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Abstract: The measurement of a time-varying magnetic field is different from a constant magnetic
field, due to its field intensity variation with time. Usually, the time-varying magnetic field measure-
ment converts the solution of the magnetic induction intensity into the calculation of the induced
electromotive force (EMF); then, the magnetic induction intensity is obtained by the time integration
of the EMF, but the process is vulnerable to external interference. In this paper, a non-steady state
nuclear magnetic resonance (NSS-NMR) scheme for the measurement of a time-varying magnetic
field is proposed. In a time-varying magnetic field environment, an RF excitation signal with a
certain frequency bandwidth is applied to excite the nuclear spin system. The NSS-NMR signal,
which varies with time in the frequency range corresponding to the frequency bandwidth of the RF
excitation, could finally be obtained after a series of processing of the probe output signal. During the
NSS-NMR experiment, an orthogonal dual-coil probe is adopted to synchronously generate the RF
excitation and induce the probe output signal. Moreover, a directional coupler that utilized in the
experiment outputs a reference signal from the coupling port for the subsequent signal processing.
The experimental results show that the weak NSS-NMR signal is indeed observed. The longitudinal
time-varying magnetic field ranges from 0.576 T to 0.582 T, which is inverted by the Larmor precession
relationship, have been successfully detected based on the so-called NSS-NMR effect.

Keywords: time-varying magnetic field measurement; non-steady state nuclear magnetic resonance
(NSS-NMR); orthogonal dual-coil probe; directional coupler; Larmor precession relationship

1. Introduction

Magnetic field measurement provides reliable field-strength information for scientific
research in a magnetic field environment. The common magnetic resonance methods,
including the electron paramagnetic resonance (EPR) method, optical pump magnetic
resonance (OPMR) method and nuclear magnetic resonance (NMR) method [1–3], could be
utilized to measure a constant magnetic field [4,5]. The EPR method applies the microwave
radiation resonant absorption effect of the paramagnetic system but it is susceptible to
external interference, so the measurement accuracy mainly depends on the experimental
environment [6,7]. The OPMR method is characterized by poor stability and is sensitive to
ambient temperature fluctuation and mechanical vibration. In addition, the operation of
the OPMR experimental system is rather complicated, resulting in a lower measurement
accuracy [8]. The NMR method utilizes the inductive absorption effect for the incident
electromagnetic wave in a nuclear spin system, for which the Larmor precession frequency
is proportional to the magnetic induction intensity of the longitudinal magnetic field.
Theoretically, since the accuracy of the gyromagnetic ratios of the common nucleus (usually
1H) and frequency measurement is extremely high, the accuracy of the magnetic field
measurement by the NMR method will also be very high; for example, the relative accuracy
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is better than 10 ppm [9]. Therefore, the NMR measurement result is often used as the
magnetic field measurement benchmark to calibrate other types of magnetometers [10,11].

Conventionally, the NMR method is applied to measure the magnetic induction
intensity of a permanent magnet [12]. The radio frequency (RF) pulse sequence is utilized
to excite the nuclear spin system in a conventional NMR experiment, the pulse width is
inversely proportional to the measurement range of the time-varying magnetic field. It
suggests that the wider the magnetic field measurement range is, the shorter the pulse
width of the exciting pulse sequence will be. However, the shorter pulse width means the
RF pulse power should be greater than that of the wider RF pulse for the effective excitation
of the nuclear spin system. Wenjun Chen et al. had suggested that a continuous band-pass
RF signal could be used to excite the nuclear spin system in an NMR experiment and
simulated the so-called non-steady state nuclear magnetic resonance (NSS-NMR) effect in a
pulsed high magnetic field [13–15], but they have not verified it in practice. In this paper,
the NSS-NMR based time-varying magnetic field measurement scheme is proposed and
verified in practice. After the data processing of the output signal of the orthogonal dual-
coil probe, the NSS-NMR signal is successfully observed, and the longitudinal time-varying
magnetic field is finally inverted by the Larmor precession relationship.

In an NSS-NMR experiment, the RF excitation signal is time continuous with a certain
frequency bandwidth, so a pair of wideband dual-coil probes is designed and fabricated
to excite the nuclear spin system and simultaneously induce the NSS-NMR signal. In
this paper, the equivalent circuit of the probe and its extraction parameters, and two
kinds of dual-port remote impedance matching methods are also described in detail. The
experimental results show that the NSS-NMR effect indeed exists and could be used to
measure the longitudinal time-varying magnetic field.

