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Abstract: The rise in location-based service (LBS) applications has increased the need for indoor
positioning. Various methods are available for indoor positioning, among which pedestrian dead
reckoning (PDR) requires no infrastructure. However, with this method, cumulative error increases
over time. Moreover, the robustness of the PDR positioning depends on different pedestrian activities,
walking speeds and pedestrian characteristics. This paper proposes the adaptive PDR method to
overcome these problems by recognizing various phone-carrying modes, including texting, calling
and swinging, as well as different pedestrian activities, including ascending and descending stairs
and walking. Different walking speeds are also distinguished. By detecting changes in speed during
walking, PDR positioning remains accurate and robust despite speed variations. Each motion state
is also studied separately based on gender. Using the proposed classification approach consisting
of SVM and DTree algorithms, different motion states and walking speeds are identified with an
overall accuracy of 97.03% for women and 97.67% for men. The step detection and step length
estimation model parameters are also adjusted based on each walking speed, gender and motion
state. The relative error values of distance estimation of the proposed method for texting, calling and
swinging are 0.87%, 0.66% and 0.92% for women and 1.14%, 0.92% and 0.76% for men, respectively.
Accelerometer, gyroscope and magnetometer data are integrated with a GDA filter for heading
estimation. Furthermore, pressure sensor measurements are used to detect surface transmission
between different floors of a building. Finally, for three phone-carrying modes, including texting,
calling and swinging, the mean absolute positioning errors of the proposed method on a trajectory of
159.2 m in a multi-story building are, respectively, 1.28 m, 0.98 m and 1.29 m for women and 1.26 m,
1.17 m and 1.25 m for men.

Keywords: indoor positioning; PDR; smartphone sensors; context-aware; machine learning

1. Introduction

Indoor positioning systems have been studied as a means of guiding pedestrians
around buildings, particularly in emergencies [1]. A variety of indoor positioning sys-
tems are currently available, including WLAN-based [2], Bluetooth low energy (BLE) [3,4],
ultra-wideband (UWB) [5,6], Ultrasonic Based [7] and infrared [8,9]. In these methods,
position errors do not accumulate over time. However, they require the development of
a positioning infrastructure before navigation; hence in an unknown environment, they
would be impossible to be used and would require a significant cost [10]. PDR is, rather,
an infrastructure-free, effective method that utilizes the estimated pedestrians’ steps, step
length and heading angle to determine the position [11]. Using PDR for positioning has
several advantages; its main benefit is that it does not require additional infrastructure and
uses body-mounted or smartphone-embedded inertial sensors such as a magnetometer,

Sensors 2022, 22, 9968. https://doi.org/10.3390/s22249968 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22249968
https://doi.org/10.3390/s22249968
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7133-3844
https://doi.org/10.3390/s22249968
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22249968?type=check_update&version=2


Sensors 2022, 22, 9968 2 of 29

gyroscope and accelerometer for positioning [10,12]. However, this method also has its
drawbacks. The major problem with PDR is the accumulated position error, which increases
over time and arises from various parts of the method, such as step length estimation, step
detection and heading estimation errors [10,13–15]. The second problem is that variations
in motion states, including phone-carrying modes and pedestrian activities, walking speeds
and characteristics of pedestrians compromise the robustness of its positioning [1,14,16,17].
Adjusting the parameters of different parts of PDR considering suitable pedestrian charac-
teristics and motion states led to an improvement in the accuracy and robustness of PDR
positioning. Step length estimation, which is a source of cumulative errors, plays a crucial
role in the PDR method [18]. Step length is affected by height, which in turn depends
on gender. According to the available data, the global average height for men is 171 cm
while for women it is 159 cm (https://ourworldindata.org/human-height, accessed on
1 November 2022). This indicates on average that men are 12 cm taller than women. There-
fore, gender is a reasonable parameter for considering two height categories. In addition,
pedestrians’ step lengths vary due to their walking speed, because acceleration data differs
across walking speeds. In the long and complicated paths in buildings, the pedestrian
moves at different speeds depending on different situations. Thus, the positioning error
can be decreased by considering the different walking speeds. Hence, considering varying
pedestrian characteristics as well as detecting various motion states and walking speeds
can improve the robustness of PDR positioning.

In this article, an adaptive PDR method is proposed to improve the robustness and
accuracy of Three-dimensional positioning by adjusting its parameters based on different
phone-carrying modes, pedestrian activities, walking speeds and individual characteristics.
The proposed classification approach uses a combination of support vector machine (SVM)
and decision tree (DTree) algorithms to recognize motion states. Additionally, the parame-
ters of a step detection and step length estimation model are adjusted based on gender, the
detected motion states and walking speeds. The main contributions of this research are
as follows:

• PDR positioning is more adaptable when considering various phone-carrying modes,
including texting, calling and swinging, as well as different pedestrian activities,
including ascending and descending stairs and walking. This is because sensor data
differ for different phone-carrying modes and pedestrian activities. The acceleration
data also differ across walking speeds as walking can be classified as fast, medium
and slow; thus, positioning accuracy is improved and adapted to changes in walking
speed. This paper uses the DTree and SVM to identify various motion states and
walking speeds. Using the proposed classification strategy, 15 combinations of five
pedestrian activities and three phone-carrying modes are accurately distinguished.

• In addition to detecting different motion states and walking speeds, considering
height and gender as effective parameters in estimating step length promotes distance
estimation accuracy. By analyzing each motion state separately for women and men,
PDR positioning is further adapted to diverse heights and genders, so the overall
accuracy of positioning improves.

• After state detection, parameters of step counting and methods for step length es-
timation are separately adjusted for each pedestrian activity, phone-carrying mode,
walking speed and gender to enhance the robustness and accuracy of PDR positioning.

The remainder of this paper is organized as follows: Section 2 discusses the literature.
The overview of the implementation of the positioning system is presented in Section 3. In
Section 4, the performance of the proposed method is empirically evaluated. Conclusions
and future research directions are discussed in Section 5.

2. Related Work

Three-dimensional (3D) indoor positioning using the PDR method consists of various
components such as step detection, step length estimation, heading determination and
altitude determination. Several methods have been developed for step detection based on
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accelerometer sensors, such as threshold setting [19], peak detection [20] and correlation
analysis [21]. The second component of the PDR is step length estimation. An accurate
estimate of step length plays a critical role in the PDR system. To estimate step length,
artificial neural networks (ANNs) [17,22–24] and empirical models [16] have generally been
utilized by many researchers. Several investigations have used neural networks to improve
the accuracy of step length estimation. This approach requires large data sets. In addition,
the increased complexity and time consumption make it difficult to be used in smartphones
and embedded systems [1]. However, several researchers have investigated empirical
models. Ladetto [25] utilized an empirical model that combines the step frequency and
variance of the sensor signal to estimate the step length. Weinberg [26] also used the quartic
root of the difference between the maximum and minimum of z-axis acceleration. Kim and
Jang [27] utilized the cubic root of the average acceleration magnitude to estimate the step
length. These empirical models can achieve high accuracy under typical walking conditions.
Therefore, empirical models should be adapted to various activities [1]. Moreover, the
parameters of these empirical models should be adjusted according to different phone-
carrying modes [16]. Movement habits should also be considered in setting parameters
of empirical models. Since the movement habits of each person are derived based on age,
gender, walking speed and height, the model’s parameters should be adjusted according to
the abovementioned characteristic [28].

Heading determination, which is a source of cumulative errors, plays a crucial role in
the PDR method. Using only a gyroscope for heading determination causes a larger cumu-
lative error. Besides, the cumulative error increases with time [14]. Fusion filter algorithms,
including complementary filters [11], Kalman filters [29], extended Kalman filters [30],
unscented Kalman filters [31] and Madgwick filters [32] have been proposed to improve
the heading accuracy. Numerous studies have also classified different phone-carrying
modes, human activities and movement habits. Some researchers have used machine
learning methods, such as SVM [1,33], K-nearest-neighbors (KNN) [33,34], DTree [33,35],
naive Bayes [34,36], multilayer perceptron [16] and random decision forests [37]. Several
researchers have also adopted deep learning methods, such as long-short-term memory
(LSTM) [17,23,38,39], ANN [10], recurrent artificial neural networks (RNN) [40] and convo-
lutional neural networks (CNN) [38,39].

