

satisfy ∆n(l + 1) < ∆m(l + 1) < ∆w(l + 1). Moreover, ∆n(l + 1) =
∆m(l + 1)

2
(for details

on how we calculated ∆w(l + 1) and ∆m(l + 1), see Equations (A2) and (A4) in Appendix A,

respectively). Lastly, we calculate a short-term 3-point-average heart rate, ĤR(3)
(l), that

we provide to the users and employ in Section 3.2 for assessing the performance of DWL.

Figure 3. Block diagram of the DWL method. The inputs for calculating HR are raw green and IR PPG
signals. The output is an estimate of the participant’s HR. Block A corresponds to the pre-processing
stage of Section 2.3.1. Block B represents the motion-artifact detection stage of Section 2.3.2, which we
employed to determine whether the PPG signals are contaminated with appreciable level of noise.
Block C identifies the motion-artifact frequency components as described in Section 2.3.3. During this
stage, noise frequency components are extracted from the IR PPG signal. Block D is the denoising
stage of Section 2.3.4, during which noise components are removed from the green PPG signal. Block
E corresponds to the heart rate estimation stage of Section 2.3.5, which we used to extract an HR
estimate from the green PPG signal. Block E1 is the HR “Initialization” stage, during which the initial
HR value is computed. Block E2 illustrates the motion-resistant HR calculation mechanism.

Figure 4 is an illustration of a typical IR PPG spectrum. The magenta dashed line in
Figure 4a is the heart rate estimated at time step l, ĤR(l). The black dotted line in Figure 4b

is the average of the 6 previous heart rate estimates at time step l, ĤR(6)
(l). In this

example, ĤR(l) is 1.5 Hz and ĤR(6)
(l) is 1.45 Hz. Additionally, we present in Figure 4 the

“wide search range”, ∆w(l + 1), as a green dashed rectangle, the “medium search range”,
∆m(l + 1), as a red dashed rectangle, and the “narrow search range”, ∆n(l + 1), as a blue
dashed rectangle.

2.3.1. Pre-Processing

First, both green and IR PPG signals are normalized (block A of Figure 3). Normal-
ization is done by dividing the signal’s AC component by its DC component [23]. The AC
component is obtained by passing the raw PPG signal through a Chebyshev Type II band-
pass filter of order 5 and bandpass frequency range from 0.5 to 10 Hz. The DC component
is obtained by passing the raw signal through a Chebyshev Type II low-pass filter of order
5 and passband frequency of 0.5 Hz.
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Figure 4. Illustration of the frequency spectrum of typical IR PPG signal. (a) The narrow search range,
∆n(l + 1) and the medium search range, ∆m(l + 1) are illustrated as a blue and a red dashed rectangle,
respectively. Both ranges are centered around ĤR(l) = 1.5 Hz which is shown as a magenta dashed
line. These ranges are used for noise frequency component search. (b) The wide search range,

∆w(l + 1) is illustrated as a green dashed rectangle. The wide search range is centered at ĤR(6)
(l)

(black dotted line) and is used to search, at time step l + 1, for ĤR(l + 1).

2.3.2. Motion-Artifact Detection

Motion artifact detection is used to determine whether the PPG signals are contam-
inated by motion noise (if they are not, we can bypass unnecessary noise suppression
operations). The PPG signals go through the following three (3) local detectors to determine
if appreciable levels of noise motion are present (block B of Figure 3):

Local Detector 1 (D1)—Number of Peaks: The number of dominant peaks (whose
magnitude exceeds 30% of the maximum peak for this example) in the frequency spectrum
of the green PPG signal, denoted Np, is calculated. If Np exceeds two (2), D1 indicates that
the signal is contaminated with motion noise. If Np is 1 or 2, then we conclude that no
appreciable motion noise is present, since the frequency of the heart rate and sometimes its
second harmonic component are typically observed in the spectrum of a clean PPG signal.

Local Detector 2 (D2)—Power of Green Signal: The power of the green PPG signal
calculated at the beginning of the experiment (when the participant is at rest) is considered
the reference power, denoted Pre f . At each time step l, the power of the green PPG, PG(l), is
calculated and compared to the reference power Pre f . If PG(l) is more than (1 + κ)Pre f , D2
indicates that the green PPG signal is contaminated with motion noise. The amplitude of
the PPG signal might change over time [24]. Therefore, the reference power Pre f is updated
whenever no motion is detected in the system for five (5) consecutive time steps (global
detector D0 return ‘1’). In this case, the updated value of Pre f is set to the power of the
green PPG signal calculated at the current time step, l. In this study, we used κ = 0.2.

Local Detector 3 (D3)—Pearson Correlation between Green and IR PPG Signals: The
correlation between the green and IR PPG signals is also used to assess noise contamination
in the green signal. If the correlation between the green and IR PPG signals, ρgreen, IR, is
below a certain threshold (we used 0.8), then D3 will decide that the green PPG signal is
contaminated with motion noise.

Global Detector—Noise Detector: The decisions of the three local detectors are fed
into a global detector that will decide whether the signal is noise contaminated. The global
detector is shown as:

D0 = D1 ∨ D2 ∨ D3 =

{
1 (noise is present) , if D1 ∨ D2 ∨ D3 = 1
0 (no noise) , if D1 ∨ D2 ∨ D3 = 0

(4)
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where “∨” represents the OR logic operator.

