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Abstract: Deep learning has substantially improved the state-of-the-art in object detection and
image classification. Deep learning usually requires large-scale labelled datasets to train the models;
however, due to the restrictions in medical data sharing and accessibility and the expensive labelling
cost, the application of deep learning in medical image classification has been dramatically hindered.
In this study, we propose a novel method that leverages semi-supervised adversarial learning and
pseudo-labelling to incorporate the unlabelled images in model learning. We validate the proposed
method on two public databases, including ChestX-ray14 for lung disease classification and BreakHis
for breast cancer histopathological image diagnosis. The results show that our method achieved
highly effective performance with an accuracy of 93.15% while using only 30% of the labelled samples,
which is comparable to the state-of-the-art accuracy for chest X-ray classification; it also outperformed
the current methods in multi-class breast cancer histopathological image classification with a high
accuracy of 96.87%.

Keywords: digital histopathology; deep learning; generative adversarial network; k-means clustering;
medical images classification; semi-supervised learning

1. Introduction

The design and use of artificial intelligence (AI), especially deep learning (DL), is
driving fundamental changes in natural language processing, visual object recognition
and many other domains [1]. Since AlexNet [2] won the ImageNet Challenge in 2012,
DL models have dramatically improved the state-of-the-art in object detection and image
classification at large scale [3]. DL also holds promises in transforming healthcare and
medicine, with encouraging results recently reported in skin cancer classification [4], pneu-
monia detection [5], glioma prognosis [6], diabetic retinopathy detection [7], glaucoma
screening [8], interstitial lung diseases classification [9], and most recently, COVID-19
assessment [10,11], etc. DL models usually require a large number of labelled samples to
train; therefore, great effort has been taken to collect and label large-scale datasets, such
as the ImageNet [3] and the Winograd Schema Challenge [12], and many researchers are
motivated to participate in public computational challenges to take advantage of such
datasets. However, it is challenging to acquire large-scale medical image datasets, as medi-
cal images usually have restricted accessibility and require clinical expertise to annotate.
These limitations hamper the translation of DL models to medical image classification.

To reduce the dependence on large-scale expert-annotated medical image datasets,
several unsupervised learning methods were proposed. Deep Embedding for Clustering
(DEC) [13] is one of the first unsupervised methods to cluster unlabelled data, which is
based on self-training. CosFace [14] used the estimated clustering uncertainty of unla-
belled samples to adjust the loss function weight to reduce the overlapping-identity label
noise; however, it requires balanced labelled and unlabelled samples to estimate clustering
uncertainty accurately, which is a major limitation. There are a few methods based on
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transfer learning [15,16] and meta-learning [17,18]. Ahn et al. [15] proposed a hierarchical
unsupervised feature extractor, which has a convolutional autoencoder on top of a pre-
trained convolutional neural network (CNN). Arti Pet al. [16] fine-tuned the pre-trained
AlexNet [2] and GoogleNet [19] for X-ray image classification. Maicas et al. [18] designed
an unsupervised pretext task for meta-learning and then trained the model for medical
image classification. However, due to the lack of domain experts’ input, it is difficult for
these unsupervised methods to meet the high sensitivity and specificity requirements for
medical applications.

The past few years have seen an emerging application of semi-supervised learning
in many computer vision tasks. Semi-supervised learning methods usually require fewer
expert-annotated samples (less labelling cost) and can also take advantage of a large amount
of unlabelled data (more training data). In a recent survey, Van Engelen and Hoos [20]
provided an overview of semi-supervised learning methods, most of which were based on
a Generative Adversarial Network (GAN) [21]. GAN is a very successful unsupervised
learning method for data synthesis with a wide range of applications in medical image
computing [22], such as color normalisation [23], and has been used to overcome the
problem of insufficiently labelled data. Odena et al. [24] developed a class-conditional GAN
for image synthesis to augment training data. GAN models are usually difficult to train with
known issues like mode collapse and failure to converge; therefore, variant GAN models
were proposed with improved reliability. Han et al. [25] proposed a conditional GAN based
on Bayesian uncertainty estimation and noise-tolerant adversarial learning, which was
validated on datasets with low dimensionality demonstrating robust performance in noise
resistance. Guo et al. [26] proposed a positive-unlabelled GAN (PU-GAN), which divided
the generated images into positive or negative samples based on image quality to reduce
the high heterogeneity in sample quality. These GAN models improved the stability and
quality of the generated samples and achieved better performance than those sophisticated
discriminator stabilisation methods.

