Medical Image Classification Based on Semi-Supervised Generative Adversarial Network and Pseudo-Labelling
Abstract
:1. Introduction
- A novel GAN model based on pseudo-labelling and semi-supervised learning was proposed to optimise the use of unlabelled data in medical image classification.
- The proposed method is methodologically innovative. We used ResNet-20 to extract features from unlabelled data and further inferred their labels based on K-means clustering. We also customised the discriminator network of GAN by converting it to a multi-class classifier, which is not only able to classify if a sample is real or fake but also to predict its class. These methods effectively strengthened the effect of image features on classification, alleviated the problem of the unobvious intra-class gap and improved the accuracy of pseudo-labelling.
- We conducted extensive experiments on two benchmark datasets, including ChestX-ray14 [28] and BreakHis [29], and demonstrated that our method could improve the state-of-the-art performance of medical image classification for lung disease diagnosis using an X-ray and for breast cancer diagnosis using histopathology images.
2. Materials and Methods
2.1. Pseudo-Labelling Based on K-Means Clustering
2.2. Generative Adversarial Network
2.3. Classification Based on GAN
2.4. Loss Functions
3. Results
3.1. Chest X-ray Pseudo-Labelling Results
3.2. Chest X-ray Classification Results
3.3. BreaKHis Pseudo-Labelling Results
3.4. BreaKHis Classification Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level Classification of Skin Cancer with Deep Neural Networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Rajpurkar, P.; Irvin, J.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Ding, D.; Bagul, A.; Langlotz, C.; Shpanskaya, K.; et al. CheXNet: Radiologist-Level Pneumonia Detection on Chest X-rays with Deep Learning. arXiv 2017, arXiv:1711.05225. [Google Scholar]
- Liu, S.; Shah, Z.; Sav, A.; Russo, C.; Berkovsky, S.; Qian, Y.; Coiera, E.; Dileva, A. Isocitrate dehydrogenase (IDH) status prediction in histopathology images of gliomas using deep learning. Sci. Rep. 2020, 10, 7733. [Google Scholar] [CrossRef]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016, 316, 2402–2410. [Google Scholar] [CrossRef]
- Liu, S.; Graham, S.; Schulz, A.; Kalloniatis, M.; Zangerl, B.; Cai, W.; Gao, Y.; Chua, B.; Arvind, H.; Grigg, J.; et al. A Deep Learning-based Algorithm Identifies Glaucomatous Discs using Monoscopic Fundus Photographs. Ophthalmol. Glaucoma 2018, 1, 15–22. [Google Scholar] [CrossRef]
- Anthimopoulos, M.; Christodoulidis, S.; Ebner, L.; Christe, A.; Mougiakakou, S. Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network. IEEE Trans. Med. Imaging 2016, 35, 1207–1216. [Google Scholar] [CrossRef]
- Quiroz, J.C.; Feng, Y.Z.; Cheng, Z.Y.; Rezazadegan, D.; Chen, P.-K.; Lin, Q.-T.; Qian, L.; Liu, X.-F.; Berkovsky, S.; Coiera, E.; et al. Development and Validation of A Machine Learning Approach for Automated Severity Assessment of COVID-19 based on Clinical and Imaging Data. JMIR Med. Inform. 2021, 9, e24572. [Google Scholar] [CrossRef]
- Feng, Y.Z.; Liu, S.; Cheng, Z.Y.; Quiroz, J.C.; Rezazadegan, D.; Chen, P.-K.; Lin, Q.-T.; Qian, L.; Liu, X.-F.; Berkovsky, S.; et al. Severity Assessment and Progression Prediction of COVID-19 Patients based on the LesionEncoder Framework and Chest CT. Information 2021, 12, 471. [Google Scholar] [CrossRef]
- Levesque, H.J.; Davis, E.; Morgenstern, L. The Winograd Schema Challenge. In Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning, Rome, Italy, 10–14 June 2012; pp. 552–561. [Google Scholar]