Wang and Liu [33] used SVM and DTree to detect the combination of movement
state and phone-carrying modes. A method based on principal component analysis [41]
with global accelerations (PCA-GA) was also proposed for pedestrian heading estimation.
Klein and Solaz [16] investigated the effect of phone-carrying modes on the accuracy of
step length determination. They used the KNN, multilayer perceptron, SVM, gradient
boosting and random forest algorithms to recognize four phone-carrying modes (swinging,
talking, texting and in the pocket). The best accuracy of 95.4% was achieved by the gradient
boosting algorithm. They also chose an appropriate parameter in the empirical model of
step length estimation according to each phone-carrying mood. Gu and Khoshelham [18]
proposed a model for step length estimation based on the stacked auto-encoders approach,
which considered different walking speeds and phone-carrying modes and was adapted
to different users’ characteristics. Xu and Xiong [10] used an ANN to recognize three
phone poses. The peak detection method was implemented to count steps for various
phone-carrying modes, while a neural network and differential GPS were used to estimate
step lengths. A zero angular algorithm was proposed to correct the heading error caused
by switching the smartphone carrying mode.

Wang and Ye [23] proposed a step length estimation method based on LSTM and
de-noising auto-encoders, called tapeline. This method achieves good estimation accuracy,
with a step-length error of 4.63% and a walking-distance error of 1.43% without relying on
pre-collected databases when a pedestrian walks in complex environments (stairs, spiral
stairs, or elevators) with motion patterns (fast walking, typical walking, slow walking,
running, or jumping). The significant disadvantages of tapeline were that the LSTM
network and noise reduction procedures involve significant processing overhead and
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consider only the texting smartphone carrying mode. Wang and Ye [42] proposed a
smartphone mode recognition algorithm using a stacking regression model to effectively
determine various smartphone carrying modes (calling, handheld, pocket, armband and
swing), with an average recognition accuracy of 98.82%. The proposed method results in
an error of 3.30% for step length estimation and 2.62% for walking distance estimation. Lu
and Wu [43] designed a fuzzy controller based on the fuzzy logic algorithm to adaptively
adjust the constant coefficient k in Weinberg’s nonlinear step length estimation (SLE) model
at each detected step, which is measured based on each user’s different speed of walking.
Ye and Li [38] designed and trained deep learning models via LSTM and CNN networks
based on the tensor flow framework for pedestrian motion mode, smartphone posture and
real-time comprehensive pedestrian activity recognition. Xia and Huang [39] introduced
a combination of LSTM and CNN architecture for human activity recognition, with an
accuracy of 95.78%, 95.85% and 92.63%, respectively, which was validated using three
public datasets, i.e., UCI, WISDM and Opportunity. Several researchers also adopted
map-matching algorithms to improve indoor positioning accuracy. Ren and Guo [44]
employed a 2D map-matching algorithm using CRF based on inertial data which improved
positioning accuracy.

Geng and Xia [14] proposed a robust adaptive cubature Kalman filter algorithm for
heading estimation. The heading and step length of each step was optimized by a Kalman
filter to decrease positioning error. A calculation strategy for the heading angle of the
16-wind rose map based on the indoor map vector information was proposed, which
improved pedestrian positioning accuracy and decreased the accumulation error. The
robust adaptive Kalman filter algorithm was also used to fuse differential barometric
altimetry and step frequency detection methods to estimate the optimum altitude. To
improve the accuracy of positioning, Park and Lee [45] integrated the Integration approach
(IA) and Parametric approach (PA) in PDR systems. When the direction of the person’s
movement differed from the direction of the phone, they used PCA to estimate the direction
and PA to estimate the step length. Wu and Ma [1] exploited human activity recognition
and PDR components’ parameter adjustment according to each recognition activity. They
defined two types of human activities: (a) steady-heading, i.e., ascending/descending
stairs, stationary, normal walking, stationary stepping and lateral walking, and (b) non-
steady-heading activities, i.e., door opening and turning. They employed SVM and DTree
machine learning algorithms to recognize steady-heading activities. They also used an
auto encoder-based deep neural network and a heading range-based method to detect
non-steady-heading activities. The overall classification accuracy of their method was
98.44% and its average positioning error in a multi-story building was 1.79 m. However,
their system was developed and tested by only two people and they considered only texting
as phone-carrying mode.

The reviewed studies attempted to adjust the methods of step detection, step length
estimation and heading determination based on motion states to improve the accuracy
of the PDR. Few investigations, however, have adjusted the PDR components based on
movement habits, walking speeds and user characteristics. Because the user moves at
different speeds along a complex indoor path, using the PDR method without adjusting the
parameters of its components based on various walking speeds causes errors in positioning.
Moreover, according to the literature, detecting steps and estimating step length without
considering users’ characteristics including gender, height and age led to significant po-
sitioning errors. In this paper, we improve the accuracy and robustness of the proposed
method by adjusting PDR component parameters based on walking speeds, motion states
and pedestrian characteristics, including gender and height.

3. The Proposed Method

The proposed PDR system (Figure 1) includes data collection, data calibration, mo-
tion detection, step detection, step length estimation, heading determination and height
estimation. Initially, the data are collected by volunteers of different heights and ages as
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they walked at different speeds and modes. Several errors occurred in the measurement
data; thus, calibration was required and the appropriate features were extracted from the
calibrated data and used in the classification algorithm. Different motion modes were
distinguished with the combination of DTree and SVM algorithms. DTree was used for rec-
ognizing different phone-carrying modes, while the SVM was employed to detect different
pedestrian activities. The parameters of step detection and step length estimation were
adjusted based on gender, walking speed, pedestrian activity and phone-carrying mode. A
gradient descent algorithm (GDA) was utilized to estimate the heading from the accelerom-
eter, gyroscope and magnetometer data. Finally, movement altitude was estimated with
pressure data and the 3D position was calculated by using the PDR equation.
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Figure 1. The structure of the proposed PDR system.

3.1. PDR

According to (1), the PDR approach calculates the user’s location at each step based
on his/her length, direction and location in the previous step [46].

Xi = Xi−1 + Li × cos Ψi . Yi = Yi−1 + Li × sin Ψi (1)

where Xi and Yi represent the user’s estimated position in Step i and Li and Ψi are the
length and direction of the user’s movement in Step i, respectively. The initial location is
assumed to be known and can be determined by default or by QR codes in the building.

3.2. Components of the PDR Positioning System

Positioning using the PDR method includes various components, such as movement
state recognition, step detection, step length estimation and movement altitude estimation.
Each of these components will be discussed as follows.