2.3.3. Motion-Artifact Frequency Components Identification

If motion artifacts are detected in the normalized green PPG signal, we use the nor-
malized IR signal to build the motion noise component set Nnoise (block C of Figure 3).
Nnoise can be written as Nnoise = { fni |1 ≤ i ≤ Nn} where fni is the ith discrete noise fre-
quency component and Nn is the number of elements in the set Nnoise. The set Nnoise, which
contains all the noise frequency components that we aim to remove from the normalized
green PPG signal, is obtained using the following five (5) steps in sequence. The first three
steps capture noise with relatively high intensity, usually harmonically related frequency
pairs that contaminate the PPG signals. The last two steps compare the IR and green
signal spectra to discover additional noise components of reduced-intensity presence in the
IR spectrum.

Step 1—Identification of dominant frequency components. First, we capture the
dominant frequency components in the spectrum of the normalized IR PPG signal. Those
are the frequencies (between 0.5 and 4 Hz) whose magnitude exceeds 50% of the highest
peak in the IR PPG spectrum. Figure 5, which is an image that was created for illustration
purposes, depicts how we capture dominant peaks from a typical IR signal. In this scenario,
the highest peak (which actually corresponds to the participant’s HR) is F1. Two other
dominant peaks are shown as red circles (F2 and F3). Typically, the peaks captured in step
1 include the frequency of the participant’s HR, as well as the frequencies of dominant
noise components. We add all of them (F1, F2, and F3 in our example) to Nnoise with the
understanding that one of them may correspond to the participant’s HR and may therefore
need to be removed from Nnoise later.
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Figure 5. Illustration of the frequency spectrum of a typical IR PPG signal. The red circles correspond
to the dominant peaks, denoted F1, F2, and F3 (extracted in step 1 of Section 2.3.3). The highest peak,
F1, corresponds to the participant’s HR.

Step 2—Identification of harmonic frequency components. Noise components created
by repetitive motion (e.g., when the participant is walking or running) typically occur in
harmonically related pairs [25]. It is possible, however, that the PPG signal contains pairs of
harmonically related noise components whose magnitude is smaller than the 50% threshold
used in step 1 to identify dominant frequencies. Step 2 is used to capture pairs of funda-
mental frequencies and their second harmonics present in the spectrum of the normalized
IR PPG signal. Here, we look at all peaks whose magnitudes are above 30% of the highest
peak in the IR PPG spectrum. For each such peak, we search for a harmonic at double its
frequency. If a pair of harmonically related frequencies is thus discovered, its component(s)
that were not flagged in step 1 are added to the noise frequency set Nnoise. Again, Nnoise
may still contain at this stage a component that corresponds to the participant’s true HR.
Figure 6 uses the same spectrum shown in Figure 5 to illustrate how a pair of harmonically
related components (FA, FB = F3) was discovered. Of this pair, FB was known to us already
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from step 1 (it is the same as F3 in Figure 5), and FA, discovered by step 2, is added to Nnoise.
So now, Nnoise = {F1, F2, F3, FA}.

Figure 6. Illustration of the frequency spectrum of a typical IR PPG signal. The red triangles
correspond to the pair of frequencies, FA and FB, that has a harmonic relationship. Frequency FB is
the same as frequency F3 from Figure 5.

Step 3—Removal of the heart rate from noise set. As mentioned in our setting in
Section 2.3, our system creates a new estimate of the heart rate, ĤR(l) at every time step l.
A new time step starts every 2 s when l is incremented by 1. Moreover, in step l + 1 we
calculate ∆w(l + 1) (the “wide search range”) which is where we search for ĤR(l + 1).

Next, frequency components in Nnoise which we captured during steps 1 and 2, and are
close to the heart rate estimated at time step l (ĤR(l)) are removed from Nnoise, as we
suspect they do not represent noise but rather represent the participant’s HR. To be precise,
at time step l + 1, we remove from Nnoise all the noise components in the “medium search
range” ∆m(l + 1).

Figure 7 continues the examples of Figures 5 and 6 to illustrate step 3. In Figure 7a,b,
we show the estimate of the participant’s HR at time step l, denoted ĤR(l). We also
show ∆m(l + 1), the “medium search range”, [ĤR(l)−∆m(l + 1)/2, ĤR(l) + ∆m(l + 1)/2],
from which we remove dominant frequencies deposited earlier into Nnoise. The red squares
in Figure 7a represent the frequency components that we obtained from steps 1 and 2
all of which are currently in Nnoise = {F1, F2, F3, FA}. We now discard the frequency
around 1.2 Hz (labeled F1) since it falls in ∆m(l + 1), the “medium search range” (region
represented by a red dashed rectangle in 7). Figure 7b shows (in red squares) the noise
frequency components that are left in the noise set Nnoise = {F2, F3, FA}. Nnoise no longer
contains the participant’s HR.

The next two steps seek additional noise components, often attributed to repetitive
movements by the participant, through comparison of the IR and green spectra.

Step 4: Step 4 focuses on instances where the noise set Nnoise, after step 3, has only one
noise component, fn1 . In this case, we look at the green spectrum. If we find a component
at half fn1 ( fn1 /2) or twice fn1 (2× fn1) in the green spectrum, we add this component to
Nnoise. The only exception is if the component we seek to add falls into the narrow search
range, ∆n(l + 1), around ĤR(l), [ĤR(l)− ∆n(l + 1)/2, ĤR(l) + ∆n(l + 1)/2]; in this case,
we refrain from adding it to set Nnoise.