- Xie, J.; Girshick, R.B.; Farhadi, A. Unsupervised Deep Embedding for Clustering Analysis. In Proceedings of the International Conference on Machine Learning, Lille, France, 7–9 July 2015. [Google Scholar]
- RoyChowdhury, A.; Yu, X.; Sohn, K.; Learned-Miller, E.; Chandraker, M. Improving Face Recognition by Clustering Unlabelled Faces in the Wild. In Proceedings of the ECCV, Glasgow, US, 23-28 August 2020. [Google Scholar]
- Ahn, E.; Kumar, A.; Feng, D.; Fulham, M.; Kim, J. Unsupervised Deep Transfer Feature Learning for Medical Image Classification. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019. [Google Scholar]
- Arti, P.; Agrawal, A.; Adishesh, A.; Lahari, V.M.; Niranjana, K.B. Convolutional Neural Network Models for Content Based X-ray Image Classification. In Proceedings of the 2019 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), Bangalore, India, 15–16 November 2019. [Google Scholar]
- Hsu, K.; Levine, S.; Finn, C. Unsupervised Learning via Meta-Learning. In Proceedings of the ICLR, New Orleans, LA, USA, 6-9 May 2019. [Google Scholar]
- Maicas, G.; Nguyen, C.; Motlagh, F.; Nascimento, J.C.; Carneiro, G. Unsupervised Task Design to Meta-Train Medical Image Classifiers. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- van Engelen, J.E.; Hoos, H.H. A Survey on Semi-Supervised Learning. Mach. Learn. 2019, 109, 373–440. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the NIPS, Montreal, Canada, 8-13 December 2014; pp. 2672–2680. [Google Scholar]
- Jose, L.; Liu, S.; Russo, C.; Nadort, A.; di Ieva, A. Generative Adversarial Networks in Digital Pathology and Histopathological Image Processing: A Review. J. Pathol. Inform. 2021, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Cong, C.; Liu, S.; di Ieva, A.; Pagnucco, M.; Berkovsky, S.; Song, Y. Colour Adaptive Generative Networks for Stain Normalisation of Histopathology Images. Med. Image Anal. 2022, 82, 102580. [Google Scholar] [CrossRef] [PubMed]
- Odena, A.; Olah, C.; Shlens, J. Conditional Image Synthesis with Auxiliary Classifier GANs. arXiv 2017, arXiv:1610.09585v4. [Google Scholar]
- Han, L.; Gao, R.; Kim, M.; Tao, X.; Liu, B.; Metaxas, D. Robust Conditional GAN from Uncertainty-Aware Pairwise Comparisons. arXiv 2019, arXiv:1911.09298v1. [Google Scholar] [CrossRef]
- Guo, T.; Xu, C.; Huang, J.; Wang, Y.; Shi, B.; Xu, C.; Tao, D. On Positive-Unlabelled Classification in GAN. arXiv 2020, arXiv:2002.01136v1. [Google Scholar]
- Liu, K.; Wang, D.; Rong, M. X-ray image classification algorithm based on semi-supervised generative adversarial network. Acta Opt. Sin. 2019, 39. [Google Scholar]
- Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly Supervised Classification and Localization of Common Thorax Diseases. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3462–3471. [Google Scholar]
- Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L. A Dataset for Breast Cancer Histopathological Image Classification. IEEE Trans. Biomed. Eng. 2016, 63, 1455–1462. [Google Scholar] [CrossRef]
- Yari, Y.; Nguyen, H.; Nguyen, T.V. Accuracy Improvement in Binary and Multi-Class Classification of Breast Histopathology Images. In Proceedings of the 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE), Phu Quoc Island, Vietnam, 13–15 January 2021. [Google Scholar]
- Nawaz, M.A.; Sewissy, A.A.; Soliman, T.H.A. Automated Classification of Breast Cancer Histology Images using Deep Learning based Convolutional Neural Networks. Int. J. Comput. Sci. Netw. Secur. 2018, 4, 152–160. [Google Scholar]