3.2.1. Preprocessing

Since smartphone-embedded inertial sensors are not very accurate, the raw sensor
data are noisy. Before step detection and motion state recognition, a preprocessing process
must be applied to eliminate the noise and errors. The low-pass filter, which uses a cut-off
frequency of 5 Hz, softens and eliminates some high-frequency noises from the acceleration
signals, allowing more accurate detection of pedestrian movements and reducing false step
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detection. In Figure 2, acceleration data are filtered using a low-pass filter with a cut-off
frequency of 5 Hz.
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Smartphone magnetometers are easily affected by the magnetic fields of the local
environment. There are two kinds of disturbances in the magnetometer data, hard iron
disturbance and soft iron disturbance. Permanent magnet materials cause a hard iron
disturbance, which affects the magnetometer’s values, similar to constant bias. Unlike
hard-iron disturbances, soft-iron disturbances are caused by materials that influence or
disturb but do not generate magnetic fields [47]. The magnetometer signals were calibrated
using the least squares fitting ellipsoid method [48]. Ellipsoid fitting models from raw and
calibrated magnetometer data are displayed in Figures 3a and 3b, respectively.
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3.2.2. Classification of Different Motion States

Various activities were considered in the proposed method to enhance the robustness
of PDR positioning, such as walking, ascending and descending stairs. Further, walking
was classified as fast, normal, or slow, based on speed. Moreover, three phone-carrying
modes, texting, calling and swinging, were considered. Based on Figure 4, when using
a smartphone in texting mode, users hold it horizontally in front of their bodies and in
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calling mode they hold it vertically near their ears. In the swinging mode, users hold
the smartphone in their hands and swing it. This study analyzed each movement state
separately for women and men. Figure 5 compares the acceleration data values in different
phone-carrying modes and walking speeds. Based on Figure 5b, as the speed increased,
the range of acceleration during the steps rose. To recognize different motion states, three
sensors, an accelerometer, gyroscope and barometer, were employed. The barometer had
the lowest sampling rate, i.e., 10 Hz, whereas the sampling rates of the other two sensors
were 100 Hz.
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Figure 5. Comparison of acceleration data in different; (a) phone-carrying modes; (b) walking speeds.

To recognize different motion states, 15 features were extracted from the accelerometer,
gyroscope and barometer data. The features were the average (except for the barom-
eter), standard deviation (STD), the difference between the maximum and the mini-
mum, skewness and zero crossing rate. To evaluate the performance of the classifica-
tion, 43 experimenters of different ages and heights participated in the data collection,
including 24 women and 19 men. The mean age and height of the men were, respec-
tively, 27.5 ± 5.1 years and 171.1 ± 5.5 cm, while those of the women were, respectively,
27.54 ± 5.6 years and 159.6 ± 6.7 cm. More details about the experimenters’ height and age
are shown in Figure 6.



Sensors 2022, 22, 9968 8 of 29

Sensors 2022, 22, x FOR PEER REVIEW 8 of 30 
 

 

skewness and zero crossing rate. To evaluate the performance of the classification, 43 ex-

perimenters of different ages and heights participated in the data collection, including 24 

women and 19 men. The mean age and height of the men were, respectively, 27.5 ± 5.1 

years and 171.1 ± 5.5 cm, while those of the women were, respectively, 27.54 ± 5.6 years 

and 159.6 ± 6.7 cm. More details about the experimenters’ height and age are shown in 

Figure 6. 

  

(a) (b) 

Figure 6. The experimenters’ characteristics; (a) Height range; (b) Age range. 

The combination of 15 motion states including three phone-carrying modes (texting, 

calling, swinging) and five pedestrian activities (descending stairs, ascending stairs, fast 

walking, normal walking and slow walking) were considered as different motion states 

and the experimenters collected data in each state. After data collection, data segmenta-

tion was performed using a two-second sliding window with a 50% overlap and the sen-

sor sampling frequency was 100 Hz. Each two-second sliding window is called an in-

stance. Women and men had 6112 and 5336 instances in total, respectively. The instance 

number of each class is reported in Table 1. 

Table 1. The instance number of each class for the test. 

Gender Mode Downstairs Upstairs Fast Walking Normal Walking Slow Walking 

Female 

Texting 572 332 259 223 759 

Calling 534 303 156 334 651 

Swinging 561 297 185 303 643 

Male 

Texting 513 352 238 299 537 

Calling 522 320 121 149 565 

Swinging 498 303 198 207 514 

A combination of DTree and SVM algorithms was adopted to detect the motion 

states, including different phone-carrying modes and pedestrian activities. Based on 5-

fold cross-validation [49], Figure 7 illustrates the recognition performance of women and 

men for DTree, KNN, SVM, a combination of DTree and SVM and a combination of DTree 

and KNN algorithms. According to Figure 7, a combination of DTree and SVM algorithms 

outperformed the mentioned algorithms in women and men with 97% and 98% accuracy, 

respectively. 

5

15

4

0

2
1

7

9

0

2

4

6

8

10

12

14

16

150-159 160-169 170-179 180-189

N
u

m
b

er
 o

f 
su

b
je

ct
s

Height (Cm)

female male

13

4 4
3

11

5

2
1

0

2

4

6

8

10

12

14

18-25 25-35 35-45 45-55

N
u

m
b

er
 o

f 
su

b
je

ct
s

Age 

female male

Figure 6. The experimenters’ characteristics; (a) Height range; (b) Age range.

The combination of 15 motion states including three phone-carrying modes (texting,
calling, swinging) and five pedestrian activities (descending stairs, ascending stairs, fast
walking, normal walking and slow walking) were considered as different motion states
and the experimenters collected data in each state. After data collection, data segmentation
was performed using a two-second sliding window with a 50% overlap and the sensor
sampling frequency was 100 Hz. Each two-second sliding window is called an instance.
Women and men had 6112 and 5336 instances in total, respectively. The instance number of
each class is reported in Table 1.

Table 1. The instance number of each class for the test.

Gender Mode Downstairs Upstairs Fast
Walking

Normal
Walking

Slow
Walking

Female

Texting 572 332 259 223 759

Calling 534 303 156 334 651

Swinging 561 297 185 303 643

Male

Texting 513 352 238 299 537

Calling 522 320 121 149 565

Swinging 498 303 198 207 514

A combination of DTree and SVM algorithms was adopted to detect the motion
states, including different phone-carrying modes and pedestrian activities. Based on
5-fold cross-validation [49], Figure 7 illustrates the recognition performance of women
and men for DTree, KNN, SVM, a combination of DTree and SVM and a combination of
DTree and KNN algorithms. According to Figure 7, a combination of DTree and SVM
algorithms outperformed the mentioned algorithms in women and men with 97% and 98%
accuracy, respectively.
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Figure 7. Comparison of the performance recognition of different algorithms based on the 5-fold
cross-validation.

Using DTree and SVM algorithms, 15 combinations of phone-carrying modes and
pedestrian activities were recognized. As shown in Figure 8b, DTree was used to detect
phone-carrying modes, while SVM was utilized to detect pedestrian activities based on
the identified phone-carrying mode. A DTree is a supervised learning algorithm and non-
parametric classifier in the form of a tree and is composed of nodes, branches and leaves
that are predicted classes. To predict class labels, DTree uses training data to infer decision
rules [50]. DTree was used to detect the phone-carrying modes in this paper, where the
average acceleration values of the X, Y and Z axes were used as the inputs. Accordingly,
three rules were designed based on training data. The tree view of this DTree is presented
in Figure 8a. L1 and L2 are the parameters of the DTree model and are estimated according
to the pedestrian’s gender. L1 and L2 are (0.95,0.22) and (0.82,0.055) for females and
males, respectively. According to the output of DTree, the SVM algorithm is used to
determine pedestrian activities and walking speed. SVM is a supervised machine learning
algorithm used for both classification and regression. The objective of this algorithm is
to identify hyperplanes to separate data points into different classes, which is improved
by mapping input feature data into a higher-dimensional feature space [51]. Accordingly,
Kernel functions are utilized to map input feature data from a lower-dimensional space into
a higher-dimensional space [52]. The radial basis function kernel is selected as the kernel
function in this article. Input vectors of the SVM include average (except for barometer),
STD, the difference between the maximum and minimum values, skewness and zero
crossing rate of different sensors’ data, while the output is the motion state.
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The recognition accuracy of the DTree algorithm based on 5-fold cross-validation is
shown in Table 2. The average recognition accuracy of the phone-carrying modes was
98.7% for women and 99.7% for men. DTree confusion matrices for both men and women
are given in Table 3, with the rows representing actual phone-carrying modes and the
columns showing the detected phone-carrying modes. According to Table 3, texting and
swinging modes were recognized correctly in both genders. Nevertheless, 2.9% and 0.9%
instances of the calling mode were misrecognized as the swinging mode in women and
men, respectively.