Step 5: This step addresses spectra that are dominated by vigorous limb swinging by
the participant, which may cause displacement of the sensor. In this scenario, the green PPG
signal is typically dominated by two high intensity harmonically related noise frequencies
which may dwarf the component at the heart rate frequency. If these frequency components
are not already placed in Nnoise after steps 1–3, they are added to Nnoise at this step. This
step is automatically triggered when all the following conditions are met, namely; (a) the IR
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spectrum contains only one significant frequency component that dominates the spectrum;
(b) the green spectrum contains only one pair of significant harmonically related frequencies;
and (c) the dominant frequency component present in the IR spectrum matches one of the
harmonically related frequencies discovered in the green spectrum.
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Figure 7. Frequency spectrum of a typical IR PPG signal. ĤR(l) is the heart-rate estimate at time step
l. ∆m(l + 1) is the “medium search range” represented by a red dashed rectangle. The frequency
components we obtained from step 1 and 2, namely, F1, FA, F2, and F3 = FB, are represented by red
squares. In (a) frequency F1 falls within ∆m(l + 1). In (b) we discard the frequency F1 since it falls
within ∆m(l + 1) and leave the rest in Nnoise (FA, F2, and F3 = FB).

Figure 8 is a real-life example that illustrates this scenario (signals were collected from
participant 10 in our experiment, around time 136 s). We show the spectrum of participant
10’s IR signal in Figure 8a and green signal in Figure 8b. We show in magenta the heart rate
estimate at time step l, ĤR(l). The green signal captures the high-intensity harmonically
related frequency pairs F1 and F2 of Figure 8b. The IR spectrum (Figure 8a) is dominated
by the frequency FA that is equal to frequency F2 from the green spectrum, but does not
capture a noise component at F1. Here, frequencies F1 and FA = F2 are put into Nnoise.

At the end of this stage, the set Nnoise will contain Nn elements that correspond to the
noise frequencies we wish to remove from the normalized green PPG signal.

2.3.4. Denoising

Adaptive Noise Cancellation (ANC) filters are often employed to eliminate in-band
motion artifacts [26,27]. In-band noise in our case occurs when the spectra of motion
artifacts overlap significantly with that of the PPG signal [28]. An ANC filter for our
environment would use as inputs (1) a noise contaminated signal, and (2) a noise reference
signal. The ANC filter seeks to eliminate the noise components (measured by the reference
signal) from the input noise contaminated signal and provide a noise-free version of the
input signal.

Motivated by the architecture in [29], we employ a Cascading Adaptive Noise Cancel-
lation (C-ANC) architecture to remove all the elements of the set Nnoise = { fni |1 ≤ i ≤ Nn}
(developed in Section 2.3.3) from the green PPG signal, one element at the time. The block
diagram of the proposed C-ANC is shown in Figure 9. We show the frequency spectrum of
the input signal in Figure 9 (spectrum A). This is the green signal collected from participant
3 around time 66 s. The spectrum contains three noise frequency components that we wish
to eliminate from the signal. The signal collected at the output of the C-ANC (spectrum D in
Figure 9) does not contain any of the noise components; only the HR frequency component
remained in the spectrum.
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Figure 8. IR and green spectra from participant 10 around 136 s. We show in magenta the heart rate
estimate at time step l, ĤR(l). (a) Frequency spectrum of participant 10’s IR PPG signal. The red circle
labeled FA = F2 represent the dominant noise frequency. (b) Frequency spectrum of participant 10’s
green PPG signal around time 136 s. The two red triangles labeled F1 and F2 represent high-intensity
harmonically related frequencies. Note that the frequency FA from (a) is the same of the frequency F2

from subplot (b). Both F1 and FA = F2 are put into Nnoise.

A total of Nn C-ANC were used to remove the noise components of Nnoise from the
green PPG signal. At the ith stage (1 ≤ i ≤ Nn), the noise reference signal is a pure sinusoid
of frequency fni . For instance, the first ANC filter block shown in Figure 9 removes the
first noise frequency component fn1 from the normalized green PPG signal (see spectrum
B of Figure 9). The output of the first block is denoted GPPG, 1. GPPG, 1 is fed to the
next block where the second noise frequency component fn2 is removed (see spectrum
C of Figure 9). The process is repeated until all noise components are removed from the
normalized green PPG signal. The final output, GPPG, Nn , is a noise-free version of the green
PPG signal. In the proposed method, the QR-decomposition-based least-squares lattice
(QRD-LSL) adaptive filter algorithm was used to remove noise components from the green
PPG signal [30]. The method incorporates the desirable features of recursive least-square
estimation (fast convergence rate), QR-decomposition (numerical stability), and lattice
structure (computational efficiency) [12]. The implementation of the QRD-LSL filter in our
study used the built-in MATLAB function “AdaptiveLatticeFilter” [31] with 10 filter taps and
forgetting factor of 0.99.

Figure 9. Cascading Adaptive Noise Canceler (C-ANC) block diagram. Spectrum A is of the noise-
contaminated green PPG signal which is fed to the C-ANC. Spectrum B represents the green PPG
signal’s frequency spectrum after removal of the first noise frequency component, fn1 . Spectrum C
is obtained after removing a second noise frequency component, fn2 . At this stage, fn1 and fn2 are
removed from the input signal. Spectrum D is of the clean green PPG signal. It is obtained at the
output of the C-ANC after all noise frequency components were eliminated.
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2.3.5. Heart Rate Estimation

In this stage (see block E of Figure 3), the green PPG signal is used to compute an
HR value. If no noise was detected in the green PPG (D0 = 0), then the normalized green
PPG is used for heart rate calculation. When noise was detected in the green PPG signal,
a HR value is obtained from the denoised green signal (obtained at the output of block D in
Figure 3, also shown in Figure 9). The “Heart Rate Estimation” stage comprises two steps,
namely, “Initialization” and “Heart Rate Calculation”.