2. The NSS-NMR Effect and Its Numerical Simulation Result
2.1. The NSS-NMR Effect

A conventional NMR experiment is performed in a constant magnetic field while the
nuclear spin system is simultaneously excited by an orthogonal-polarization RF magnetic
field. The exciting condition of the NMR effect is that the angular frequency of the RF
magnetic excitation field

⇀
ω is equal to the Larmor precession frequency

⇀
ω0 [16], as depicted

by the following Equation (1):
⇀
ω =

⇀
ω0 = −γ

⇀
B0 (1)

where
⇀
B0 and γ are the longitudinal constant magnetic induction intensity and gyromag-

netic ratio of the nucleus spin system, respectively. For example, the gyromagnetic ratio of
1H nucleus is 2.6752× 108 rad · s−1 · T−1.

The Bloch equations systematically describe the NMR effect in the constant magnetic
field from the perspective of classical mechanics [17]. Accordingly, if the magnetic induction
intensity of the longitudinal magnetic field varies from B01 to B02 and the angular frequency
ω of the exciting RF signal synchronously covers ω1 (=γB01) to ω2 (=γB02),the NMR effect
may occur throughout the duration of the RF excitation signal. Since the nuclei are in the
excitation and relaxation state alternately, the Bloch equations should be appropriately
modified to describe the variation of the macroscopic magnetization and the proposed
NSS-NMR effect. The NSS-NMR effect means the unstable and non-steady precession and
nutation in the nuclear spin system. Therefore, the meaning of the NSS-NMR effect includes
two aspects; since the macroscopic magnetization varies along with the longitudinal time-
varying magnetic field and the orthogonal-polarization RF magnetic field, there is no stable
equilibrium state or termination state for the precession and nutation.

2.2. Numerical Simulation Result of the NSS-NMR Effect

In order to acquire the variety of macroscopic magnetization in the NSS-NMR, the
numerical integration method is performed to solve the modified Bloch equations under
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the longitudinal time-varying magnetic field and RF field co-excitation. Assuming that the
amplitude of the longitudinal time-varying magnetic field B(t) is expressed as:

B(t) = kB0(e−m1t − e−m2t) (2)

where B0 is the peak value of the time-varying magnetic induction intensity, the parameter
k is an adjustment coefficient, m1 and m2 are the tuning parameters corresponding to the

peak value appearing time. In the simulation process, the polarization direction of
⇀
B(t) is

along the +z axis, the duration time is 0.01 s and the peak value is 0.6 T (at the peak value,
the corresponding Larmor frequency of the 1H nucleus is 25.55 MHz). The experimental
sample is distilled water and its volume is 1.57× 10−9m3. The polarization direction of a

modulated broadband RF excitation signal
⇀
B(t) is along the +x axis. The magnetic flux

density passing through the intersecting surface of the receiving coil varies with time
and, thus, generates an induced electromotive force (EMF) in the solenoid coil. Since the

longitudinal magnetic field, the RF excitation and the macroscopic magnetization
⇀
M are all

time-varying parameters, and there is no magnetic field along the y axis, the classic Bloch
equations could be modified as Equation (3):

dMx
dt = γMz(t)Bz(t)− Mx(t)

T2
dMy

dt = γ(Mz(t)Bx(t)−Mx(t)Bz(t))−
My(t)

T2
dMz

dt = −γMy(t)Bx(t)− Mz(t)−Mz0(t)
T1

(3)

where T1 and T2 are the longitudinal relaxation time and transverse relaxation time, respec-
tively, and the parameter Mz0(t) represents the magnetization component of the thermal
equilibrium state before the RF excitation signal is applied. Additionally, the total magnetic

induction intensity
⇀
B total(t) =

⇀
B(t) +

⇀
B1(t) = Bx(t)

⇀
a x + By(t)

⇀
a y + Bz(t)