Table 2. The recognition accuracy of DTree algorithms based on the 5-fold cross-validation.

Gender 1 2 3 4 5 Average STD

Female 99.1% 98.8% 98.0% 98.8% 98.8% 98.7% 0.004

Male 99.70% 99.50% 99.70% 99.50% 100% 99.7% 0.002

Average 99.2% 0.005

Table 3. Confusion Matrix of the DTree Algorithm.

Genders Female Male

Modes Texting Calling Swinging Texting Calling Swinging

Texting 100% 0% 0% 100.0% 0% 0%

Calling 0% 97.1% 2.9% 0% 99.1% 0.9%

Swinging 0% 0% 100% 0% 0% 100%

The recognition performance of SVM based on 5-fold cross-validation is given in
Table 4. According to Table 4, the average recognition accuracy of pedestrian activities
for different states was 95.5%. The SVM confusion matrices for both men and women are
shown in Table 5, with the rows representing actual pedestrian activities and the columns
showing the detected pedestrian activities. According to Table 5, in all six states, descending
and ascending stairs were distinguished with over 97.9% accuracy. In addition, three types
of walking speed were distinguished for women in texting, calling and swinging modes
with an average accuracy of 94.2%, 94.6% and 93.2%, respectively. For men in texting,
calling and swinging modes, three types of walking speeds were distinguished with an
average accuracy of 92%, 94.4% and 95.9%, respectively.

Table 4. Recognition performance of SVM algorithms based on 5-fold cross-validation.

Mode Gender 1 2 3 4 5 Average STD

Texting
Female 96.2% 96.5% 96.5% 96.2% 96.1% 96.3% 0.002

Male 92.7% 93.5% 93.7% 93.7% 94.6% 93.7% 0.006

Calling
Female 94.6% 94.8% 95.0% 95.2% 95.3% 95.0% 0.003

Male 96.1% 96.9% 97.3% 96.7% 96.5% 96.7% 0.004

Swinging
Female 94.9% 94.8% 94.5% 94.5% 95.2% 94.8% 0.003

male 96.4% 96.8% 96.5% 96.7% 96.7% 96.6% 0.002

Average 95.5% 0.011
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Table 5. Confusion Matrix of the SVM Algorithm.

Gender

Modes Female Male

Activities DS US FW NW SW DS US FW NW SW

Texting

Downstairs 97.9% 0% 1.6% 0% 0.5% 99.5% 0% 0% 0.5% 0%
Upstairs 0% 99.1% 0% 0% 0.9% 0% 100% 0% 0% 0%

Fast walking 3.4% 0% 95.4% 1.1% 0% 1.3% 0% 91.1% 2.5% 5.1%
Normal walking 0% 0% 2.7% 88.8% 8.5% 0% 0% 1% 93% 6.0%

Slow walking 0% 0% 0% 1.6% 98.4% 0% 0% 2.8% 5.1% 92.1%

Calling

Downstairs 98.1% 0.5% 1.4% 0% 0% 98.2% 0% 0% 0% 1.8%
Upstairs 0% 99% 0% 1% 0% 0.9% 99.1% 0% 0% 0%

Fast walking 0% 0% 96.2% 3.8% 0% 0% 0% 95% 5% 0%
Normal walking 0% 0% 0% 92.8% 7.2% 0% 0% 2% 89.8% 8.2%

Slow walking 0% 0% 0% 5.1% 94.9% 0% 0% 1.1% 1.1% 97.9%

Swinging

Downstairs 97.9% 0% 0% 2.1% 0% 98% 1.0% 0% 1.0% 0%
Upstairs 0% 98.5% 0% 0% 1.5% 0.9% 98.2% 0% 0% 0.9%

Fast walking 0% 0% 95.2% 4.8% 0% 0% 0% 100% 0% 0%
Normal walking 0% 0% 1% 90.1% 8.9% 0% 0% 1.4% 91.3% 7.2%

Slow walking 0% 0% 0.9% 4.7% 94.4% 0% 0% 1.2% 2.3% 96.5%

3.2.3. Step Detection

The peak detection method is used for step detection and its process is initiated by
detecting the peak points in the accelerometer data. If the peak points are below the peak
threshold or closer to the corresponding valley points than the peak valley threshold, they
are eliminated. Additionally, peak points are removed if the time between them and the
next peak point is less than the time threshold to prevent overcounting [20]. The mentioned
thresholds are illustrated in Figure 9.
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Based on pedestrian activity and walking speed, threshold values were determined
empirically to improve the accuracy of step detection. Table 6 lists the relevant threshold
values for pedestrian activities and walking speeds.
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Table 6. Threshold values.

Pedestrian
Activity Speed Peak Threshold

(m/s2)

Peak-Valley
Threshold

(m/s2)

Time Difference
Threshold

(s)

Slow 11.2 1.5 0.5

Normal 11.4 2 0.4

Fast 11.6 2.5 0.3

Ascending and
descending stairs - 11.75 2.5 0.2

3.2.4. Step Length Estimation

Weinberg’s model, which uses the quartic root of the difference between the maximum
and minimum of z-axis acceleration, was adopted to estimate step length [26]. Forty people,
including 20 men and 20 women of different ages and heights, walked along a 20-m path at
different speeds while carrying their smartphones in texting, calling and swinging modes.
Then, the K coefficient was estimated for each state using the least squares technique. The
mathematical equation of Weinberg’s model is presented in (2).

S = k × 4
√

amax − amin (2)

where amax is the maximum acceleration in each step, amin denotes the minimum acceler-
ation in each step and k represents the coefficient estimated based on different walking
speeds, genders and phone-carrying modes. According to Figure 10, the k coefficient for
men was higher than for women at the same speed in each motion mode. Furthermore, the
k value increased for higher walking speeds.
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The step length was calculated using the Weinberg model. To assess the performance
of the step length estimation, four experimenters of different ages and heights participated,
including two women and two men. The mean age and height of the men were respec-
tively 25.5 ± 6 years and 175.1 ± 6.5 cm, while those of the women were respectively
25.5 ± 5.5 years and 161.5 ± 7.7 cm. In this section, gender and walking speeds are called
effective parameters. Assuming that pedestrian activity is detected, for walking, the k
values were selected based on effective parameters and step length was estimated based on
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the selected k; otherwise, for ascending and descending stairs, the step length was assumed
0.3 m regardless of the effective parameters. Tables 7 and 8 present the estimated distance
for two paths, including a straight path of 56.7 m and a rectangular path of 79.9 m, respec-
tively. These tables also include comparisons of distance error values by considering and
neglecting effective parameters. Column M2 in Tables 7 and 8 represents the results of the
step length estimation without considering the effective parameters. According to Table 7,
the relative distance errors of the straight path for texting, calling and swinging modes were
1.4% and 6.1%, 1.7% and 10.5% and 1.6% and 8.1%, respectively, when considering and
neglecting the effective parameters. As shown in Table 8, the relative distance errors of the
rectangular path for texting, calling and swinging modes were respectively 1.5% and 6%,
0.7% and 10% and 1.7% and 9.5% when considering and neglecting effective parameters.
Based on Figure 11a,b, the distance estimation accuracy was improved significantly in both
straight and rectangular paths by considering the effective parameters.
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Figure 11. Comparison of the average relative error values of distance estimation; (a) Straight path;
(b) Rectangular path.

Table 7. Distance estimation of the straight path.