Semi-supervised learning has also been used in medical image classification. In one
of our recent studies, we developed a semi-supervised GAN (SSGAN) for lung X-ray
classification, which only requires a small number of labelled samples [27]. This model
extended the unsupervised GAN by adding an additional class of GAN-synthesised images
to guide the training process. SSGAN is able to estimate the distribution of both labelled
and unlabelled data so that the discriminator network, i.e., the classifier, is more robust than
those trained on the labelled samples alone. We believe SSGAN can be further improved
by integrating with pseudo-labelling, i.e., assigning pseudo labels to unlabelled samples
based on their distances to the labelled sample cluster centres. In this study, an enhanced
semi-supervised GAN with pseudo-labelling (PLAB-GAN) is proposed for medical image
classification, which can not only use unlabelled data to estimate the sample distribution
but also train the classifier directly.

In summary, in this study, we have made the following contributions.

• A novel GAN model based on pseudo-labelling and semi-supervised learning was
proposed to optimise the use of unlabelled data in medical image classification.

• The proposed method is methodologically innovative. We used ResNet-20 to extract
features from unlabelled data and further inferred their labels based on K-means
clustering. We also customised the discriminator network of GAN by converting it to
a multi-class classifier, which is not only able to classify if a sample is real or fake but
also to predict its class. These methods effectively strengthened the effect of image
features on classification, alleviated the problem of the unobvious intra-class gap and
improved the accuracy of pseudo-labelling.

• We conducted extensive experiments on two benchmark datasets, including ChestX-
ray14 [28] and BreakHis [29], and demonstrated that our method could improve the
state-of-the-art performance of medical image classification for lung disease diagnosis
using an X-ray and for breast cancer diagnosis using histopathology images.
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2. Materials and Methods

A novel medical image classification method was proposed by integrating pseudo-
labelling into semi-supervised GAN (PLAB-GAN). The overall framework of PLAB-GAN
is illustrated in Figure 1. We first clustered the unlabelled samples to the cluster centres of
the labelled images to estimate pseudo labels based on the CNN features extracted from
the samples using a pretrained ResNet-20 network. Secondly, from each cluster, a small
number of labelled data (X_lab) and a greater number of unlabelled data (X_unlab) were
selected to train the discriminator/classifier, which classifies the samples into K classes
(the number of classes of the real data). We further added a new class to the discriminator
output for the synthetic data (X_gen) so that the synthetic images can be classified into
the K+1 category (K classes for the real data and 1 pseudo class for the synthetic data).
While training the PLAB-GAN, the discriminator and generator networks were alternately
updated until reaching a certain number of iterations. Finally, the trained discriminator
was used for medical image classification.
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network (PLAB-GAN).

2.1. Pseudo-Labelling Based on K-Means Clustering

Pseudo labels, which are the estimated labels of unknown data, are generally used
for processing large-scale unlabelled data. In this study, we chose K-means clustering to
estimate the pseudo labels of the unlabelled images for their simplicity and robustness. Size
(128 × 128 pixels) and intensity [−1,1] normalisation were first applied to the images. The
preprocessed labelled images were then used to train a RestNet-20 which was pre-trained
on ImageNet [3]. The network was trained through iterative learning as:

label = argmin{
K

∑
i=1

wi(xi − xi
1)

2
,

K

∑
i=1

wi(xi − xi
2)

2
. . . . . .

K

∑
i=1

wi(xi − xi
j)

2} (1)

where xi indicates the average feature vector, i.e., cluster centre, of the ith class
(i = {1, . . . , K}), xi

j represents the feature vector of each image, and wi express features
weight. The output of activation function, p, which is the probability that the sample x
belongs to each class, was then assigned to wi to update the network weights. The last
layer used Softmas as activation function, and the other layers all used ReLU.

The trained network is then used to extract features from the unlabelled samples
for subsequent clustering and pseudo-labelling. For each unlabelled image, x_unlab, the
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Euclidean distance between its feature f(x_unlab) and each cluster centre xi was used to
estimate the pseudo label.

