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Abstract: In order to save manpower on rail track inspection, computer vision-based methodologies
are developed. We propose utilizing the YOLOv4-Tiny neural network to identify track defects
in real time. There are ten defects covering fasteners, rail surfaces, and sleepers from the upward
and six defects about the rail waist from the sideward. The proposed real-time inspection system
includes a high-performance notebook, two sports cameras, and three parallel processes. The
hardware is mounted on a flat cart running at 30 km/h. The inspection results about the abnormal
track components could be queried by defective type, time, and the rail hectometer stake. In
the experiments, data augmentation by a Cycle Generative Adversarial Network (GAN) is used
to increase the dataset. The number of images is 3800 on the upward and 967 on the sideward.
Five object detection neural network models—YOLOv4, YOLOv4-Tiny, YOLOX-Tiny, SSD512, and
SSD300—were tested. The YOLOv4-Tiny model with 150 FPS is selected as the recognition kernel, as
it achieved 91.7%, 92%, and 91% for the mAP, precision, and recall of the defective track components
from the upward, respectively. The mAP, precision, and recall of the defective track components from
the sideward are 99.16%, 96%, and 94%, respectively.
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1. Introduction

A railway comprises ballasts, sleepers, rails, and fasteners. Each component plays an
important role, among which the rail fasteners can fasten the rail tracks to the sleepers and
have a buffering effect to disperse the weight, which can slow down the disturbance of the
rails so that the rails can be stably fixed on the rail tracks. Damaged or dropped fasteners
may derail the train, so track inspection is among the essential work items.

Current track inspection is conducted manually and divided into foot and vehicle
inspections. The inspection personnel inspect the track visually and record any damage in
paper form, then send maintenance personnel to fix it. In May 2021, the Taiwan Railway
Administration (TRA) used a mobile phone APP [1] to replace the traditional paper record to
enhance the efficiency and reliability of rail route inspection. The digitization of inspection
data reduces the likelihood of records being lost. However, it does not prevent human
errors, and only the first version of Android has been developed for track inspectors to test.

Moreover, because the human eye way inspection is limited to the human visual
inspection angle, inspection speed cannot be too fast so that the naked eye can see clearly.
During foot inspection, the person must also beware of passing trains to avoid collisions.
The cost of in terms of manpower and time is very high to complete inspection. Given
the current workforce of the railway station, inspection can only be performed once a
week. If the frequency of inspection is increased, this may cause the inspection staff to be
overworked and even less able to inspect carefully. This also makes the transportation and
security of the TRA impossible to be effectively refine. In order to improve the efficiency
of patrol inspection, a real-time identification system for defective track components is
developed based on computer vision to improve the inspection problem effectively.
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In recent years, there has been much research on detecting track defects. We want to
use artificial intelligence to carry out automatic detection, focusing on improving accuracy
and real-time computing. If the recognition rate and stability can be higher than manual
inspection, it can replace the current manual inspection to improve the efficiency of rail
inspection. By comparing the current commercial patrol equipment products, Table 1 shows
that most of them are measuring geometric property of track and components when the
types of track components are pretty diverse. Moreover, because the whole equipment is
quite expensive, only a very few copies of the systems can be purchased for a track operator.
For example, there is only one automatic track inspection system running for Taipei Mass
Rapid Transit and one track image recording system for the TRA. Due to the limited budget,
there are few inspection vehicles, resulting in slow inspection efficiency.

Table 1. Some commercial track inspection products.

Product Items Imaging Speed

Geometric alignment, gauge,

Plasser and Theurer [2] height level, direction, planarity Laser scan camera >100 km/h
Ensco [3] Fishplate, sleepe'r, fastener, rail Line/area camera High speed
surface, power line
Overhead line electrification,
Fugro [4] rail head wear, gauge, tilt, twist, Laser scan camera High speed
level calculation
JC Tech [5] Track imaging 4K area camera <70 km/h
Mermec [6] Rolling surface, fastenings, Line scan camera <200 km/h