Mode Gender Subject
Steps Count Steps Count

Error (%) Distance (m)
Absolute
Distance
Error (m)

Relative
Distance Error

(%)

Actual M1* M2* M1* M2* Actual M1* M2* M1* M2* M1* M2*

Texting

Female
1 102 99 99 3.3% 3.4% 56.2 55.8 60.6 0.4 4.4 0.8% 7.8%

2 100 99 99 1.4% 1.4% 56.2 55.7 60.3 0.5 4.1 1.0% 7.3%

Male
1 72 70 69 3.4% 3.2% 56.2 55.5 51.3 0.7 4.9 1.2% 8.7%

2 80 78 85 2.5% 5.3% 56.2 54.7 56.6 1.5 0.4 2.6% 0.6%

Average 2.6% 3.3% 56.2 55.4 57.2 0.8 3.4 1.4% 6.1%

Calling

Female
1 102 104 103 2.0% 1.0% 56.2 57.2 64.4 1.0 8.2 1.7% 14.5%

2 99 100 100 1.0% 1.0% 56.2 56.4 63.9 0.2 7.7 0.3% 13.7%

Male
1 71 72 72 1.6% 1.6% 56.2 54.6 52.1 1.6 4.1 2.9% 7.4%

2 79 82 89 3.8% 9.6% 56.2 55.2 59.7 1.0 3.5 1.7% 6.3%

Average 2.1% 3.3% 56.2 55.8 60.0 0.9 5.9 1.7% 10.5%

Swinging

Female
1 99 102 102 3.0% 3.0% 56.2 57.1 61.8 0.9 5.6 1.6% 9.9%

2 101 104 103 3.0% 2.0% 56.2 57.3 61.1 1.1 4.9 2.0% 8.7%

Male
1 69 69 72 0.4% 3.2% 56.2 55.7 52.1 0.5 4.1 0.9% 7.4%

2 76 78 84 2.6% 7.6% 56.2 55.1 52.7 1.1 3.5 1.9% 6.3%

Average 2.2% 3.9% 56.2 56.3 56.9 0.9 4.5 1.6% 8.1%

M1*: the results of the step length estimation considering the effective parameters. M2*: the results of the step
length estimation without considering the effective parameters.
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Table 8. Distance estimation of the rectangular path.

Mode Gender Subject
Steps Count Steps Count

Error (%) Distance (m)
Absolute
Distance
Error (m)

Relative
Distance Error

(%)

Actual M1* M2* M1* M2* Actual M1* M2* M1* M2* M1* M2*

Texting

Female
1 130 133 132 2.6% 1.4% 79.9 80.2 85.2 0.3 5.3 0.3% 6.6%

2 130 132 136 2.4% 6.4% 79.9 77.1 77.9 2.8 2.0 3.5% 2.5%

Male
1 124 124 123 0.1% 1.0% 79.9 78.2 82.1 1.7 2.2 2.1% 2.8%

2 99 101 101 2.1% 2.0% 79.9 80.1 70.3 0.2 9.6 0.2% 12%

Average 1.8% 2.7% 79.9 78.9 78.9 1.2 4.8 1.5% 6.0%

Calling

Female
1 129 132 131 3.0% 2.0% 79.9 78.8 89.4 1.1 9.5 1.4% 12%

2 139 137 137 1.7% 1.7% 79.9 79.1 89.8 0.8 9.9 1.0% 12.4%

Male
1 125 125 125 0% 0% 79.9 79.7 74.1 0.2 5.8 0.3% 7.2%

2 103 104 102 1.0% 0.9% 79.9 79.8 73.1 0.1 6.8 0.2% 8.6%

Average 1.4% 1.2% 79.9 79.3 81.6 0.6 8.0 0.7% 10%

Swinging

Female
1 140 143 143 2.9% 2.8% 79.9 81.3 87.8 1.4 7.9 1.7% 9.9%

2 129 130 137 1.0% 8.0% 79.9 81.8 86.8 1.9 6.9 2.4% 8.6%

Male
1 130 132 132 1.6% 1.4% 79.9 81.6 86.8 1.7 6.9 2.1% 8.6%

2 100 101 102 1.1% 2.0% 79.9 79.5 71.1 0.4 8.8 0.5% 11%

Average 1.7% 3.5% 79.9 81.0 83.1 1.3 7.6 1.7% 9.5%

M1*: the results of the step length estimation considering the effective parameters. M2*: the results of the step
length estimation without considering the effective parameters.

According to Table 9, the relative distance errors of 3D paths for texting, calling and
swinging modes were 0.7% and 24.5%, 1.4% and 25% and 1.1% and 23.8%, respectively,
when considering and neglecting the effective parameters and activity detection. According
to Figure 12, in addition to considering the effective parameters, recognizing the ascending
or descending stairs significantly reduced the distance estimation error in the 3D trajectory.

Table 9. Distance estimation on the 3D trajectory.

Mode

Path Complex

Gender
Steps Count Steps Count

Error (%) Distance (m)
Absolute
Distance
Error (m)

Relative
Distance
Error (%)

Actual M1* M2* M1* M2* Actual M1* M2* M1* M2* M1* M2*

Reading

Female 216 214 222 0.9% 2.8% 105.2 104.6 140.6 0.6 35.4 0.6% 33.6%

Male 162 166 171 2.5% 5.6% 105.2 104.3 121.5 0.9 16.3 0.8% 15.5%

Average 1.7% 4.2% 105.2 104.5 131.0 0.7 25.8 0.7% 24.5%

Calling

Female 213 214 215 0.5% 0.9% 105.2 104.3 138.7 0.9 33.5 0.9% 31.8%

Male 160 163 163 1.9% 1.9% 105.2 103.2 124.2 2.0 19.0 1.9% 18.1%

Average 1.2% 1.4% 105.2 103.7 131.5 1.5 26.3 1.4% 25.0%

Swinging’

Female 216 219 210 1.4% 2.8% 105.2 106.3 133.1 1.1 27.9 1.0% 26.5%

Male 180 178 173 1.1% 3.9% 105.2 104.0 127.4 1.2 22.2 1.2% 21.1%

Average 1.3% 3.3% 105.2 105.1 130.2 1.1 25.0 1.1% 23.8%

M1*: the results of the step length estimation considering the effective parameters. M2*: the results of the step
length estimation without considering the effective parameters.
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Figure 12. Comparison of the average relative errors of distance estimation in the 3D trajectory.

3.2.5. Heading Estimation

The GDA algorithm (Algorithm 1) was used for heading estimation. The mathematical
analysis of the gradient descent algorithm for heading estimation has been widely covered
in the literature [32,53]; therefore, only a summary of the equations used for heading
estimation is presented and discussed in this section. This algorithm uses accelerometer
and magnetometer signals to calculate the gyroscope measurement error as quaternion
derivatives. System inputs include acceleration, gyroscopes and magnetometer sensors.
Generally, GDA assumes that magnetic data within a building are subject to external
magnetic disturbances. To increase accuracy, magnetic data with a wide fluctuation range
relative to the reference magnetic field is avoided [53]. In this algorithm, stability is the
result of magnetic field stability. mags, magEarth and mag_stability_threshold represent the
measured magnetometer field, the Earth’s local reference magnetic field and the threshold
to limit the magnetic field interference, respectively. Vector F represents the error vector
between the estimated value and the measured data of acceleration and magnetometer.
If magnetic stability = 1, the magnetometer data are used; otherwise, gyroscope and
accelerometer data are combined. Consequently, in the case of stable magnetic information,
error vector F(q̂t−1 . mag) and, otherwise, error vector F(q̂t−1 . acc) is used to correct the

.
qt

and the final optimal quaternion value q̂t is obtained. This algorithm requires a parameter
called β, which represents the measurement error of the gyroscope [32]. β was assumed to
be 0.05 in this paper.