2.2. Generative Adversarial Network

A generated adversarial network (GAN) consists of a generator and a discriminator.
GAN uses the idea of confrontation training which is based on game theory. A generator
network G aims to produce images (x) by transforming vectors of noise z (x = G(z)) that
are similar to the real images. The discriminator network D is trained to distinguish data
generated from the generator distribution pz from real data. The generator network, in turn,
is then trained to fool the discriminator into accepting its outputs as being real. During
GAN model training, the generator G(z) and the discriminator D(x) will update their
own parameters to minimise the loss. Through continuous iterative optimisation, a Nash
equilibrium state—the optimal state—is finally reached by the two networks. The objective
function of discriminator is defined as:

sD = −Ex−pdata lb[D(x)]− Ez−pz lb{1− D[G(z)]} (2)

and the objective function of the generator is defined as:

sG = −Ez−pz lbD[G(z)] (3)

where D(*) is the discriminant probability of the discriminator, G(z) is the generated image,
lb represents the logarithm with a base of 2, z − pz indicates the noise with random
distribution, x− pdata is the image data that follows random distribution.

2.3. Classification Based on GAN

The classification model we used was based on a previously proposed semi-supervised
GAN (SSGAN) [27]. For a K-class classification problem, we added a new class to the
discriminator Softmax output for the synthetic data, i.e., K classes for the real data and
1 class for synthetic data. Pseudo labels of the unlabelled images were inferred from the
cluster centres of labelled samples, which were generated from K-means clustering.

The noise vectors following a normal distribution of (0, 1) were fed into the gen-
erator to generate synthetic images. The input noise vector was first converted into a
one-dimensional vector by a fully connected layer (dense) and then reshaped to dimensions
of 32 × 32 × 256. Following the dense layer are two blocks of layers, each consisting of a
2D deconvolution layer (stride of 2 pixels), a batch norm layer, and an activation layer. For
the activation function, the final output layer uses Tanh activation function, and the rest of
the layers use LeakyReLU (slope on the negative half-axis was set to 0.01). Compared with
the ReLU activation function, this activation function adds a linear correction unit to deal
with negative input values. The size of the final generated image is 128 × 128 × 1.

The generated images, a small number of labelled images and a larger number of
unlabelled images were then used to train the discriminator. The discriminator network
includes a conv2d layer, an activation layer (output dimensions: 64 × 64 × 32), a 2nd
conv2d layer, a batch norm layer, an activation layer (output dimensions: 32 × 32 × 64),
a 3rd conv2d layer, another batch norm layer and activation layer (output dimensions:
16 × 16 × 128). The convolution layers take stride of 2 pixels with convolutional kernels of
3 × 3. The activation function uses LeakyReLU, with the slope on the negative half-axis set
to 0.01. The last three layers of the discriminator network are a flattened layer (to convert
tensor to one dimension vector), a dropout layer (to prevent overfitting) and a dense layer.

2.4. Loss Functions

The output of the discriminator was a K + one-dimensional logical vector, {l1, l2 . . . lk+1}
which was calculated by Softmax. The first K elements of the vector (l1, l2 . . . lk) represent
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the probabilities of being the real classes, lk+1 represents the probability of being the
synthetic class. The probability of a sample (x) being a specific class (i) can be calculated as:

p(y = i|x) = exp(li)

∑k+1
j=1 exp

(
lj
) (4)

where ∑k+1
j=1 exp

(
lj
)

represents the sum of the probability values over the K+1 classes
The categorical cross-entropy loss was used for the labelled image classification. Binary

cross-entropy was used for unlabelled images and generated images, i.e., probabilities of
the sample belonging to a real class or a synthetic class. There are three types of images in
the discriminator: generated images, labelled images, and unlabelled images; therefore,
three types of loss functions are designed, as in Equations (5)–(7):

llabel = −E(x,y)−pdata
[lnp(y|x), y < k + 1)] (5)

lunlabel = −Ex−pdata [ln(1− p(y = k + 1|x)), y = k + 1)] (6)

lgen = −Ex−G[lnp(y = k + 1|x), y = k + 1)] (7)

where x represents the image, y represents the label of the image, x-pdata represents the
image without label and x-G represents the generated image, (x,y)-pdata represents the
image with label, p(|) indicates the predicted probability, llabel is the cross-entropy loss of
the true and the predicted class label distributions for the labelled samples, lunlabel is the
loss for the unlabelled samples classified as a true class, and lgen is the loss for generated
samples classified as real samples. The loss function of the discriminator (ld) is the sum of
llabel , lunlabel and lgen, as in Equation (8), where α and β represent the weight on lunlabel and
lgen, respectively.

ld = llabel + αlunlabel + βlgen (8)

The discriminator D and the generator G were trained alternatively. When training
D, the weights of G were fixed, and Adam method was used to update the weights of D.
Then, the weights of G were optimised by matching the features between the real and the
generated images. The above steps were repeated until there was no further improvement
of the model or the maximum number of iterations (n = 15,000 for ChestX-ray14 and
n = 150 BreakHis) was reached.