Initialization (block E1 of Figure 3). This is a process of capturing a baseline HR at
rest. In our experiment, it was a one-minute phase during which participants were asked
to remain steady in order to capture noise-free green and IR PPG signals. To calculate
the initial HR estimate, ĤR(1) at time step l = 1, we used the frequency spectrum of the
normalized green PPG signal. ĤR(1) corresponds to the highest peak within the initial
search range 0.5 to 3 Hz (which corresponds to 30 to 180 BPM).

Heart Rate Calculation (block E2 of Figure 3). At time step l + 1, the heart rate
calculation method we propose employs the following variables in order to generate an
HR estimate, ĤR(l + 1):

1. The heart rate estimated from the previous time step l, ĤR(l).
2. A heart rate candidate HRcand(l + 1) which is obtained from the spectrum of the green

PPG signal.
3. A heart rate prediction, HRpred(l + 1) which is obtained from the long-term (LT) trend

of the past six (6) HR estimates. The LT trend is obtained using STL, the Seasonal-
Trend decomposition using LOESS (locally estimated scatterplot smoothing) [32].
In this study, we used the MATLAB implementation, trenddecomp.

First, we seek to find an HR candidate, HRcand(l + 1), within the wide search range
∆w(l + 1), which corresponds to the highest peak in the green spectrum (HRcand(l + 1) ∈
[ĤR(6)

(l)± ∆w(l + 1)/2]). If HRcand(l + 1) is available, we calculate δe(l + 1), which is
the absolute difference between HRcand(l + 1) and ĤR(l) (in Hz) at time step l + 1. We
distinguish between four (4) cases.

Case 1. If a peak is found in [ĤR(6)
(l)± ∆w(l + 1)/2] and D0 = 0 (“no noise”) OR If a peak is

found in [ĤR(6)
(l)± ∆w(l + 1)/2] and D0 = 1 (“noise is present”) and δe(l + 1) < 0.1 Hz.

In this case, HRcand(l + 1), corresponds to the highest peak in the green spectrum, within the

wide search range ∆w(l + 1) (HRcand(l + 1) ∈ [ĤR(6)
(l)± ∆w(l + 1)/2]). The estimated heart

rate, ĤR(l + 1) is calculated as

ĤR(l + 1) = HRcand(l + 1). (5)

Case 2. If a peak is found in [ĤR(6)
(l)± ∆w(l + 1)/2] and D0 = 1 and δe(l + 1) > 0.1 Hz.

In this case, we follow the procedure recommended in [7] to consider at most three dominant
peaks in the green spectrum, whose magnitude exceed 50% of the maximum peak. Here, HRcand(l +
1) is obtained by averaging all the peaks that we considered. The estimated heart rate, ĤR(l + 1) is
calculated as

ĤR(l + 1) = β× HRcand(l + 1) + (1− β)× HRpred(l + 1), (6)

where β is a constant we set to 0.9.

Case 3. If no peak is found in [ĤR(6)
(l)± ∆w(l + 1)/2].

In this case, we extend the wide search range, ∆w(l + 1). The extended wide search range is
∆+

w (l + 1) = (1+ λ)×∆w(l + 1) (λ = 0.25 in this study). We seek to find at most three dominant

peaks within the extended wide search range, ∆+
w (l + 1) (the range [ĤR(6)

(l)± ∆+
w (l + 1)/2]).

If we find at least one peak, we consider at most three dominant peaks, whose magnitude exceed 50%
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of the maximum peak. HRcand(l + 1) is obtained by averaging all the peaks that we considered.
The estimated heart rate, ĤR(l + 1) is calculated as

ĤR(l + 1) = β× HRcand(l + 1) + (1− β)× HRpred(l + 1), (7)

where β is a constant we set to 0.9.

Case 4. If no peak is found in [ĤR(6)
(l)± ∆w(l + 1)/2] or in [ĤR(6)

(l)± ∆+
w (l + 1)/2].

In this case, ĤR(l + 1) is calculated as

ĤR(l + 1) = HRpred(l + 1). (8)

The heart rate calculation process we used requires the availability of the previous
six HR estimates in order to generate an HR prediction, HRpred(l + 1) at time step l +
1. Therefore, from time steps l = 2 to l = 6, the HR estimates ĤR(2) through ĤR(6)
corresponds to the highest peak in the green spectrum, within the wide search range ∆w(l +

1) (ĤR(l + 1) ∈ [ĤR(6)
(l) ± ∆w(l + 1)/2]). If no such peak is detected, we increment

∆w(l + 1) by 0.02 Hz (or 1.2 BPM) and we search again for a peak. This process repeats

until a peak is found. ĤR(6)
(l) is the average of all the previously calculated HR estimates

(see Equation (3)).

2.4. Alternative HR Calculation Methods

In most studies involving PPG signals collected from humans in motion, suitable refer-
ence signals, representing motion artifacts, were obtained through additional hardware [28].
For example, when the PPG sensor is mounted on the wrist of a running participant, ac-
celerometer sensors mounted on the participant’s wrist are often used as noise reference
signals [33–35].

TROIKA is an HR calculation framework proposed by Zhang et al. [7]. TROIKA is
based on Singular Spectrum Analysis (SSA) [36] followed by Sparse Signal Reconstruction
(SSR) [37] to eliminate the noise dominant components present in PPG signals. The inputs
to TROIKA are a green PPG signal and X, Y, and Z accelerometer data. The output is an HR
estimate. In our implementation of TROIKA, the noise components were obtained from
a tri-axial accelerometer. In [7], TROIKA was tested on data collected from a wrist-worn
sensor (that encloses a green PPG channel and X, Y, and Z accelerometer data) from twelve
(12) participants, during fast running at peak speed of 15 km/h. The heart rate average
absolute error of TROIKA in this test was 2.34 beat per minutes (BPM).