⇀
a z is satisfied in

the above equations.
In order to acquire the instantaneous components Mx(t), My(t) and Mz(t) of the

macroscopic magnetization, the four-order Runge–Kutta (RK-4) method is adopted to
solve the first-order linear, nonhomogeneous and variable coefficient differential equations.
Before solving the equations, three conditions should be satisfied in advance. First of all,
since the magnetic induction intensity of the longitudinal magnetic field is greater than that
of the RF excitation field, the influence of the RF excitation on the longitudinal magnetic
field could be ignored. Secondly, the spin relaxation time T1 is independent from the
magnetic induction intensity of the time-varying magnetic field Bz(t) due to the narrow
variation range of the time-varying magnetic field (~0.6T). Finally, the nuclear spin system
should not be magnetized before the time-varying magnetic field is applied, which means

that the macroscopic magnetization Mz0(t) and
⇀
M(0, 0, 0) are zeroes at the initial time

t = 0.
In the process of the numerical simulation, the pulsed time-varying magnetic field

and sinusoidal time-varying magnetic field are employed for performing the NSS-NMR
experiment to verify the NSS-NMR effect. The former is an aperiodic magnetic field with
dramatic changes and a short duration (about 0.01 s). The latter is a periodic time-varying
magnetic field, whose amplitude and period (T = 0.02 s) are consistent with that of the
mixed magnets in the actual experiments. In the numerical simulation, the excitation
signal is a band-limited white noise signal, which is a Gaussian white noise signal that
processed by an equal ripple band-pass filter. Suppose the Larmor precession frequency
corresponding to the peak value B0 of the pulsed time-varying magnetic field is f0(=γB0),
the parameters of the ripple band-pass filter utilized are as follows: the frequency range of
the pass-band covers 0.2 f0 to 1.0 f0 with the pass-band fluctuation as 0.01 dB, the transition
band ranges from 0.1 f0 to 0.2 f0 and 1.0 f0 to 1.1 f0 respectively, and the stop-band
attenuation is 80 dB. Figure 1 shows the numerical simulation results of the pulsed time-
varying magnetic field; the black curve in Figure 1a is the waveform of the longitudinal
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pulsed time-varying magnetic field. Figure 1b is the waveform of the broadband RF
excitation signal whose amplitude and frequency band are about 0.006 T and 20 MHz,
respectively. Figure 1c describes the NSS-NMR time-domain response of the macroscopic

magnetization component
⇀
My(t), whose waveform is completely different from that of the

conventional NMR response. It can be concluded from Figure 1c that the parameter
⇀
My(t)

is time continuing and lasts from 0.1 ms to 4.7 ms, which is consistent with the expected
time duration of the NSS-NMR effect. Since the macroscopic magnetization increases as

the magnetic induction intensity increases, the amplitude of
⇀
My is correspondingly very

weak at the beginning and end stages. Figure 1d displays the time–frequency diagram of

the
⇀
My obtained by short-time Fourier Transform (STFT), which is exactly in accordance

with the time-varying magnetic field waveform shown in Figure 1a.
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magnetic field range corresponding to the bandwidth of the RF excitation signal. It should 

be emphasized that the broadband RF excitation applied in the simulation is identical to 

Figure 1. The numerical simulation results: (a) The waveform of the pulsed time−varying magnetic
field; (b) The waveform of the RF excitation signal applied; (c) The waveform of the macroscopic
magnetization component My(t); (d) The STFT result of the macroscopic magnetization component
My(t).

The numerical simulation results of the NSS-NMR effect in the sinusoidal time-varying
magnetic field are shown in Figure 2. Figure 2a is the waveform of the sinusoidal time-
varying magnetic field with a period of 0.02 s, amplitude range of 0.576 T to 0.582 T and
the data length selected for the simulation as0.04 s. The red dotted line represents the
magnetic field range corresponding to the bandwidth of the RF excitation signal. It should
be emphasized that the broadband RF excitation applied in the simulation is identical to
that in the pulsed time-varying magnetic field numerical simulation. Figure 2c displays the

NSS-NMR time-domain response of the macroscopic magnetization component
⇀
My(t) of

the sinusoidal time-varying magnetic field after digital down converters (DDC) due to its

low frequency resolution. Figure 2c shows that the
⇀
My(t) is time-varying and its duration

is 0.04 s. Figure 2d describes the time–frequency diagram versus the offset frequency from
the corresponding median value Bmedian (=0.579 T) of the upper and lower ranges of the
sinusoidal time-varying magnetic field. It can be seen from Figure 2d that a sinusoidal
waveform is observed, which is consistent with the sinusoidal time-varying magnetic field
waveform displayed in Figure 2a. The simulation of the above aperiodic and periodic
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time-varying magnetic field NMR experiment verifies the NSS-NMR effect and shows the
feasibility of the magnetic field measurement by the NSS-NMR theory.
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magnetic field; (b) The waveform of the RF excitation signal applied; (c) The waveform of the
macroscopic magnetization component My(t); (d) The STFT result of the macroscopic magnetization
component My(t).