sleepers and track bed

An automatic detection system is emerging using computer vision technology to
overcome the effort spent on human manual inspection of track defects. Two approaches
have been developed for this task: traditional pattern recognition [7] and deep neural
networks [8,9] based. The former approach first identifies the features that effectively
classify defective track components from standard track components. Additionally, then
a recognition engine was developed such as a classification tree [10], k-Near Neighbor
(k-NN) [11], Support Vector Machine (SVM) [12], and neural network (NN) [13]. Recently,
the deep learning-based approach has gained much attention for the impressive advance
in object recognition and object detection. With the rapid computation provided by the
graphic processing unit, the time spent is significantly reduced and could be deployed in
real-world applications. Therefore, this work adopts the deep learning-based approach for
rail track safety inspection.

Training deep learning neural networks needs a certain number of datasets to produce
good identification results. However, the defective component images are not easy to
obtain, so the number of images for the seriously damaged components can only be limited
to less than ten. Therefore, this study needs to overcome the difficulties in data collection.
Data augmentation methods such as resizing, rotation, and translation could be used to
enlarge the dataset to obtain possible images in the actual situation. This research will use
the manual treatment to generate the cracks on the regular rail by repairing the image,
but the manual treatment can only produce a small amount of data. Thus, a Generative
Adversarial Network (GAN) [14] is used to automatically generate the rail fracture dataset,
as far as possible, to expand the data and to achieve good training results.

In this study, we want to develop a real-time identification system for rail defect
components with good identification accuracy and relatively low cost using object detec-
tion and identification methods. GoPro (It is based in San Mateo, CA, USA. GoPro, Inc.
Woodman Labs, Inc. U.S.) Hero8 Black and GoPro Hero7 Black motion cameras are used to
capture images. Motion cameras have sound shock-resistant processing and high frames
per second (FPS). Then, deep learning-based object detection is trained to identify defective
track fasteners automatically. This study divides rail inspection into two modes: overhead
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and side inspection. The two models are trained separately. The complete fastener defect
categories are also built from the two perspectives. Using the multi-thread technique, the
computer can process the image transmitted by two cameras in real time. Our goal is to
develop an automatic real-time identification system that can replace the present manual
inspection, keep a reasonable accuracy rate to reduce the cost of inspection staff effectively,
and improve the overall efficiency of inspection.

This study is divided into five sections. This section is an introduction to the motivation
and background of the research and the research objectives and difficulties. The Section 2 is
the literature review, divided into three parts. The first part introduces the current situation
of rail track inspection; the second part will compare the differences between this study
and other related studies; the third part introduces the Al identification model used in this
research. In the Section 3, the system architecture is described in detail. Firstly, the system
is designed and constructed, and includes a real-time defective component identification
neural network model, two high-speed cameras, a GPS inertial navigation device, and a
flat patrol car. The number of classes for the regular and defective rail components and the
collected datasets for each class are described. The experimental results and analysis are
presented in detail in the Section 4. The identification results of different neural networks
are compared, and field tests verify the feasibility of the whole system. The Section 5 is the
conclusion and prospects of this study.

2. Related Works

The vehicle wheels can apply vertical, lateral, and creep loads to the rails, while bulk
stress, such as bending stress, thermal stress, and residual stresses, can also be applied to
the rails. Different rail defects such as rail corrugations, rolling contact fatigue defects, squat
defects, shatter cracking, split head, and wheel burns have their causes and characteristics,
lead to different effects, and thus require corresponding treatments [15]. Defects and deteri-
orated conditions on the rail track can normally be seen by human eyes; therefore, manual
inspection by patrollers can identify and locate the defects and monitor the condition. How-
ever, such inspections are labor intensive and can only be arranged during non-operating
hours in order not to disrupt the regular service operations. Rail inspection vehicle and
sensor technologies are being deployed as an efficient and cost-effective data collection
technology solution to support rail maintenance operations and can capture vast amounts
of data. Data-driven automatic condition monitoring and detection and classification of
rail track anomalies have been attracting attention from researchers at universities and
railway institutes.