A related method is based on Zhang’s Joint Sparse Spectrum Reconstruction (JOSS).
It was shown in [8] to exhibit a heart rate average absolute error as small as 1.28 BPM
when tested on the same twelve (12) participants used in Zhang’s TROIKA study [7].
In JOSS, the input signals are a green PPG signal and X, Y, and Z accelerometer data.
The accelerometer data are considered the noise signals. The output is an HR estimate.
Compared to TROIKA where PPG and accelerometer signals were sampled at 125 Hz,
JOSS’s low-sampling rate, namely 25 Hz, is an attractive feature that gives JOSS the potential
to be implemented in Very Large-Scale Integration (VLSI) or Field Programmable Gate
Array (FPGA) in wearable devices [8].

The HR calculation mechanism of the DWL method was inspired by that of TROIKA
and JOSS. We compare the quality of HR calculated by the DWL method which does not
require accelerometers, to our implementation of the accelerometer-dependent TROIKA
and JOSS. The TROIKA and JOSS experimental results were obtained from the same
participants that we employed in the analysis of the DWL method.

3. Results

In this section, the results of the HR values calculated using the DWL framework of
Section 2.3 are computed and analyzed. First, we define (in Section 3.1) the performance
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metrics used to compare the performance of the DWL method to that of our implementation
of TROIKA and JOSS. In Section 3.2, we assess the performance of the DWL method (using
the performance metrics of Section 3.1) on data collected from the participants’ wrists. This
comparison is made with respect to (1) the HR ground truth computed from an ECG signal,
and (2) the HR levels obtained using TROIKA and JOSS. Lastly, in Section 3.3, we validate
the DWL framework by comparing its performance on experimental data collected from the
palms (instead of the wrists) of the same participants during a second run (validation run).

3.1. Performance Metrics

To assess, evaluate, and compare the HR estimation performance of DWL method to
TROIKA and JOSS, we used four metrics, namely; Mean Absolute Error (MAE) (Equation (9));
Mean Absolute Error Percentage (MAEP) (Equation (10)); a specific performance index
(PI) [38] (Equation (11)) which is the frequency, in percent, of obtaining an HR estimate
that is within ±5 BPM of the HR ground truth; and computation time (CT). We defined
CT to be the total time duration (in seconds) that an algorithm takes to generate heart rate
levels from the entire 360-second-long off-line data that has already been collected during
the experimental run. We compare the HR values calculated by the three tested methods to
ground truth values obtained from an ECG signal that is simultaneously recorded, hence
synced, with the green and IR PPG waveforms and the X, Y, and Z accelerometer data. All
R peaks in the ECG signal were manually labeled. The ground truth HR was obtained
using Equation (1). The relevant definitions are:

MAE (in BPM) =
1
L

L

∑
l=1

∆(l) (ideally 0 BPM) (9)

MAEP (in %) =
1
L

L

∑
l=1

∆(l)
BPMGT(l)

× 100 (ideally 0%) (10)

PI (in %) =
L

∑
l=1

1(∆(l)<ε1)

L
× 100 (ideally 100%) (11)

In Equations (9)–(11), ∆(l) is defined as

∆(l) (in BPM) =
∣∣BPMHR method(l)− BPMGT(l)

∣∣ , (12)

where
∣∣.∣∣ is the absolute value. BPMHR method(l) is the HR in beat per minutes (BPM)

calculated using each one of the tested methods (DWL, TROIKA, and JOSS) at time step l.
BPMGT(l) is the HR ground truth value in BPM obtained as BPMGT(l) = HRGT(l)× 60,
where HRGT(l) is calculated using Equation (1). In Equation (11), 1 is the indicator function
that returns 1 if ∆(l) < ε1 and 0 otherwise. ε1 was set to 5 BPM. HR estimated using DWL

at time step l (in BPM) is calculated as BPMDWL(l) = ĤR(3)
(l)× 60, where ĤR(3)

(l) is the
3-point-averaged HR estimate (see Equation (3)).

3.2. DWL Performance on Wrist Data

Data were collected from fourteen (14) participants while standing, walking, and run-
ning on the treadmill, following the experimental protocol described in Section 2.1. In this
section, we analyze data collected from participants 1 to 11. Data from participants 12, 13,
and 14 are not included in our analysis since for these participants, the system suffered
from physical malfunction (intermittent readings due to loss of sensor contact). How-
ever, we still provide the data for these participants in the repository in [16]. Every 2 s,
the preceding 8-second-long green and IR PPG data were used to generate a short-term

3-point-average HR estimate, ĤR(3)
(l), using the DWL method. HR levels obtained using

DWL are compared to those of TROIKA and JOSS.
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For the TROIKA implementation, we used a sampling rate of 100 Hz. We recreated the
TROIKA code using MATLAB. Our code was tested on the same dataset of the TROIKA
paper and compared to the results presented in [7]. The results using our code are very
close to the results presented in the TROIKA paper.

For the JOSS implementation, we used a sampling rate of 25 Hz, as suggested in the
JOSS paper [8]. We recreated the JOSS code using MATLAB. Our code was tested on the
dataset used in JOSS paper and compared to the results presented in [8]. The results using
our code are very close to the results presented in the JOSS paper.