3. Results

We tested the proposed method on two benchmark datasets, including the ChestX-
ray14 dataset [28] and BreakHis [29]. All experiments were performed on a workstation
with a 16GB GPU (NVIDIA, GeForce GTX1080TI). The algorithm was implemented in
Python 3.6. To verify the results, we repeated the experiments 10 times and the mean
accuracy values were reported. The datasets, experiments and results are described below.

3.1. Chest X-ray Pseudo-Labelling Results

The ChestX-ray14 dataset contains 112,120 chest X-ray images labelled with 14 types
of lung diseases. We selected seven types of common diseases and a normal control class
for chest X-ray classification, as shown in Figure 2. In the K-means clustering, we used
16,089 labelled samples (~2100 from each class, with a train:test ratio of 7:3) to train the
ResNet-20 network, which was later used to extract features from unlabelled X-ray images.
Then K-means clustering was used to infer the pseudo labels of 8583 unlabelled samples.
To train the semi-supervised GAN for classification, we used a small number of labelled
images (n = 50 to 400 per class) and a large number of unlabelled images (n = 8583). The
X-ray dataset was divided into training:test:validation split was set to 7:2:1. The GAN
learning rate is 0.0001 and the batch size is set to 16. The semi-supervised experiment uses
Adam to optimise the loss function with a momentum of 0.5. We used accuracy as the
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metric to validate the effectiveness of the method, as in Equation (9), where TP is True
positive, FN is False Negative, TN is True Negative, and FP is False Positive.

accuracy =
TP + TN

TP + TN + FP + FN
(9)
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Figure 2. The chest X-ray sample images.

Figure 3 shows the visual representations of K-means clustering results. Figure 4 shows
the experimental results using 400 labelled images in each class: changes in the accuracy
(left) and the loss (right) of the model during the training process. It can be seen that the
classification accuracy reached 0.860 ± 0.026 after 8000 epochs and further improved to
0.930 ± 0.032 after 15,000 epochs. The discriminator loss decreased continuously, whereas
the generator loss quickly decreased in the early stage and then increased slightly later. The
discriminator loss was lower than the generator loss, indicating the discriminator could
distinguish the generated images very well.
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3.2. Chest X-ray Classification Results

To verify the effectiveness of the proposed method, we compared it with convolutional
neural network (CNN), PCA-based semi-supervised method (PCA + SVM) and GAN-
based semi-supervised method (SSGAN). To investigate the impact of the amount of the
labelled samples for training, the experiments were repeated five times with different
settings in terms of the number of images per class for training, i.e., 50, 100, 200, 300
and 400, respectively. Table 1 shows the classification accuracy with different numbers of
labelled images using different networks. Compared to CNN, PCA + SVM and SSGAN,
the proposed method achieved substantially better performance. Increasing the number of
labelled training images improves all the models’ performance. The largest performance
gain was seen when using 400 labelled samples per class for training. The proposed method
outperformed CNN, PCA + SVM and SSGAN by 18%, 20% and 16%, respectively.

Table 1. Classification accuracy of samples with different numbers of labelled data.

No. of Labelled
Samples in Each Class

Accuracy (%)

PCA + SVM CNN SSGAN The Proposed

50 58.94 ± 6.3 55.62 ± 6.2 62.47 ± 4.7 70.60 ± 5.0
100 63.20 ± 4.1 61.64 ± 5.5 68.71 ± 4.3 73.84 ± 3.2
200 67.76 ± 4.6 68.89 ± 2.0 72.40 ± 4.0 78.69 ± 4.8
300 68.60 ± 5.6 72.85 ± 5.0 74.25 ± 3.5 84.92 ± 2.6
400 70.10 ± 3.9 74.54 ± 3.4 77.83 ± 3.8 93.15 ± 3.2

* Bold type represents the best result.

Table 2 shows the classification accuracy (with 400 labelled training images per class)
of CNN, SSGAN and the proposed method in individual classes. The proposed method
outperformed SSGAN and CNN in five out of six classes, except for the Mass class.