Ma et al. [16] proposed a switched median filter coupled with improved Canny edge
detection to extract the features of fastener edges. Due to the fastener’s fixed shape, the
defective fastener’s contour differs from that of the standard fastener and the real-time
missing identification could be carried out. The final fastener identification rate was 85.8%,
and the average processing time was 245.61 ms. Gibert et al. [17] proposed a method
for fastener detection by (1) carefully aligning the training data, (2) reducing intra-class
variation, and (3) bootstrapping complex samples to improve the classification margin.
The system can inspect ties for missing or defective rail fasteners using the histogram of
oriented gradient as features and classified by a combination of linear SVM classifiers. The
detection rate is 98%, and the false alarm rate of 1.23% on a new dataset of 85 miles of
concrete tie images collected in the US Northeast Corridor.

Stella et al. [18] used wavelet transform and principal component analysis for fastener
image pre-processing and employed a neural network classifier to detect defective hook-
shaped fasteners. The AdaBoost algorithm was used by Li et al. [7] and Xia et al. [19]
for detecting fasteners from rail images. In recent years, the application of deep learning
methods for rail track inspection has gained significant importance due to the increase in
computing power and the development of graphical processing units (GPU). Deep learning
methods are producing success in various applications with recent technological advances.
Deep learning has neural networks as its functional unit to mimic how the human brain
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solves complex problems based on data. Convolutional neural networks (CNN) [20] and
object detection neural networks such as You Only Look Once (YOLO) [21] propelled the
development of deep learning, which has been reported with convincing performances
for rail track monitoring and anomaly detection. The performances in the prediction and
learning of these methods are improving with the increasing amount of data available [22].

According to the review on deep learning approaches for rail track condition mon-
itoring [9], the authors find research works published from 2013 to 2021. In total, they
identified 62 relevant research publications to review. The trend over time indicates that
the rail industries are adopting deep learning methods with growing interests. As for the
detection/localizing/ classification targets, it is observed that rail surface defects including
various components (rail, insulator, valves, fasteners, switches, track intrusions, etc.) are
the most common items. As for the deployed deep learning models, many deep learning
models are adopted by researchers. Ji et al. [9] summarizes the distribution of deep learning
models. CNN is the most popular one being adopted that results using ResNet [23,24]
and LSTM [25]; however, many researchers created their own structure [26] or divided
their tasks into a few stages such as SSD + VGG [27] and Faster RCNN + CNN [28].
Some deep learning methods just adopted one-stage object detection such as YOLOv2 [29],
YOLOV3 [30], and YOLOVS5 [31]. The effectiveness and the results differ from each other
depending on the tasks.

Various deep learning methods are reported to produce promising results for rail
track condition monitoring. However, there is a consistent process flow [9] for these deep
learning methods. First, how to capture the raw image is the most critical step, which
requires the installation of cameras/recording devices on rail maintenance vehicles. Second,
the raw image data are transmitted to the image processing subsystem for pre-processing
such as resizing, noise removal, or enhancement. Third, the collected images are labeled
accordingly by the experts of rail workers to build the dataset. Fourth, the selected deep
learning model is trained with the randomly selected training data and validated by the
testing data. Depending on the selected strategy, a one-stage deep learning model could
perform classification directly, or multi-stage deep learning methods require localization
tasks for track components and then a classification task. It is also possible to perform
localization and classification concurrently. Fifth, the trained deep learning model is put in
operation with the trained parameters for real-world applications. Due to the criticality of
rail track inspection, double checking the recorded rail track images by human operators is
necessary to confirm the system accuracy. Finally, the efficiency and effectiveness of the
deep learning models are reviewed and enhanced for improved performances.

Still, there is a key problem that needs to be addressed—the lack of images of the
defective rail track component. The nature of rail operations causes the data distribution of
defective rail track to be disproportionate, which could cause class imbalance problems
in deep learning applications. Data augmentation is often used to produce more training
data by resizing, rotating, and translating the original dataset. However, some gaps exist
between the real image and the augmented one.