As examples, we show in Figure 10 the HR calculated for the whole experimental run
for two participants, participant 3 (Figure 10a) and participant 10 (Figure 10b). We use red
circles, green squares, and blue triangles to represent the HR values calculated using DWL,
TROIKA, and JOSS, respectively. The ground truth HR is the solid black line. In Figure 10a
all three methods generate accurate HR estimates (the magnitude of the noise level present
in the signals of participant 3 was small). For participant 10 (see Figure 10b), however,
TROIKA lost track of the correct heart rate from 120 to 175 s and from 250 to 325 s. This
phenomenon (losing track of the correct HR) is referred to as Lock Loss. Similary, JOSS
suffered from a Lock Loss from 225 s until the end of the experimental run. During these
intervals, the DWL method was still able to estimate the participant’s HRs accurately (see
red circles of Figure 10b).

We calculate MAE, MAEP, PI, and CT for all eleven (11) experimental participants
and present them in Tables 2–5, respectively. In Table 2, we show the MAE for DWL,
TROIKA, and JOSS. We calculate and report the MAE mean and standard deviation for
each method in the second to last row of Table 2. In the last row of Table 2, we calculate
the MAE mean and standard deviation of all participants that do not suffer from Lock
Loss. Lock Loss happens if MAE exceeds 5 BPM. Participants who suffer Lock Loss are
underlined. Table 3 summarizes the MAEP for DWL, TROIKA, and JOSS. We calculate and
report the MAEP mean and standard deviation for each method in the last row of Table 3.
Moreover, we calculate PI for DWL, TROIKA, and JOSS, and report it in Table 4. In the last
row of Table 4, we calculate the PI mean and standard deviation of all participants.
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Figure 10. HR calculated for the whole experimental run using DWL method (red circles), TROIKA
(green squares), and JOSS (blue triangles). (a) HR values for participant 3. DWL, TROIKA, and JOSS
were able to calculate accurate heart rate levels. (b) HR values for participant 10. TROIKA lost track
of the correct heart rate from 120 to 175 s and from 250 to 325 s. Similary, JOSS lost track of the correct
heart rate from 225 s until the end of the experimental run. DWL methods was able to estimate the
participant’s HR accurately during the whole experimental run.
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Table 2. MAE in BPM for all eleven (11) experimental participants, using DWL, TROIKA, and JOSS
(ideal MAE is 0). The second to last row shows the MAE average of all eleven (11) participants
shown as “mean|standard deviation”. The last row shows the MAE average of participants that do
not suffer from Lock Loss (MAE value is less than 5 BPM). We underline the MAE values that exceed
5 BPM.

HR Calculation Methods

Participant Number TROIKA 1 JOSS 1 DWL 2

1 1.09 1.39 0.74
2 4.3 87.61 1.48
3 1.21 1.41 0.63
4 1.96 1.72 2.36
5 7.85 5.49 1.86
6 2.57 2.73 1.18
7 1.83 2.03 1.64
8 1.08 0.84 0.61
9 1.73 1.86 0.76
10 9.34 21.8 0.85
11 2.72 4.87 1.31

Average 3.24 | 2.82 BPM 11.98 | 25.79 BPM 1.22 | 0.57 BPM

Average without Lock
Loss ∗ 2.05 | 1.03 BPM 2.11 | 1.24 BPM 1.22 | 0.57 BPM

1 JOSS and TROIKA use tri-axial accelerometer data as noise reference. 2 DWL uses an IR PPG signal as noise
reference. ∗ All MAE values that exceed 5 BPM are underlined and not included into the calculation of the average
performance.

As shown in Table 2 the average MAE for all eleven participants using the DWL
method is MAE of 1.22|0.57 BPM (“mean|standard deviation”) (see Table 2), which is
smaller than average MAE of TROIKA (3.24|2.82 BPM) and JOSS (11.98|25.79 BPM), re-
spectively. When we exclude participants who suffer from Lock Loss (shown in the last
row of Table 2), DWL (with the same average MAE = 1.22|0.57 BPM) still yields a smaller
average MAE than that of TROIKA (with average MAE = 2.05|1.03 BPM) and JOSS (with
average MAE = 2.11|1.24 BPM). Note that the MAE calculated using DWL method did not
exceed 5 BPM for any of the participants. However, this was not the case for TROIKA and
JOSS method. Participant 10 presents an example where the MAE of TROIKA (9.34 BPM)
and JOSS (21.8 BPM) exceeds 5 BPM, whereas the MAE of the DWL method is 0.85 BPM.

Table 3. MAEP in % for all eleven (11) experimental participants, using DWL, TROIKA, and JOSS
(ideal MAEP is 0%). The last row shows the MAEP average of all eleven (11) participants shown as
“mean|standard deviation”.

HR Calculation Methods

Participant Number TROIKA JOSS DWL

1 0.92 1.19 0.66
2 3.88 59.22 1.47
3 1.03 1.23 0.5
4 1.43 1.31 1.61
5 4.96 3.41 1.19
6 2.06 2.24 0.85
7 1.38 1.49 1.16
8 0.77 0.62 0.42
9 1.94 2.08 0.81
10 7.91 19.53 0.83
11 2.07 3.19 1.00

Average 2.58 | 2.19% 8.68 | 17.6% 0.95 | 0.38%
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Table 4. PI in % for all eleven (11) experimental participants, using DWL, TROIKA, and JOSS
(ideal PI is 100%). The last row shows the PI average of all eleven (11) participants shown as
“mean|standard deviation”.