Algorithm 1. GDA algorithm

Input: acc→measured acceleration,ω→measured angular velocity, mag→measured magnetometer, Gacc
→ earth’s gravity, Gmag →magnetic field vectors
Output: q̂t→ updated quaternions
1. Sω =

[
0ωx ωy ωz

]
2. If ( | ||mags|| -magEarth | < mag_ stability_thereshold ) then
3. stability = 1
4. else then
5. stability = 0
6. end if
7. F(q̂t−1 . acc) = (q̂∗t−1⊗ Gacc) ⊗ q̂t−1- acc
8. If (stability) then
9. F(q̂t−1 . mag) = q̂∗t−1⊗ Gmag ⊗ q̂t−1 −mag

10. ∇ F(q) =
[

J
(
q̂t−1 .acct

)
J
(
q̂t−1 .mag

)]T[F
(
q̂t−1 . acct

)
F
(
q̂t−1 . mag

)]
11. else then
12. ∇ F(q) = JT(q̂t−1 .acct

)
F(q̂t−1 . acct)

13. end if
14.

.
qt =

1
2 q̂t−1 ⊗ Sω − β ∇ F(q)

|∇ F(q)|
15. qt = q̂t−1 +

.
qt ∆t

16. q̂t = qt
|qt|

17. Return q̂t
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According to (3), the heading was estimated based on Eulerian angles [54]. In (3), the
scalar part of q is q0 and its vector part is (q1, q2, q3).

yaw = tan−1

(
2(q2q3 − q0q1)

q2
0 − q2

1 + q2
2 − q2

3

)
(3)

3.3. Calculation of the Pedestrians’ Movement Height

According to (4), pressure sensor measurements were used for height estimation [55].

ht = h0 +
R× T0 × ln

(
Pt
P0

)
−gM

(4)

where h0 is the initial height in meters, R is the universal gas constant equal to 8.31432 NM
molk ,

T0 is the temperature in Kelvin and P0 and Pt are, respectively, the initial atmospheric
pressure and the atmospheric pressure in Pascal at time t. Moreover, g is the magnitude of
local gravity acceleration equal to 9.806 m

s2 and M is the average molar mass of air equal

to 0.0289644 Kg
mol . Figure 13a demonstrates the pressure sensor measurements. Building

floors are distinguished based on altitudes derived from pressure sensor measurements. As
shown in Figure 13b, walking initiates on the first level. As the pedestrian walks upstairs,
his/her height increases from zero on the first level to 9 m on the third.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 30 
 

 

 

  

(a) (b) 

Figure 13. (a) The sensor’s measurements; (b) altitude values derived from pressure sensor meas-

urements. 

The values of altitude estimation error were calculated based on differences between 

the estimated and the actual altitude values. The mean and standard divisions of altitude 

estimation error were 0.26 m and 0.19 m, respectively. The cumulative disturbance func-

tion (CDF) was used to further analyze the absolute estimation altitude errors. According 

to Figure 14, the 80% probability of altitude estimation error is less than 0.42 m. This value 

cannot affect floor detection in this building because the floors’ level elevation differs by 

4.5 m and it is comparatively small. 

 

Figure 14. The CDF of the height estimation error. 

4. Positioning Experiments and Assessment 

Figure 13. (a) The sensor’s measurements; (b) altitude values derived from pressure sensor
measurements.

The values of altitude estimation error were calculated based on differences between
the estimated and the actual altitude values. The mean and standard divisions of altitude
estimation error were 0.26 m and 0.19 m, respectively. The cumulative disturbance function
(CDF) was used to further analyze the absolute estimation altitude errors. According to
Figure 14, the 80% probability of altitude estimation error is less than 0.42 m. This value
cannot affect floor detection in this building because the floors’ level elevation differs by
4.5 m and it is comparatively small.
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4. Positioning Experiments and Assessment

The experiments were conducted in the building of the School of Surveying and
Geospatial Engineering at the University of Tehran (Iran). As shown in Figure 15, it is a
normal multi-story building with classrooms and offices. Using the multi-story building
plan in Google SketchUp software, a three-dimensional model was generated for a better
representation of the studied area. This section of the paper contains the presentation of
the results followed by the analysis and discussion of the results.
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the area.

To evaluate the performance of the positioning, experimenters of different ages and
heights, two women and two men, participated. The average age and height of the men
were, respectively, 28 years and 174.1 cm and, respectively, 25 years and 164 cm for women.
The experimenters moved along the designed path of 159.2 m using four smartphones
(Samsung Galaxy S4, Xiaomi Poco F2 Pro, Samsung Galaxy Note 10 and iPhone 13 Pro). As
shown in Figure 16, the starting point of the test was on the third floor and its ending point
was on the first floor.
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In this experiment, reference points were set at the ending and starting points of
staircases and turning points, which are significant landmarks for estimating error position-
ing along the designed path. In this regard, we asked the experimenters to step over the
reference point as precisely as possible. The positioning error is estimated by calculating
the Euclidean distance between the estimated and actual coordinates of reference points.
Furthermore, the estimated distance is the total length of the step lengths and the distance
estimation error is the difference between the estimated distance and the actual distance. In
this section, positioning with the PDR method based on the recognition of walking, ascend-
ing and descending stairs is called activity-based PDR. However, the proposed method
recognizes walking speed in addition to activities. It also considers different genders in
each activity and the walking speed.

4.1. Texting Mode Positioning Experimentation

According to Table 10, for women, the average relative distance error decreased
from 21.38% to 4.97% and 0.88% using an activity-based PDR and the proposed method,
respectively. For men, by using the activity-based PDR and the proposed method, the
relative distance error decreased from 21.02% to 8.12% and 1.15%, respectively. The average
and STD of positioning error values are presented in Table 10. For women, the typical PDR
method had higher error values compared to the other two methods. It had an average error
value of 3.02 m and an STD of 2.82 m. The mean and standard errors of the activity-based
PDR were 2.52 m and 1.71 m, respectively, confirming that it is more accurate than the
typical PDR. The proposed method had the lowest error values among the three methods
and its average and STD were 1.28 m and 0.76 m, respectively, confirming that it is more
accurate than the other two methods. For men (Table 10), the typical PDR method had
higher error values than the other two methods. It had an average error value of 4.07 m
and an STD of 2.09 m. The activity-based PDR’s mean and STD errors were 3.33 m and
1.61 m, respectively. Moreover, the proposed method had the lowest error values and its
average and STD were 1.26 m and 0.68 m, respectively, demonstrating that it performs
best among the three methods. Based on Table 10, the PDR algorithm performance was
improved by activity, walking speed and gender detection. By detecting activities, the
average positioning error was reduced by 0.5 m for women and 0.74 m for men. Walking
speed detection and gender were also important factors for improving PDR performance
in addition to activity detection. The proposed method decreased the average errors by
1.24 m for women and 2.07 m for men compared to the recognition of activity alone.
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Table 10. Positioning results of the texting mode.

Gender Strategies Subject
Distance Estimation Final Positioning CDF

Absolute
Error (m)

Relative
Error (%)

Absolute
Error (m)

Relative
Error (%) Mean STD 80% 95%

Female

Proposed

1 1.27 0.80 1.01 0.63 0.98 0.61 1.43 1.65

2 1.52 0.96 1.61 1.01 1.58 0.91 2.21 2.77

Average 1.40 0.88 1.31 0.82 1.28 0.76 1.82 2.21

PDR+
activity Detection

1 6.28 3.94 1.63 1.02 1.41 1.30 1.78 2.59

2 9.53 5.99 2.15 1.35 3.63 2.12 5.05 6.71

Average 7.90 4.97 1.89 1.19 2.52 1.71 3.42 4.65

PDR

1 28.20 17.71 1.65 1.04 1.26 2.88 3.81 4.44

2 39.88 25.05 3.20 2.01 4.77 2.76 6.56 8.51

Average 34.04 21.38 2.43 1.52 3.02 2.82 5.19 6.47

Male

Proposed

1 1.81 1.13 0.83 0.52 1.27 0.67 1.76 2.17

2 1.86 1.17 1.42 0.89 1.25 0.69 1.70 2.21

Average 1.83 1.15 1.13 0.71 1.26 0.68 1.73 2.19

PDR+
activity Detection

1 21.50 13.50 1.45 0.91 4.63 2.17 6.03 7.11

2 4.36 2.74 4.03 2.53 2.03 1.06 2.68 3.46

Average 12.93 8.12 2.74 1.72 3.33 1.61 4.35 5.29

PDR

1 46.55 29.24 1.19 0.75 3.66 1.69 4.74 5.26

2 20.38 12.80 1.30 0.81 4.48 2.50 6.00 7.67

Average 33.46 21.02 1.24 0.78 4.07 2.09 5.37 6.46

The cumulative error distribution curve of reference point estimation for the first
woman is illustrated in Figure 17a. This curve indicates that the mean position error with a
probability of 95% has decreased from 4.85 m to 3.31 m and 2.09 m using the activity-based
PDR and the proposed method, respectively. Moreover, as shown in Figure 17b, for the male
subject 1, by using the activity-based PDR and the proposed method, the mean position
error with a probability of 95% decreased from 5.33 m to 5.06 m and 2.17 m, respectively.
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Figure 17. Cumulative error distribution of the texting mode; (a) woman; (b) man.