3. The NSS-NMR Experimental Scheme
3.1. The Time-Varying Magnetic Field and the Experimental System

The time-varying magnetic field environment is generated by a mixed magnet, which
includes a permanent magnet and an energized multi-turn Hermholtz coil connecting to
a tunable AC voltage source. The AC voltage can be adjusted from 0 V to 250 V by a
knob installed on top of the energized coil. Therefore, the intensity of the magnetic field of
the mixed magnet could be controlled by the AC voltage source. The magnetic induction
intensity of the mixed magnet could be expressed in Equation (4) as:

B(t) = B0 + Bmax cos(2π f0t + ϕ0) (4)

where B0 corresponds to the magnetic induction intensity of the permanent magnet, and
Bmax, f0 and ϕ0 represent the amplitude, frequency and initial phase of the magnetic
induction intensity produced by the AC energized coil, respectively. The waveform of the
time-varying magnetic field B(t) is shown in Figure 3, its DC component is about 0.579 T
and the AC amplitude is about 0.003 T while the AC controlling voltage is set to 250 V.
Corresponding to the magnetic induction intensity of the mixed magnet B(t), the Larmor
precession frequency should cover from 24.526 MHz to 24.782 MHz for the 1H nuclei;
therefore, the frequency bandwidth of the NMR probe should exceed at least 260 kHz.
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Figure 3. The waveform of the mixed magnet.

An NSS-NMR experimental system mainly includes a mixed magnet, an RF broadband
signal source, an orthogonal dual-coil probe, a directional coupler, an attenuator and a set
of data acquisition subsystems, as displayed in Figure 4. The RF excitation signal, which is
a band-limited white noise signal with a frequency bandwidth of 300 kHz that is generated
by the signal source, is sent to the input of the directional coupler after amplified by the
power amplifier (PA). The two-way output signals from the directional coupler feed into
the transmitting coil of the orthogonal dual-coil probe and the reference receiving port “1”
of the data acquisition subsystem, respectively. The NSS-NMR signal, the leakage part
of the transmitting signal and the noise outputting from the induction coil of the probe
feed into port “0” of the data acquisition subsystem. The port “1” signal can serve as
a reference signal for the following subsequent signal processing. The sampling rate is
100 MHz and the total acquisition time is set to 50 ms to cover multiple periods of the
longitudinal time-varying magnetic field.
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3.2. The Probe Design and Signal Processing Scheme
3.2.1. The Coil Structure Optimization

The signal-to-noise ratio (SNR) of an NMR signal is related to the quality of the NMR
spectroscopy. In a conventional NMR experiment, the nuclear spin system is excited by a
90◦ pulse sequence [18,19], and the SNR of the free induction attenuation (FID) signal is
illustrated in Equation (5).

SNR = Peak Signal
RMS Noise = k0ω0

2(B1/i)Vs Nγ}I(I+1)/3
√

2kTs
Vn

= k0ω0
2(B1/i)M0Vs√

2Vn

(5)
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In the above equation, the SNR is relevant to the distribution homogeneity k0 of
the RF excitation field, the resonance frequency ω0, the excitation efficiency B1/i, the
macroscopic magnetization M0, the sample volume Vs and the noise RMS voltage Vn. Since
the NMR signal is a macroscopic manifestation produced by the precession and nutation
of all the spin nuclei with a non-zero magnetic moment in the sample space, the poor
distribution homogeneity of the RF excitation field would eventually result in the gradual
phase dispersion of the magnetization in the nutation plane [20,21]. The homogeneity
parameter k0 is related to many factors, such as the coil type, the length and diameter
and the turn gap of the exciting/inducing coil, the gap between the coil and the wall of
the magnet.

A common coil, such as a solenoid, Helmholtz, saddle and birdcage coil, could be used
to fabricate an NMR probe [22–25]. The solenoid coil possesses a higher excitation efficiency
and better distribution homogeneity of the magnetic field [26]; therefore, it was selected
to design the transmitting coil and the receiving coil of the orthogonal dual-coil installed
in the NSS-NMR experimental system. The orthogonal placement of the transmitting
coil and receiving coil could obviously increase the isolation between the two coils. As
revealed in Figure 5, the 1H nuclear sample that is encapsulated inside a short tube is
positioned in the internal area of the vertical polyformaldehyde (POM) stick. The solenoid
coil wrapping around the vertical POM stick is defined as the receiving coil. The six-turn
transmitting solenoid coil is divided into two parts and wrapped on both sides of a thicker
horizontal POM stick. The diameter of the enameled wire is 0.5mm, and the net length of
the transmitting solenoid is 4.5 mm.
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Since the turn gap and the length-to-diameter ratio are two significant parameters
that affect the RF excitation field homogeneity [27–30], the magnetic field homogeneity
parameter δB1 is defined to quantify the magnetic field distribution homogeneity in the
center region of the transmitting coil. Assuming that the total number of discrete grids on
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each coordinate axis is N, then the average value of the magnetic induction intensity in the
center region of the RF excitation field can be expressed in Equation (6) as:

B1mean =
1
N

(
Nx

∑
i

B1x,i +
Ny

∑
j

B1y,j+
Nz

∑
k

B1z,k

)
(6)

where B1x,i, B1y,j and B1z,k are the magnetic induction intensity at the i-th grid along the
x-axis, y-axis and z-axis, respectively, Nx, Ny and Nz are the numbers of the grids along
each axis. Under the condition of i + j + k = N, the homogeneity of the RF excitation field
δB1 is defined as Equation (7) as:

δB1 =
1

B1mean

√√√√√( 1
Nx

Nx

∑
i

(
B1x,i −

1
Nx

Nx

∑
i

B1x,i

))2

+

(
1

Ny

Ny

∑
j

(
B1y,j −

1
Ny

Ny

∑
j

B1y,j

))2

+

(
1

Nz

Nz

∑
k

(
B1z,k −

1
Nz

Nz

∑
k

B1z,k

))2

(7)

The above definition is the same as the standard deviation of the RF excitation field
distribution. It means thatthe closer δB1 is to zero, the better homogeneity of the RF
excitation field will be. In the case that the diameter, length and position of the transmitting
coil is fixed, a different turn gap and length-to-diameter ratio should be observed for the
influencing degree of the parameter δB1 while the observed area is set as a sphere with
a diameter of 1 mm. The front view of the observed area for the calculation of the RF
homogeneity is interpreted as the red dotted region in Figure 6.
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The homogeneity δB1 of the RF excitation field corresponding to the turn gap is
displayed in Table 1. It can be concluded that δB1 reaches a minimum value when the
equation dgap = dcoil is established.

Table 1. Homogeneity of the RF excitation field corresponding to the turn gap.

dgap 0.5 rcoil rcoil 1.5 rcoil

δB1 0.0095 0.0056 0.0102

The homogeneity δB1 of the RF excitation field corresponding to the length-to-diameter
ratio is shown in Table 2. The results show that δB1 reaches a minimum value while the
length-to-diameter ratio l/d is 0.5 rather than the maximum ratio 0.8. The reason is
that the two-part structure of the transmitting solenoid is more similar to a multi-turn
Helmholtz coil.
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Table 2. Homogeneity of the RF excitation field corresponding to the length-to-diameter ratio.

l/d 0.2 0.4 0.5 0.6 0.8

δB1 0.011 0.0154 0.0103 0.0155 0.0318

3.2.2. The Equivalent Circuit Parameters Extraction for the Orthogonal Dual-Coil Probe

The orthogonal dual-coil probe proposed in this paper consists of two mutually
orthogonal solenoids; therefore, the equivalent lumped-parameter circuit could be depicted
as Figure 7, where the mutual inductance M and mutual capacitance C1_2 between the
two coils, the self-inductances L1 and L2, the turn capacitances C1 and C2 and the ohm
resistance R1 and R2 are included in the equivalent circuit.
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The above lumped-circuit parameters can be calculated by many analytical methods,
such as the method of moments (MoM) [31], the boundary element method [32], the
simulated charge method [33] and the finite element method (FEM) [34]. The MoM could
be used to calculate the distribution inductance between the wire loops, but it depletes
the amount of memory and time to solve the multiple loops inductance. The boundary
element method could effectively reduce the number of variables, but it is not convenient
to solve the electromagnetic field problems. The simulated charge method replaces the free
charge that is continuously distributed on the electrode surface with the simulated charge,
but the setting of the optimal position of the charge is normally determined by experience,
resulting in a low calculation accuracy. The FEM can analyze the distribution inductance
among any complex wire loops, and its calculation process is relatively simple. Therefore,
the FEM combined with the electric field energy and the magnetic field energy is adopted
to extract the equivalent lumped-circuit inductances and capacitances of the orthogonal
dual-coil probe by applying the correct boundary condition to the simulation region.