HR Calculation Methods

Participant Number TROIKA JOSS DWL Method

1 96.02 93.75 98.36
2 72.57 6.86 94.29
3 96.02 93.75 100
4 88.07 90.91 86.93
5 61.58 80.79 88.7
6 80.68 84.66 100
7 90.96 88.7 91.53
8 97.18 98.31 100
9 90.91 89.2 100
10 63.84 57.63 99.44
11 84.75 80.23 95.48

Average 83.87 | 12.75% 78.62 | 26.16% 95.88 | 4.9%

In addition to MAE, we calculate average MAEP of all three methods for all eleven
participants. Average MAEP of DWL method of 0.95|0.38% is smaller than average MAEP
of TROIKA (2.58|2.19%) and JOSS (8.68|17.6%) (see Table 3).

Table 4 summarizes the PI values for all eleven (11) participants. The PI of DWL
method is larger than the PI of TROIKA and JOSS. For instance, on average, the PI of DWL
method is 95.88|4.9% that is greater than that of TROIKA with 83.87|12.75% and JOSS with
78.62|26.16%.

The CT is an indication of the algorithm’s computational complexity. In order to be
implement in wearable devices, the algorithm should be able to run in real-time and be
energy efficient. A desirable algorithm should have a small CT. Table 5 shows the CT of
DWL, TROIKA, and JOSS for participants 1 to 11. The average CT of DWL is smaller than
that of TROIKA and JOSS. For instance, the average CT of DWL is 3.0|0.3 s is smaller than
the average CT of TROIKA with 247.7|43.8 s and JOSS with 8.5|0.24 s.

Table 5. CT in seconds for all eleven (11) experimental participants, using DWL, TROIKA, and JOSS.
The last row shows the CT average of all eleven (11) participants shown as “mean|standard deviation”.

HR Calculation Methods

Participant Number TROIKA JOSS DWL Method

1 243.6 8.5 2.8
2 238.0 8.3 3.0
3 294.6 8.6 3.1
4 259.7 8.4 2.7
5 246.5 8.5 3.1
6 239.7 9.2 3.7
7 237.0 8.5 2.7
8 326.4 8.5 2.8
9 278.3 8.3 2.8
10 194.3 8.5 3.3
11 166.9 8.5 3.1

Average 247.7 | 43.8 s 8.5 | 0.24 s 3.0 | 0.3 s

The results were generated by MATLAB R2022b on a personal computer, with an Intel®CoreTM i9-10900K CPU
running at 3.70 GHz, 32GB RAM, and Windows 11 operating system.

Additionally, we show the Bland–Altman plot (Figure 11a) of the HR values computed
using DWL method for participants one (1) through eleven (11). The Bland–Altman plot
describes the agreement between two quantitative measurements (A and B) by constructing
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the Limits of Agreements (LOA). These statistical limits are calculated by using the mean
and the standard deviation of the differences between the two measurements. The re-
sulting graph is a scatter plot, in which the y-axis shows the difference between the two
paired measurements (A − B) and the x-axis represents the average of these measures
((A + B)/2) [39]. The LOA we use is [µ− 1.96× σ , µ + 1.96× σ] (1.96× σ corresponds to
95% confidence level) where µ is the average difference between each HR estimate and
the associated ground-truth HR against their average, and σ is the standard deviation [7].
The LOA in Figure 11a is [−4.9, 4.8] BPM. Moreover, we construct the scatter plot of the
HR estimated using DWL method versus the associated ground truth HR for participants
one (1) through eleven (11). The scatter plot is shown in Figure 11b. We construct a linear
regression for the data points of Figure 11b. The fitted line is y = x − 0.2 (R2 = 0.99), where
x is the ground truth HR and y is the HR estimated using DWL method. The Pearson
correlation between the HR estimated using DWL method and ground truth HR is also
calculated and found to be 0.99. The high R2 value and Pearson correlation indicate that
DWL method is able to compute accurate HR levels.
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Figure 11. (a) Bland–Altman plot of HR estimated using DWL method and the ground truth HR
for participants one (1) to eleven (11). The LOA = [−4.9, 4.8] BPM. (b) Scatter plot of HR estimated
using DWL method (on the y-axis) vs. the ground truth HR (x-axis) for participants one (1) to eleven
(11). The linear regression line that fits the data is shown in black. The line is y = x − 0.2 (R2 = 0.99).
The Pearson correlation is found to be 0.99.

3.3. Validation of the DWL Method on Palm Data

In order to validate the performance of the DWL framework, we ran a second ex-
periment (validation run). During the second experiment, we asked the same volunteers
who participated in our previous experiment to run on the treadmill again, following the
experimental protocol described in Section 2.1. We reused the same ECG, accelerometer,
and PPG sensors. The only difference was that we mount the dual wavelength sensor
onto the participant’s palm (instead of wrist). Data for all participants are provided in the
repository in [16].

Both wrist and palm experiments took place on the same day. There was a break of ap-
proximately 15 min between the first and the second run during which the dual-wavelength
PPG sensor was relocated from the wrist to the palm of the participant. Participants 5
and 13 deviated from the data collection protocol by interfering with the sensor during
collection. Their measurements were excluded from the analysis we provide (but are
available in the repository in [16]).

MAE, MAEP, and PI were calculated from the twelve (12) participants of the “palm
run” for DWL, TROIKA, and JOSS. We show in Table 6, the summary of the performance
metrics (MAE, MAEP, and PI) obtained for the first run (the “wrist run”), and the second
run (the “palm run”). The results are presented as “mean|standard deviation”.



Sensors 2022, 22, 9955 19 of 22

Table 6 shows that the DWL method performs as well when the measurements were
taken from the wrist as when they were taken from the palm.

Table 6. Summary of performance metrics for run 1 (wrist run) and run 2 (validation palm run).
For run 1, we showed the average performance of eleven (11) participants. For run 2, we showed the
average performance of twelve (12) participants. Results are represented as “mean|standard deviation”.