Table 2. Classification accuracy of different models for individual classes.

Class
Accuracy (%)

CNN SSGAN The Proposed

Atelectasis 79.4 81.97 94.0
Nodule 75.2 77.38 96.0

Mass 88.4 85.32 84.0
Effusion 88.2 82.75 91.0

Infiltration 70.5 71.62 86.0
Pneumothorax 87.8 83.41 93.0

* Bold type represents the best result.

To investigate the impact of loss weight parameters α and β on the model’s perfor-
mance, we tested different parameter settings (values ranging from 0.1 to 0.9). Figure 5
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shows the corresponding classification accuracy in different settings. It shows that when α

and β both were equal to 0.5, the model achieved the highest classification accuracy.
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3.3. BreaKHis Pseudo-Labelling Results

We tested the proposed method on a second benchmark dataset–BreaKHis [29], which
contains 7909 breast tissue microscopic images, including 2480 benign and 5429 malignant
samples across eight sub-types (benign subtypes: adenosis, fibroadenoma, phyllodes tumor,
and tubular adenoma; malignant subtypes: ductal carcinoma, lobular carcinoma, mucinous
carcinoma, and papillary carcinoma), as shown in Figure 6. The images were acquired
using an Olympus BX-50 system microscope and a relay lens with a magnification of
3.3× attached to a Samsung digital color camera SCC-131AN. The images were in the
three-channel RGB true color space (8 bits per channel) with different magnifications (40×,
100×, 200×, 400×). In the experiment, we expanded the dataset to 14,523 through rotation
and translation operations.
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To run K-means clustering, we selected 3191 labelled breast cancer images
(~400 samples per class) to train the ResNet-20 network with a train:test ratio of 7:3. Image
features were then extracted by the trained ResNet-20 for subsequent K-means clustering
and pseudo-labelling of a total of 10,162 unlabelled breast cancer images. The same network
structure, parameters and evaluation metrics as for the X-ray classification experiment were
used in this experiment.

Figure 7 shows the classification performance on the BreakHis dataset. It shows that
the classification accuracy was the highest (0.9687) after 140 epochs. From Figure 7 (right),
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it can be seen that the discriminator loss gradually decreased during the training; the
discriminator loss was lower than the loss of the generator, indicating that the discriminator
performed well in recognition of the labelled, unlabelled and synthetic samples.
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3.4. BreaKHis Classification Results

For the breast cancer image classification experiment, three different settings in terms
of the number of labelled training samples were tested, i.e., 10, 20 and 30, respectively.
Table 3 shows the accuracy of the model compared to CNN and SSGAN. We also com-
pared our results with the recently published results on the same dataset, including
ResNet50 [30,31] and three other types of CNN/DNN models [32–35]. The comparison
with these methods is shown in Table 4. Table 5 further shows the classification accuracy in
each individual subtype. As can be seen from Tables 3–5 the proposed algorithm achieved
very good overall classification performance (96.87%) and also consistently high perfor-
mance (95.60–97.31%) across different subtypes while using only a small number of labelled
samples. It also outperformed the state-of-the-art methods.

Table 3. Classification accuracy of samples with different numbers of labelled data.

Labelled Data
Accuracy (%)

CNN SSGAN The Proposed

10 68.87 75.37 95.10 ± 0.20
20 72.35 81.36 96.00 ± 0.70
30 73.68 84.63 96.87 ± 0.50

Table 4. Classification accuracy of different models.

Model Accuracy (%)

Y. Yari et al. [30] 93.35
M. Nawaz et al. [31] 95.00
P. Nguyen et al. [32] 73.68
S. Pratiher et al. [33] 95.46
D. Bardou et al. [34] 88.23

Z. Han et al. [35] 93.80
The Proposed 96.87



Sensors 2022, 22, 9967 10 of 12

Table 5. The classification accuracy of each type of breast cancer disease data.