Assume that the coil number of a multi-loop system is N, the loop current is Ii
(i = 1, 2, 3 . . . N), the total magnetic field energy of the multi-loop system Wm, as shown in
Equation (8) as:

Wm =
N

∑
i=1

1
2

ψi Ii ==
∫

τ

1
2

µH2dτ (8)

where H is the magnetic field intensity distributed in the whole region τ excited by the
currents Ii (i = 1, 2, 3 . . . N), ψi is the total magnetic flux crossing over the i-th coil, as
described in Equation (9) as:

ψi = Mi1 I1 + Mi2 I2 + · · ·+ MiN IN =
N

∑
j=1

Mij Ij (9)

where Mij is the mutual inductance between the j-th (j = 1, 2, 3 . . . N) coil and the i-th coil,
and Mij = Mji, Mii = Li is established.
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Therefore, the magnetic field energy Wm can be expressed in Equation (10) as:

Wm =
∫

τ
1
2 µH2dτ =

N
∑

i=1

N
∑

j=1

(
1
2 Ii Mij Ij

)
= ( 1

2 I1
2, 1

2 I2
2 . . . 1

2 IN
2, I1 I2, I1 I3, . . . , I1 IN , I2 I3, I2 I4, . . . , I2 IN , . . . , IN−1 IN)·

(L1, L2, . . . , LN , M12, M13, . . . , M1N , M23, M24, . . . , MiN , . . . , MN−1, N)
T

(10)

In the above equation, the total number of inductances to be solved is
Num = N +C2

N = N(N+1)
2 . Therefore, N(N+1)

2 groupsof loopcurrents I(i), i = 1, 2, . . . , N(N+1)
2 ,

should be set to excite the multi-loop system for calculating the magnetic field distribution
H(i) and the corresponding energy W(i)

M in the whole space region. Where every exciting

current group is I(i) =
(

I(i)1 , I(i)2 , I(i)3 . . . I(i)N

)
, i = 1, 2, . . . , N(N+1)

2 , the magnetic field energy

W(1)
m , W(2)

m , . . . , W(i)
m , . . . , W( N(N+1)

2 )
m , is as illustrated in the matrix Equation (11) below.



W(1)
m

...
W(N)

m

W(N+1)
m

...

W
(

N(N+1)
2 )

m


=



∫
τ

1
2 µ(H(1))

2
dτ

...∫
τ

1
2 µ(H(N))

2
dτ∫

τ
1
2 µ(H(N+1))

2
dτ

...∫
τ

1
2 µ(H(

N(N+1)
2 ))

2

dτ


=



1
2 (I(1)1 )

2 1
2 (I(1)2 )

2
· · · I(1)n I(1)n+1 · · · I(1)N−1 I(1)N

...
...

. . .
...

. . .
...

1
2 (I(N)

1 )
2 1

2 (I(N)
2 )

2
· · · I(N)

n I(N)
n+1 · · · I(N)

N−1 I(N)
N

1
2 (I(N+1)

1 )
2 1

2 (I(N+1)
2 )

2
· · · I(N+1)

n I(N+1)
n+1 · · · I(N+1)

N−1 I(N+1)
N

...
...

. . .
...

. . .
...

1
2 (I

(
N(N+1)

2 )

1 )

2
1
2 (I

(
N(N+1)

2 )

2 )

2

· · · I
(

N(N+1)
2 )

n I
(

N(N+1)
2 )

n+1 · · · I
(

N(N+1)
2 )

N−1 I
(

N(N+1)
2 )

N





L1

...
LN

M1,2

...
MN−1, N


(11)

The above matrix equation could be abbreviated as W=IM, so all the inductances could
be solved from the equation M=I−1W. Here, every magnetic energy W(i)

m is numerically
integrated by using the magnetic field distribution H(i) calculated by the 3D FEM. It is
very important to properly set up the value and direction of every loop current so as to
guarantee the non-singularity of the matrix I.