Run 1 (Wrist Run) Run 2 (Palm Run)

TROIKA JOSS DWL TROIKA JOSS DWL

Average MAE (BPM) of all participants 3.24|2.82 11.98|25.79 1.22|0.57 1.79|0.92 12.88|27.41 1.3|0.77
Average MAE (BPM) of participants
without Lock Loss 2.05|1.03 2.11|1.24 1.22|0.57 1.79|0.92 1.57|0.83 1.3|0.77

Average MAEP (%) of all participants 2.58|2.19 8.68|17.6 0.95|0.38 1.43|0.69 8.51|17.62 1.01|0.6
Average PI (%) of all participants 83.87|12.75 78.62|26.16 95.88|4.9 90.23|8.94 80.93|29.18 95.33|6.46

4. Discussion

We presented a framework for heart rate (HR) calculation under motion using a dual-
wavelength (green and IR) PPG sensor. We used PPG data collected from 14 individuals
engaged in high-intensity full-body exercise. Analysis of green and IR PPG signals indicates
that the IR PPG signal is a good noise reference signal. We employed this observation to
develop a motion-resistant HR calculation method derived from [9] that measures noise
components from the IR PPG signal. Afterwards, a green PPG signal is denoised and
used for HR calculation. The proposed method, Dual Wavelength (DWL), was tested on
experimental data collected from participants’ wrists while the participants were standing,
walking, and running on a treadmill. The performance of the method, using several
measures of accuracy and computational effort, was then compared to popular methods in
the literature that use data from a tri-axial accelerometer for denoising, namely TROIKA
and JOSS. Using the experimental wrist-data we collected, we showed that the DWL
method exhibits good performance in the face of motion artifacts. For instance, DWL
yielded a Mean Absolute Error (MAE) of 1.22|0.57 BPM, Mean Absolute Error Percentage
(MAEP) of 0.95|0.38%, and performance index (PI) (which is the frequency in percent of
the event that we obtain an HR estimate that is within ±5 BPM of the HR ground truth) of
95.88|4.9%. Moreover, DWL yielded a short computation period of 3.0|0.3 s to process a
360-second-long run. We validated the performance of the DWL method by testing it on
data collected from the participants’ palms, obtaining similar behavior. The DWL method
is desirable since (1) it performed well under high-intensity full-body repetitive “macro-
motion”, exhibiting high accuracy in the presence of motion artifacts (as compared to the
leading accelerometer-dependent HR calculation techniques TROIKA and JOSS); (2) it used
only PPG signals; auxiliary signals such as accelerometer signals were not needed; and (3)
it was computationally efficient, hence implementable in wearable devices.
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DWL method from all fourteen participants during the wrist and palm runs. These metrics were also
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Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Wide, Medium, and Narrow Search Ranges

In Section 2.3, we introduced three search zones, namely; the “narrow search range”,
∆n(l + 1); the “medium search rang”, ∆m(l + 1); and the “wide search range”, ∆w(l + 1).

∆m(l + 1) and ∆n(l + 1) are around ĤR(l), and ∆w(l + 1) is around ĤR(6)
(l). ĤR(6)

(l) is
the average of the 6 previous heart rate (HR) estimates which is obtained using Equation (3).

Wide search ranges, ∆w(l + 1): ∆w(l + 1) is adopted from [29] and employed in the
HR estimation process (Section 2.3.5) as the range in which we search for the participant’s
HR. At time step l + 1, the search for ĤR(l + 1) is confined to

[ĤR(6)
(l)− ∆w(l + 1)

2
, ĤR(6)

(l) +
∆w(l + 1)

2
] Hz , (A1)

∆w(l) is defined as

∆w(l) =

c1 + 2×max
(

ĤR(j)− ĤR(j− 1)
∣∣∣ l − k ≤ j ≤ l − 1

)
, if l > k

c0 , if l ≤ k ,
(A2)

where max(.) is the maximum value. ∆w(l) is updated based on the maximum value of
the differences between two consecutive HR values calculated over k previous time steps.
For the first k iterations, ∆m(l) is equal to c0. In this work, c0 was set to 0.33 Hz (or 20 BPM),
c1 was set to 0.37 Hz (or 22 BPM), and k = 15 (which is equivalent to 30 s).

Medium and narrow search range, ∆m(l + 1) and ∆n(l + 1): ∆m(l + 1) and ∆n(l + 1) are
employed in the motion-artifact frequency components identification process (Section 2.3.3).
At time step l + 1, the medium search range is the range confined to

[ĤR(l)− ∆m(l + 1)
2

, ĤR(l) +
∆m(l + 1)

2
] Hz , (A3)

where ĤR(l) is the HR estimated at the time step l. ∆m(l) is defined as

∆m(l) =

c1 + 2× SD
(

ĤR(j)− ĤR(j− 1)
∣∣∣ l − k ≤ j ≤ l − 1

)
, if l > k

c0 , if l ≤ k
, (A4)

where SD(.) is the standard deviation. ∆m(l) is updated based on the standard deviation
of the differences between two consecutive HR values calculated over k previous time
steps. For the first k iterations, ∆w(l) is equal to constant c0. In this work, the parameters
c0, c1, and k are same defined for the wide search range, namely; c0 = 0.33 Hz (or 20 BPM),
c1 = 0.37 Hz (or 22 BPM), and k = 15 (which is equivalent to 30 s).

The narrow search range is defined as ∆n(l + 1) =
∆m(l + 1)

2
.

https://github.com/ludvikalkhoury/DWL-Method.git
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