Major Class Subclass Accuracy (%)

benign

adenosis 96.12
fibroadenoma 96.88

phyllodes tumor 96.74
tubular adenoma 95.60

malignant

ductal carcinoma 97.31
lobular carcinoma 96.80

mucinous carcinoma 95.78
papillary carcinoma 96.87

4. Discussion

A bottleneck exists in supervised learning for medical image classification. It is difficult
to obtain a large number of labelled medical images for training due to the restriction in
accessing, sharing and labelling patients’ data. Developing robust and effective DL models
with limited labelled data remains a major challenge in computer vision tasks, including
medical image classification. To address this challenge, we proposed a novel method that
used pseudo-labelling and semi-supervised GAN to classify medical images. This method
effectively reduced the dependence of DL models on large-scale labelled data. The technical
innovation of our method firstly includes our training of a ResNet-20 model to extract
image features from the medical images, which could robustly assign pseudo labels to
unlabelled images; secondly, our method enforcing the similarity between similar image
features and minimising the intra-class distances, which strengthened pseudo-labelling
performance and also improved the characterisation of image features effectively.

While DL will be increasingly used in medical image classification, how to use a
large amount of information in unlabelled medical images is an emerging research area.
Our proposed method provides a feasible solution for medical image classification, which
uses a small amount of labelled data but can achieve equivalent or better performance
compared to supervised learning methods. Our study demonstrates that pseudo-labelling
and semi-supervised GAN might be a good option for the future development of intelligent
medical image classification systems.

One limitation of the proposed method is that the quality of the ground truth labels has
a huge impact on the clustering/pseudo-labelling, as well as the subsequent classification
performance. If the ground truth labels are incorrect, the pseudo labels based on them will
become less reliable; thus, the errors will propagate to the feature extractor and classifier,
leading to misclassification and lower classification accuracy. Potential solutions to this
problem include a mechanism to detect out-of-distribution samples [36], such as anoma-
lies and adversarial samples, from the training set and novel ambiguity quantification
functions [37] to regulate the weights of unreliable training samples. This will be investi-
gated in our future studies.

5. Conclusions

To improve the classification accuracy of medical images and reduce the use of la-
belled images, we proposed a novel method based on K-means clustering/pseudo-labelling
and semi-supervised GAN. Comprehensive experiments were carried out on two bench-
mark datasets, including ChestX-ray14 and BreakHis. The results demonstrate that our
algorithm outperformed the state-of-the-art methods and worked effectively in medical
image classification with a small number of labelled samples. It achieved 93.15% accuracy
in X-ray classification with 400 labelled images per class and 96.87% accuracy in breast
histopathology image classification with only 30 labelled images per class. The method has
a high potential to assist in tasks where the unlabelled data is rich, but the labelling cost
is high. In our future studies, we will further investigate novel strategies to enhance the
model’s performance and robustness.



Sensors 2022, 22, 9967 11 of 12

Author Contributions: Methodology, K.L.; software, X.N.; writing—original draft preparation, X.N.
and K.L.; writing—review and editing, S.L. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funding by the Natural Science Foundation of China (Grant No. 61803257)
and the Aeronautical Science Foundation of China under Grant 201955015001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Two public benchmark datasets were used in this study, including the
ChestX-ray14 dataset [28] and BreakHis [29].

Acknowledgments: This work is sponsored by the Natural Science Foundation of China (Grant No.
61803257) and the Aeronautical Science Foundation of China under Grant 201955015001.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
2. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM

2017, 60, 84–90. [CrossRef]
3. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]
4. Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level Classification of Skin Cancer

with Deep Neural Networks. Nature 2017, 542, 115–118. [CrossRef]
5. Rajpurkar, P.; Irvin, J.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Ding, D.; Bagul, A.; Langlotz, C.; Shpanskaya, K.; et al. CheXNet:

Radiologist-Level Pneumonia Detection on Chest X-rays with Deep Learning. arXiv 2017, arXiv:1711.05225.
6. Liu, S.; Shah, Z.; Sav, A.; Russo, C.; Berkovsky, S.; Qian, Y.; Coiera, E.; Dileva, A. Isocitrate dehydrogenase (IDH) status prediction

in histopathology images of gliomas using deep learning. Sci. Rep. 2020, 10, 7733. [CrossRef]
7. Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros,

J.; et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus
Photographs. JAMA 2016, 316, 2402–2410. [CrossRef]

8. Liu, S.; Graham, S.; Schulz, A.; Kalloniatis, M.; Zangerl, B.; Cai, W.; Gao, Y.; Chua, B.; Arvind, H.; Grigg, J.; et al. A Deep
Learning-based Algorithm Identifies Glaucomatous Discs using Monoscopic Fundus Photographs. Ophthalmol. Glaucoma 2018, 1,
15–22. [CrossRef]