The turn capacitances and the mutual capacitances of the dual-coil probe could also
be solved by a similar method in the electric field environment. As a result, you only need
to replace the current excitations with the multiple group charge excitations and calculate
the electric field distribution by FEM and the energy density to calculate the electrostatic
field energy under the different charge excitation groups. The extracted equivalent circuit
parameters of the orthogonal dual-coil probe are displayed in Table 3. It can be concluded
that the self-inductance, turn capacitance and ohm resistance values of the transmitting
coil are all greater than those of the receiving coil, which accord with the facts that the turn
number and diameter of the transmitting coil are all greater than those of the receiving
coil. Moreover, the mutual electromagnetic coupling between the transmitting coil and
the receiving coil is very weak due to the orthogonal placement of the coils reflected from
the small mutual inductance and mutual capacitance, which indicates that the orthogonal
dual-coil probe possesses a naturally high isolation between the input and output ports.

Table 3. The extracted equivalent circuit parameters of the orthogonal dual-coil probe.

Parameters
Self-

Inductance
(Unit: µH)

Turn
Capacitance

(Unit: pF)

Ohm Resistance
of Coil

(Unit: mΩ)

Mutual
Inductance
(Unit: nH)

Mutual
Capacitance

(Unit: pF)

Transmitting Coil 0.2625 1.145 18.7
0.29 0.449

Receiving Coil 0.1373 0.491 8.6

3.2.3. Dual-Port Matching for the Orthogonal Dual-Coil Probe

Since the RF excitation signal is broadband and time continuous in the NSS-NMR
experiment, it is necessary to cascade the two impendence matching circuits on the two
ports of the orthogonal dual-coil structure. The basic requirement of the matching circuits is
to broadly match the impendence of the T/R coils to the impendence of the external source
or load on the premise of ensuring enough isolation between the two ports. Due to the
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limitation of the available space (L ×W × H = 54 × 11 × 60 mm3) for placing the matching
circuits inside of the mixed magnet, a remote matching strategy is utilized practically, i.e.,
two long coaxial lines that link the orthogonal dual coils and matching circuits are placed
outside of the magnet.

There are two kinds of remote matching methods, i.e., remote resistance matching and
remote reactance multiple Π-stage matching for the dual-coil probe. The former possesses
a wide frequency band, high isolation and simple circuit but a weak current excitation
efficiency of the RF magnetic field. The latter possesses a strong current excitation efficiency
but a narrow frequency band, poor isolation, complicated circuit and painful debugging
process. If the continuous-wave average output power of the RF exciting source is enough
or affluent, the remote resistance matching circuits are recommended for achieving a wider
frequency band and higher isolation. Otherwise, the remote reactance matching circuits
should be designed to achieve a high excitation efficiency under the conditions of a lower
average power output of the excitation source.

Following the simulation of the aforementioned equivalent lumped-parameter circuit
of the orthogonal dual-coil probe, only a 50 Ohm resistor and a capacitor are required in
the remote resistance matching circuit, as depicted in Figure 8. The capacitors Ct1 and Ct2
are for tuning the imaginary part of the input impedance of the T/R coils, respectively,
and the two 50 Ohm resistors are employed to match the very small real part of the input
impedance of the T/R coils to the source impedance or load impedance.
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Figure 8. The remote resistance matching for the orthogonal dual-coil probe.

The practical performance of the remote resistance matching method is revealed in
Figure 9. Figure 9a,d show that the 20 dB and 10 dB impedance matching bandwidths are
5 MHz and 12.77 MHz, respectively. Figure 9b,c show that the 60 dB isolation bandwidth
between the T/R ports exceeds 15 MHz, at a center frequency of 24.66 MHz of the NSS-
NMR experiment on the condition of the 1H nuclear sample and the average value 0.579 T
of the mixed magnet.

Figure 10 describes the remote reactance three-stage Π-type matching circuit, which
is also designed and tuned practically for the actual probe prototype. Since the one-stage
capacitance Π-type matching circuit only possesses a narrow bandwidth, the three-stage
Π-type circuit is used in each remote port of the probe [35].

The prototype of the proposed wideband orthogonal dual-coil probe with the remote
reactance matching circuits is devised and fabricated, as shown in Figure 11. The probe
consists of a coil skeleton, nuclear sample, transmitting coil, receiving coil and matching
circuits. Meanwhile, a thickness of up to 5 mm copper baffle (not shown in the figure) is
designed to reduce mutual coupling between the outside T/R matching circuits.
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Due to the non-magnetism of the resistors and capacitors, the latter matching circuits
could also be installed in neighboring positions of the dual-coil structure when the inner
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space of the magnet is roomy enough. This near matching circuit may achieve a better
performance and wider bandwidth than the remote one.