- Nguyen, P.T.; Nguyen, T.T.; Nguyen, N.C.; Le, T.T. Multiclass Breast Cancer Classification Using Convolutional Neural Network. In Proceedings of the 2019 International Symposium on Electrical and Electronics Engineering (ISEE), Ho Chi Minh City, Vietnam, 10–12 October 2019. [Google Scholar]
- Pratiher, S.; Chattoraj, S. Diving Deep onto Discriminative Ensemble of Histological Hashing & Class-Specific Manifold Learning for Multi-class Breast Carcinoma Taxonomy. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019. [Google Scholar]
- Bardou, D.; Zhang, K.; Ahmad, S.M. Classification of Breast Cancer based on Histology Images using Convolutional Neural networks. IEEE Access 2018, 6, 24680–24693. [Google Scholar] [CrossRef]
- Han, Z.; Wei, B.; Zheng, Y.; Yin, Y.; Li, K.; Li, S. Breast Cancer Multi-Classification from Histopathological Images with Structured Deep Learning Model. Sci. Rep. 2017, 7, 4172. [Google Scholar] [CrossRef] [PubMed]
- Raghuram, J.; Chandrasekaran, V.; Jha, S.; Banerjee, S. A General Framework for Detecting Anomalous Inputs to DNN Classifiers. In Proceedings of the International Conference on Machine Learning, Online, 18–24 July 2021. [Google Scholar]
- Abdar, M.; Pourpanah, F.; Hussain, S.; Rezazadegan, D.; Liu, L.; Ghavamzadeh, M.; Fieguth, P.; Cao, X.; Khosravi, A.; Acharya, U.R.; et al. A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges. Inf. Fusion 2021, 76, 243–297. [Google Scholar] [CrossRef]
No. of Labelled Samples in Each Class | Accuracy (%) | |||
---|---|---|---|---|
PCA + SVM | CNN | SSGAN | The Proposed | |
50 | 58.94 ± 6.3 | 55.62 ± 6.2 | 62.47 ± 4.7 | 70.60 ± 5.0 |
100 | 63.20 ± 4.1 | 61.64 ± 5.5 | 68.71 ± 4.3 | 73.84 ± 3.2 |
200 | 67.76 ± 4.6 | 68.89 ± 2.0 | 72.40 ± 4.0 | 78.69 ± 4.8 |
300 | 68.60 ± 5.6 | 72.85 ± 5.0 | 74.25 ± 3.5 | 84.92 ± 2.6 |
400 | 70.10 ± 3.9 | 74.54 ± 3.4 | 77.83 ± 3.8 | 93.15 ± 3.2 |
Class | Accuracy (%) | ||
---|---|---|---|
CNN | SSGAN | The Proposed | |
Atelectasis | 79.4 | 81.97 | 94.0 |
Nodule | 75.2 | 77.38 | 96.0 |
Mass | 88.4 | 85.32 | 84.0 |
Effusion | 88.2 | 82.75 | 91.0 |
Infiltration | 70.5 | 71.62 | 86.0 |
Pneumothorax | 87.8 | 83.41 | 93.0 |
Labelled Data | Accuracy (%) | ||
---|---|---|---|
CNN | SSGAN | The Proposed | |
10 | 68.87 | 75.37 | 95.10 ± 0.20 |
20 | 72.35 | 81.36 | 96.00 ± 0.70 |
30 | 73.68 | 84.63 | 96.87 ± 0.50 |
Model | Accuracy (%) |
---|---|
Y. Yari et al. [30] | 93.35 |
M. Nawaz et al. [31] | 95.00 |
P. Nguyen et al. [32] | 73.68 |
S. Pratiher et al. [33] | 95.46 |
D. Bardou et al. [34] | 88.23 |
Z. Han et al. [35] | 93.80 |
The Proposed | 96.87 |
Major Class | Subclass | Accuracy (%) |
---|---|---|
benign | adenosis | 96.12 |
fibroadenoma | 96.88 | |
phyllodes tumor | 96.74 | |
tubular adenoma | 95.60 | |
malignant | ductal carcinoma | 97.31 |
lobular carcinoma | 96.80 | |
mucinous carcinoma | 95.78 | |
papillary carcinoma | 96.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Ning, X.; Liu, S. Medical Image Classification Based on Semi-Supervised Generative Adversarial Network and Pseudo-Labelling. Sensors 2022, 22, 9967. https://doi.org/10.3390/s22249967
Liu K, Ning X, Liu S. Medical Image Classification Based on Semi-Supervised Generative Adversarial Network and Pseudo-Labelling. Sensors. 2022; 22(24):9967. https://doi.org/10.3390/s22249967
Chicago/Turabian StyleLiu, Kun, Xiaolin Ning, and Sidong Liu. 2022. "Medical Image Classification Based on Semi-Supervised Generative Adversarial Network and Pseudo-Labelling" Sensors 22, no. 24: 9967. https://doi.org/10.3390/s22249967
APA StyleLiu, K., Ning, X., & Liu, S. (2022). Medical Image Classification Based on Semi-Supervised Generative Adversarial Network and Pseudo-Labelling. Sensors, 22(24), 9967. https://doi.org/10.3390/s22249967