Figures 18 and 19 compare the position results of the two strategies, including activity-
based PDR and the proposed method, from a 3D perspective for the Female and Male
subject 1. Figures 18a and 19a show the positioning results for the third floor, while
Figures 18b and 19b depict the positioning results for the first floor. The yellow line shows
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the ground truth, the green line represents the results of the activity-based PDR and the
red line denotes the results of the proposed method. As shown in these figures, due to
neglecting speed changes, the green line drifts away from the reference line at some points.
Based on the proposed method (red line), the position is determined much more accurately
and its distance from the reference path is significantly reduced since the step length error
is decreasing when considering walking speed variations and gender differences.
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4.2. Calling Mode Positioning Experimentation

According to Table 11, for women, the average of relative distance errors decreased
from 16.3% to 4.21% and 0.67% using the activity-based PDR and the proposed method,
respectively. For men, by using the activity-based PDR and the proposed method, the
relative distance error decreased from 12.84% to 4.11% and 0.93%, respectively. The average
and STD of positioning error values are presented in Table 11. For women, the typical PDR
method had higher error values compared to the other two methods. It had an average
error value of 3.52 m and an STD of 1.76 m. The activity-based PDR had a mean error of
1.78 m and an STD of 0.94 m, confirming its higher accuracy compared to typical PDRs. As
compared to the other two methods, the proposed method had the lowest error values, with
an average and STD of 0.98 m and 0.51 m, respectively. For men (Table 11), the typical PDR
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method had higher error values than the other two methods. It had an average error value
of 4.23 m and an STD of 2.31 m. Besides, the activity-based PDR’s mean and STD errors
were 2.49 m and 1.12 m, respectively. Furthermore, the proposed method had the lowest
error values and its average and STD were 1.17 m and 0.7 m, respectively, indicating that it
performs the best out of the three. Results in Table 11 indicate that the performance of the
PDR algorithm is improved by activity, walking speed and gender detection. By detecting
activities, the average positioning error was reduced by 1.74 m for women and 1.73 m
for men. In addition to activity detection, PDR performance was enhanced by detecting
walking speed and gender. The proposed method decreased the average errors by 0.8 m
for women and 1.32 m for men compared to the recognition of activity alone.

Table 11. Positioning results of the calling mode.

Gender Strategies Subject
Distance Estimation Final Positioning CDF

Absolute
Error (m)

Relative
Error (%)

Absolute
Error (m)

Relative
Error (%) Mean STD 80% 95%

Female

Proposed

1 1.28 0.81 1.69 1.06 1.35 0.67 1.75 2.44

2 0.84 0.53 0.63 0.40 0.60 0.34 0.83 1.08

Average 1.06 0.67 1.16 0.73 0.98 0.51 1.29 1.76

PDR+
activity Detection

1 9.72 6.11 1.83 1.15 2.46 1.27 3.27 3.80

2 3.67 2.30 1.14 0.71 1.10 0.62 1.49 1.92

Average 6.70 4.21 1.49 0.93 1.78 0.94 2.38 2.86

PDR

1 34.23 21.50 2.65 1.67 3.68 1.84 5.31 5.72

2 17.66 11.09 2.92 1.83 3.35 1.68 4.43 5.73

Average 25.94 16.30 2.79 1.75 3.52 1.76 4.87 5.72

Male

Proposed

1 2.17 1.36 0.51 0.32 0.87 0.58 1.39 1.69

2 0.80 0.50 1.58 0.99 1.47 0.83 2.04 2.66

Average 1.48 0.93 1.04 0.66 1.17 0.70 1.72 2.18

PDR+
activity Detection

1 8.04 5.05 0.66 0.41 2.18 0.96 2.42 3.67

2 5.04 3.17 4.17 2.62 2.80 1.28 3.52 4.52

Average 6.54 4.11 2.41 1.52 2.49 1.12 2.97 4.10

PDR

1 31.81 19.98 4.06 2.55 5.34 2.58 6.70 8.15

2 9.09 5.71 2.47 1.55 3.11 2.03 4.40 5.91

Average 20.45 12.84 3.27 2.05 4.23 2.31 5.55 7.03

The cumulative error distribution curve of reference point estimation for the first
woman is illustrated in Figure 20a. This curve indicates that the mean position error with a
probability of 95% decreased from 5.14 m to 3.59 m and 1.92 m using the activity-based
PDR and the proposed method, respectively. Moreover, as shown in Figure 20b, for the
first man, by using the activity-based PDR and the proposed method, the mean position
error with a probability of 95% decreased from 8.24 m to 4.16 m and 2.72 m, respectively.

Figures 21 and 22 compare the position results of the two strategies, including activity-
based PDR and the proposed method, from a 3D perspective for the first woman and
man. Figures 21a and 22a illustrate the positioning results for the third floor, whereas
Figures 21b and 22b depict the positioning results for the first floor. The yellow line repre-
sents the ground truth. According to these figures, the green line associated with activity-
based PDR drifts away from the reference line at some points. Because gender and walking
speed are considered in the proposed method (red line), step length errors and distance
from the reference path significantly declined.
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4.3. Swinging Mode Positioning Experimentation

According to Table 12, for women, the average relative distance error decreased
from 17.39% to 5.76% and 0.93% using the activity-based PDR and the proposed method,
respectively. For men, by using the activity-based PDR and the proposed method, the
average relative distance error decreased from 11.93% to 3.71% and 0.77%, respectively. For
women, according to Table 12, the typical PDR method had higher error values compared
to the other two methods. It had an average error value of 3.81 m and an STD of 1.97 m.
Compared to the typical PDR, the activity-based PDR had a mean error of 2.15 m and an
STD of 1.25 m, confirming its higher accuracy. In comparison to the other two methods,
the proposed method had the lowest error values, with an average and STD of 1.29 m
and 0.64 m, respectively. For men (Table 12), the typical PDR method had higher error
values than the other two methods. It had an average error value of 5.87 m and an STD
of 3.53 m. Besides, the activity-based PDR’s mean and STD errors were 2.52 m and 1.37
m, respectively. Furthermore, the proposed method had the lowest error values and its
average and STD were 1.25 m and 0.66 m, respectively, demonstrating that it performs
the best out of the three. Results in Table 12 indicate that the performance of the PDR
algorithm is improved by activity, walking speed and gender detection. By detecting
activities, the average positioning error was reduced by 1.66 m for women and 3.35 m for
men. In addition to activity detection, the PDR performance was promoted by detecting
walking speed and gender. The proposed method reduced the average errors by 0.86 m for
women and 1.27 m for men compared to the recognition of activity alone.

Table 12. Positioning results of the swinging mode.