9. Anthimopoulos, M.; Christodoulidis, S.; Ebner, L.; Christe, A.; Mougiakakou, S. Lung Pattern Classification for Interstitial Lung
Diseases Using a Deep Convolutional Neural Network. IEEE Trans. Med. Imaging 2016, 35, 1207–1216. [CrossRef]

10. Quiroz, J.C.; Feng, Y.Z.; Cheng, Z.Y.; Rezazadegan, D.; Chen, P.-K.; Lin, Q.-T.; Qian, L.; Liu, X.-F.; Berkovsky, S.; Coiera, E.; et al.
Development and Validation of A Machine Learning Approach for Automated Severity Assessment of COVID-19 based on
Clinical and Imaging Data. JMIR Med. Inform. 2021, 9, e24572. [CrossRef]

11. Feng, Y.Z.; Liu, S.; Cheng, Z.Y.; Quiroz, J.C.; Rezazadegan, D.; Chen, P.-K.; Lin, Q.-T.; Qian, L.; Liu, X.-F.; Berkovsky, S.; et al.
Severity Assessment and Progression Prediction of COVID-19 Patients based on the LesionEncoder Framework and Chest CT.
Information 2021, 12, 471. [CrossRef]

12. Levesque, H.J.; Davis, E.; Morgenstern, L. The Winograd Schema Challenge. In Proceedings of the International Conference on
Principles of Knowledge Representation and Reasoning, Rome, Italy, 10–14 June 2012; pp. 552–561.

13. Xie, J.; Girshick, R.B.; Farhadi, A. Unsupervised Deep Embedding for Clustering Analysis. In Proceedings of the International
Conference on Machine Learning, Lille, France, 7–9 July 2015.

14. RoyChowdhury, A.; Yu, X.; Sohn, K.; Learned-Miller, E.; Chandraker, M. Improving Face Recognition by Clustering Unlabelled
Faces in the Wild. In Proceedings of the ECCV, Glasgow, US, 23-28 August 2020.

15. Ahn, E.; Kumar, A.; Feng, D.; Fulham, M.; Kim, J. Unsupervised Deep Transfer Feature Learning for Medical Image Classification.
In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019.

16. Arti, P.; Agrawal, A.; Adishesh, A.; Lahari, V.M.; Niranjana, K.B. Convolutional Neural Network Models for Content Based X-ray
Image Classification. In Proceedings of the 2019 IEEE International WIE Conference on Electrical and Computer Engineering
(WIECON-ECE), Bangalore, India, 15–16 November 2019.

17. Hsu, K.; Levine, S.; Finn, C. Unsupervised Learning via Meta-Learning. In Proceedings of the ICLR, New Orleans, LA, USA,
6–9 May 2019.

18. Maicas, G.; Nguyen, C.; Motlagh, F.; Nascimento, J.C.; Carneiro, G. Unsupervised Task Design to Meta-Train Medical Image
Classifiers. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA,
3–7 April 2020.

http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://doi.org/10.1145/3065386
http://doi.org/10.1007/s11263-015-0816-y
http://doi.org/10.1038/nature21056
http://doi.org/10.1038/s41598-020-64588-y
http://doi.org/10.1001/jama.2016.17216
http://doi.org/10.1016/j.ogla.2018.04.002
http://doi.org/10.1109/TMI.2016.2535865
http://doi.org/10.2196/24572
http://doi.org/10.3390/info12110471


Sensors 2022, 22, 9967 12 of 12

19. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper
with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015.

20. van Engelen, J.E.; Hoos, H.H. A Survey on Semi-Supervised Learning. Mach. Learn. 2019, 109, 373–440. [CrossRef]
21. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial

Nets. In Proceedings of the NIPS, Montreal, Canada, 8-13 December 2014; pp. 2672–2680.
22. Jose, L.; Liu, S.; Russo, C.; Nadort, A.; di Ieva, A. Generative Adversarial Networks in Digital Pathology and Histopathological

Image Processing: A Review. J. Pathol. Inform. 2021, 12, 43. [CrossRef] [PubMed]
23. Cong, C.; Liu, S.; di Ieva, A.; Pagnucco, M.; Berkovsky, S.; Song, Y. Colour Adaptive Generative Networks for Stain Normalisation

of Histopathology Images. Med. Image Anal. 2022, 82, 102580. [CrossRef] [PubMed]
24. Odena, A.; Olah, C.; Shlens, J. Conditional Image Synthesis with Auxiliary Classifier GANs. arXiv 2017, arXiv:1610.09585v4.
25. Han, L.; Gao, R.; Kim, M.; Tao, X.; Liu, B.; Metaxas, D. Robust Conditional GAN from Uncertainty-Aware Pairwise Comparisons.