The S-parameter measurement results of the prototype probe are presented in Figure 12.
The transmitting coil is connected to port 1 and the receiving coil is connected to port 2
of the vector network analyzer (VNA). A 10-dB impedance matching bandwidth is about
300 kHz, which coversfrom 24.50 MHz to 24.80 MHz. The isolation between the T/R ports
is greater than 45.09 dB, which indicates that the performance of the very weak leakage
from the RF exciting port to the receiving port will help to easily extract the NSS-NMR
signal from the output compound signal in the subsequent signal processing process.
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3.2.4. Signal Processing Scheme

Due to the finite isolation between the T/R coils, there is a small part of the RF
excitation signal leaking from the input port to the output port. Although the leakage is
very small, it is still much greater than the power of the NSS-NMR signal. Therefore, it is
necessary to cancel the RF excitation leakage from the compound of the output signal to
finally extract the NSS-NMR signal. As a result, a Wiener adaptive filtering interference
cancellation algorithm is used in the data processing scheme. The reference signal comes
from the coupling port of the directional coupler. The overall signal processing scheme
includes band-pass filtering (BPF), delay correction, quadrature demodulation, low-pass
filtering (LPF), sample extraction, adaptive interference cancellation (Wiener filtering) and
time–frequency analysis, as depicted in Figure 13. The delay correction processing is for
aligning the group-delay-time (GDT) of the probe output signal to that of the reference
signal. The time-difference value corresponding to the peak of the cross-correlation function
between the reference signal and output signal of the probe might be used to align the
two signals. The quadrature demodulation, LPF and sample extraction are for outputting
the digital baseband I/Q signals to conduct the subsequent adaptive filtering and time–
frequency analysis.
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4. Processing Results

Here, a segment of 30 ms time-length acquisition data with original sampling rate 100
MHz is utilized for verifying the NSS-NMR effect and the signal processing scheme. After
quadrature demodulation, LPF and sample extraction, the sampling rate has been decreased
to 2 MHz yet is covering the efficient frequency range of the NSS-NMR signal. Since the
Wiener filter’s order is 800, the front 800 sampling points should be removed to avoid
time–frequency analysis distortion. Figure 14 displays the waveform and corresponding
power spectrum of the probe output signal before and after the interference cancellation.
According to the time- and frequency-domain results, the interference cancellation degree
of the Wiener filtering algorithm is about 46 dB. The residuary part in Figure 14d shows the
suspected NSS-NMR signal.

After the interference cancellation, the processed data are divided into 228 sub-
segments for carrying out STFT. Each sub-segment consists of 1024 sampling points with
75% overlapped points. The time–frequency diagram of the data of these segments versus
the offset frequency from the NMR frequency corresponding to parameter B0 is displayed
in Figure 15a. A sinusoidal waveform could be clearly observed, which demonstrates the
existence of the NSS-NMR effect, and the NSS-NMR signal has been successfully extracted.
In addition, when the excitation RF power is low, the NSS-NMR signal is also weak in
certain time segments. The inverted magnetic flux density of the mixed magnet by the
Larmor precession relationship is shown in Figure 15b, which indicates that the range of
time-varying magnetic field range is from 0.576 T to 0.582 T and the time-varying period
is 20 ms. The experimental results are identical to the actual parameters of the mixed
magnet. There is only a slight difference in the display clarity between the simulation and
the actual experiment, which is mainly due to the spectral peak of the weak signals in
certain segments submerged by the background noise.
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5. Conclusions

A novel NSS-NMR effect is forecasted, and an NSS-NMR experimental scheme is
proposed to verify the principle. In the NSS-NMR experiment, the nuclear spin system is
excited by the continuous broadband RF signal; therefore, the excited NSS-NMR signal
is composed of numerous signal components with different frequencies and amplitudes
which vary with time. The NSS-NMR effect could be used to invert the magnetic induction
intensity of the longitudinal time-varying magnetic field by the Larmor precession relation-
ship. The NSS-NMR signal and the magnetic field inversion are successfully validated in a
mixed sinusoidal time-varying magnet environment.

The next validation experiment would be carried out in a pulsed high magnet envi-
ronment, where a more compact orthogonal dual-coil probe and more efficient matching
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circuits are needed to accommodate the new requirements. The NSS-NMR effect is even ex-
pected to provide a new observation method for studying the field-induced phase transition
phenomenon and material structure with broad spectrum characteristics in a pulsed high
magnetic field environment. In addition, the proposed NSS-NMR effect may be applied in
material analysis (such as 27Al and 29Si nuclei in clay minerals) and liver disease detection.
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