Gender Strategies Subject
Distance Estimation Final Positioning CDF

Absolute
Error (m)

Relative
Error (%)

Absolute
Error (m)

Relative
Error (%) Mean STD 80% 95%

Female

Proposed

1 1.63 1.02 0.86 0.54 1.24 0.51 1.64 1.85

2 1.34 0.84 1.38 0.87 1.35 0.76 1.89 2.45

Average 1.48 0.93 1.12 0.70 1.29 0.64 1.76 2.15

PDR+
activity Detection

1 9.90 6.22 1.79 1.12 1.91 0.96 2.48 2.94

2 8.45 5.31 3.47 2.18 2.39 1.54 3.30 4.35

Average 9.17 5.76 2.63 1.65 2.15 1.25 2.89 3.64

PDR

1 34.73 21.82 4.76 2.99 3.53 1.63 4.51 5.30

2 20.64 12.96 3.25 2.04 4.09 2.31 5.27 6.76

Average 27.69 17.39 4.00 2.52 3.81 1.97 4.89 6.03

Male

Proposed

1 1.41 0.88 1.37 0.86 0.93 0.50 1.30 1.62

2 1.04 0.65 1.42 0.89 1.58 0.83 2.25 2.87

Average 1.22 0.77 1.40 0.88 1.25 0.66 1.77 2.24

PDR+
activity Detection

1 5.84 3.67 2.38 1.49 1.80 0.79 2.17 2.73

2 5.99 3.76 3.29 2.07 3.24 1.95 4.47 5.90

Average 5.91 3.71 2.84 1.78 2.52 1.37 3.32 4.32

PDR

1 20.49 12.87 1.97 1.24 6.51 3.38 9.14 9.69

2 17.51 11.00 6.00 3.77 5.22 3.67 7.66 9.41

Average 19.00 11.93 3.99 2.51 5.87 3.53 8.40 9.55

The cumulative error distribution curve of reference point estimation for the first
woman is illustrated in Figure 23a. It demonstrates that the mean position error with a
probability of 95% decreased from 6.49 m to 3.19 m and 2.88 m using the activity-based
PDR and the proposed method, respectively. Furthermore, as depicted in Figure 23b, for
the first man, by using the activity-based PDR and the proposed method, the mean position
error with a probability of 95% decreased from 10.09 m to 3.2 m and 2.12 m, respectively.
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Figure 23. Cumulative error distribution of the swinging mode; (a) woman; (b) man.

Figures 24 and 25 compare the position results of the two strategies, including the
activity-based PDR and the proposed method, from a 3D perspective for the first woman
and man. Figures 24a and 25a display the positioning results for the third floor, while
Figures 24b and 25b show the positioning results for the first floor. The proposed method
(red line) reduced step length errors and its distance from the reference path significantly
declined. At some points, however, the green line (associated with the activity-based PDR)
veered off the reference line.

Figure 26 compares the average positioning error of four smartphone models, includ-
ing Samsung Galaxy S4, Xiaomi Poco F2 Pro, Samsung Galaxy Note 10 and iPhone 13
Pro for various phone-carrying modes. As compared to the other smartphone models,
positioning with iPhone 13 Pro and Samsung Galaxy S4 had the lowest and highest error
values, with an average of 1.05 m and 1.46 m, respectively.

According to Table 13, key parameters were not considered by Wang and Luo [17],
Geng and Xia [14], Park and Lee [45], Wu and Ma [1] and Saadatzadeh and Ali Ab-
baspour [56]. The experiments by Wang and Luo [17] were carried out on a trajectory of 146
m for the texting mode and the distance error was 1.91 m. In Geng and Xia [14], the experi-
ments were conducted on a trajectory of 118 m for texting and the positioning error was
1.61 m, whereas in Park and Lee [45] the experiments were performed on a trajectory of 58
m for texting and swinging and the positioning errors were 1.61 m and 3.41 m, respectively.
A trajectory of 210 m was used by Wu and Ma [1] and, for the texting mode, the positioning
error was 2.68 m. In Saadatzadeh and Ali Abbaspour [56], the experiment was conducted
on a trajectory of 148.53 m for texting, calling and swinging modes, with distance errors of
2.68 m, 3.82 m and 8.39 m, respectively. In Klein and Solaz [16], the step length parameters
were optimized based on walking speed, as shown in Table 13. The experiments were
conducted on a trajectory of 21.4 m involving texting, calling and swinging modes, with
distance errors of 0.38 m, 0.107 m and 0.47 m, respectively. In addition to the walking speed,
Gu and Khoshelham [18] and Lu and Wu [43] also considered the pedestrian characteristics.
As reported by Gu and Khoshelham [18], on a trajectory of 100 m, the distance error was
3.01 m. Furthermore, Lu and Wu [43] studied the texting mode on a trajectory of 100 m,
with a distance error of 1.74 m. In this study, by optimizing the parameters of step detection
and step length estimation based on different walking speeds, motion states and gender,
the distance errors in texting, calling and swinging modes were 1.68 m, 1.27 m and 1.35 m,
respectively, which improved significantly.
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Table 13. Comparison of positioning and distance errors of recent PDR methods.

Gu et al.,
2018
[18]

Klein et al.,
2018
[16]

Wang et al.,
2020
[17]

Lu et al.,
2020
[43]

Geng et al.,
2021
[14]

Park et al.,
2021
[45]

Wu et al.,
2021
[1]

Saadatzadeh et al.,
2022
[56]

Proposed

Key
parameters

Gender

Yes No No Yes No No No No YesHeight

Age

Walking speed Yes Yes No Yes No No No No Yes

Mode Items

Texting

Distance error (m) — 0.38 1.91 1.74 — — 2.68 1.68

Relative error (%) — 1.8% 1.31% 1.74% — — 1.81% 1.05%

Error at Final Position (m) — — — — 1.31 1.61 2.68 1.63 1.22

Relative position error (%) — — — — 1.11% 2.77% 1.3% 1.1% 0.76%

Calling

Items

Distance error (m) — 0.107 — — — — — 3.82 1.27

Relative error (%) — 0.5% — — — — — 2.58% 0.8%

Error at Final Position (m) — — — — — — — 1.13 1.1

Relative position error (%) — — — — — — — 0.76% 0.69%

Swinging

Items

Distance error (m) 3.01 0.47 — — — — — 8.39 1.35

Relative error (%) 3.01% 2.2% — — — — — 5.65% 0.85%

Error at Final Position (m) — — — — — 3.94 — 1.68 1.26

Relative position error (%) — — — — — 6.79% — 1.13% 0.79%

Experiment’s Length (m) 100 21.4 146 100 118 58 210 148.53 159.2



Sensors 2022, 22, 9968 27 of 29

5. Conclusions

This study used adaptive PDR positioning. Different pedestrian activities, phone-
carrying modes and walking speeds were detected using a combination of SVM and DTree
algorithms to promote the robustness of PDR positioning. Additionally, each motion state
was investigated separately based on the experimenter’s gender. The proposed classifica-
tion approach recognized various motion states and walking speeds with a recognition
accuracy of 95% for women and 97% for men. After motion state detection, motion states,
walking speeds and gender were utilized to adjust the parameters of step counting and
step length estimation methods separately for each motion state and gender. The goal was
to enhance the robustness of PDR positioning. Using the optimization parameters, the
absolute distance estimation error for texting, calling and swinging modes were respec-
tively 1.4 m, 1.06 m, 1.48 m for women, 1.83 m, 1.48 m and 1.22 m for men on a trajectory of
159.2 m. The average absolute positioning error values of the proposed method for three
phone-carrying modes, including texting, calling and swinging, were 1.28 m, 0.98 m and
1.29 m for women and 1.26 m, 1.17 m and 1.25 m for men in a multi-story building on a
trajectory of 159.2 m. The proposed method promoted step length estimation and position
accuracy with robust PDR method, by utilizing embedded smartphone sensors. Future
studies can consider other smartphone-carrying modes such as pockets and bags and more
pedestrian activities such as running and lateral walking.
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