arXiv 2019, arXiv:1911.09298v1. [CrossRef]
26. Guo, T.; Xu, C.; Huang, J.; Wang, Y.; Shi, B.; Xu, C.; Tao, D. On Positive-Unlabelled Classification in GAN. arXiv 2020,

arXiv:2002.01136v1.
27. Liu, K.; Wang, D.; Rong, M. X-ray image classification algorithm based on semi-supervised generative adversarial network. Acta

Opt. Sin. 2019, 39.
28. Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks

on Weakly Supervised Classification and Localization of Common Thorax Diseases. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3462–3471.

29. Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L. A Dataset for Breast Cancer Histopathological Image Classification. IEEE
Trans. Biomed. Eng. 2016, 63, 1455–1462. [CrossRef]

30. Yari, Y.; Nguyen, H.; Nguyen, T.V. Accuracy Improvement in Binary and Multi-Class Classification of Breast Histopathology
Images. In Proceedings of the 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE), Phu Quoc
Island, Vietnam, 13–15 January 2021.

31. Nawaz, M.A.; Sewissy, A.A.; Soliman, T.H.A. Automated Classification of Breast Cancer Histology Images using Deep Learning
based Convolutional Neural Networks. Int. J. Comput. Sci. Netw. Secur. 2018, 4, 152–160.

32. Nguyen, P.T.; Nguyen, T.T.; Nguyen, N.C.; Le, T.T. Multiclass Breast Cancer Classification Using Convolutional Neural Network.
In Proceedings of the 2019 International Symposium on Electrical and Electronics Engineering (ISEE), Ho Chi Minh City, Vietnam,
10–12 October 2019.

33. Pratiher, S.; Chattoraj, S. Diving Deep onto Discriminative Ensemble of Histological Hashing & Class-Specific Manifold Learning
for Multi-class Breast Carcinoma Taxonomy. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019.

34. Bardou, D.; Zhang, K.; Ahmad, S.M. Classification of Breast Cancer based on Histology Images using Convolutional Neural
networks. IEEE Access 2018, 6, 24680–24693. [CrossRef]

35. Han, Z.; Wei, B.; Zheng, Y.; Yin, Y.; Li, K.; Li, S. Breast Cancer Multi-Classification from Histopathological Images with Structured
Deep Learning Model. Sci. Rep. 2017, 7, 4172. [CrossRef] [PubMed]

36. Raghuram, J.; Chandrasekaran, V.; Jha, S.; Banerjee, S. A General Framework for Detecting Anomalous Inputs to DNN Classifiers.
In Proceedings of the International Conference on Machine Learning, Online, 18–24 July 2021.

37. Abdar, M.; Pourpanah, F.; Hussain, S.; Rezazadegan, D.; Liu, L.; Ghavamzadeh, M.; Fieguth, P.; Cao, X.; Khosravi, A.; Acharya,
U.R.; et al. A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges. Inf. Fusion 2021,
76, 243–297. [CrossRef]

http://doi.org/10.1007/s10994-019-05855-6
http://doi.org/10.4103/jpi.jpi_103_20
http://www.ncbi.nlm.nih.gov/pubmed/34881098
http://doi.org/10.1016/j.media.2022.102580
http://www.ncbi.nlm.nih.gov/pubmed/36113326
http://doi.org/10.1609/aaai.v34i07.6723
http://doi.org/10.1109/TBME.2015.2496264
http://doi.org/10.1109/ACCESS.2018.2831280
http://doi.org/10.1038/s41598-017-04075-z
http://www.ncbi.nlm.nih.gov/pubmed/28646155
http://doi.org/10.1016/j.inffus.2021.05.008

	Introduction 
	Materials and Methods 
	Pseudo-Labelling Based on K-Means Clustering 
	Generative Adversarial Network 
	Classification Based on GAN 
	Loss Functions 

	Results 
	Chest X-ray Pseudo-Labelling Results 
	Chest X-ray Classification Results 
	BreaKHis Pseudo-Labelling Results 
	BreaKHis Classification Results 

	Discussion 
	Conclusions 
	References