In this research, we follow the general process flow to construct a real-time online
rail track inspection system by the one-stage approach. Online means the captured image
is immediately transmitted to the recognition engine for defective component detection,
unlike offline recognition, where the recognition engine works at the backend server. The
recorded video is sent to the server when the whole rail segment is finished checking. The
significant contribution of our research work is that we encapsulate the recognition engine
as a parallel running process waiting to process received images. The second contribution
is using the latest version of object detection models YOLOv4 and YOLOX for one-stage
detection of defective components. Due to the lack of image data of defective components,
the third contribution is using GAN for data augmentation, which could generate image
data close to real ones. The last contribution but not the least, is the classification of
defective rail components into two categories. There are ten defects covering fasteners, rail
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surfaces, and sleepers from the upward and six defects about the rail waist and fishplate
from the sideward.

3. Proposed Methodology

Owing to the significant advance of deep learning-based object detection, we adopt
the one-stage approach to detect defective rail components directly. Thus, we first describe
the deep learning-based object detection models and then the proposed system architecture
for detecting defective rail components. To cover most parts of rail components, we divide
these items according to the camera viewing angles. One is from the top view, and the
other is from the side view. Those classes are defined by rail experts and summarized in
the last subsection.

3.1. Object Detection Neural Network Models

Object detection uses “Box” in images such as photos or videos to mark the scope of an
object and classify it. Object detection can be divided into two broad categories: two stage
and one stage. Two stage refers to selecting and identifying objects, while one stage refers
to a neural network that can simultaneously detect and classify objects. This method is fast,
and the identification rate is still in a specific acceptance range. The object identification
models of one stage such as YOLO and SSD are compared in this study.

3.1.1. YOLOv4

YOLO [21] is a one-stage object detection method. Joseph Redmon first proposed it
in June 2015, and then Alexey Bochkovskiy proposed the YOLOv4 [32] neural network
in 2020. This neural network is mainly used for object detection. YOLOvV4 can not only
classify objects but also frame the position of objects. YOLOv4 has made many changes in
various parts of YOLOvV3 [33]. At the same time, the identification speed is guaranteed, the
identification precision of the whole model is improved, and the hardware specification
requirements of identification and training are reduced.

YOLOv4’s main contribution is to build an efficient and powerful object detection
model. YOLOv4 can be trained using a single GPU. Backbone uses CSP Dark Net53 as its
pre-training backbone. In the convolution layer, a few groups (1~8 groups) of convolutions
are used to lighten the model and reduce the parameters significantly as well as reduce
the overall computational load and shorten the forecast time. Neck uses SPP + PAN. In
contrast to YOLOV2, the SPP will connect the last layer to all feature maps. We will continue
with the CNN module later. PAN is based on FPN, adding one more layer to the number
of concatenated layers and merging instead of adding parts. Head follows YOLOv3 and
consists of multiple layers of convolution.

For data enhancement, YOLOv4 uses the new data enhancement method Mosaic.
Adopt the method of random zooming and clipping, mix and splice four kinds of pictures
for training. This way, we can enrich the training dataset and make the model training
more stable and improve the overall training effect. The method Drop block is used instead
of regularization. The whole region is deleted randomly. For example, the whole part of
the head and heel is deleted. At this time, the neural network will pay attention to learning
some features to realize the correct classification.

In addition to good identification accuracy, this study must also have good immediacy.
Considering the efficiency of identification hardware, memory use, and other factors will
affect the identification speed. The structure of YOLOv4-Tiny is a stripped-down version
of YOLOV4, a lightweight model. The parameter is only 6 million, which is one-tenth of
the original model. The overall network has 38 layers, and 40.2% AP and 371% FPS were
obtained from MS COCO data.

3.1.2. YOLOX

The YOLOX [34] algorithm is improved based on YOLOv3. YOLOX-L obtained 50.0%
AP on COCO. On a single Tesla V100 display card, the recognition rate can reach 68.9 FPS.
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YOLOX-Tiny and YOLOX-nano are 10% better at AP than their YOLOv4-Tiny counterparts.
The first change is to replace YOLO'’s old Coupled Head with a Decoupled Head. The
original Coupled Head predicted the classification, object frame, and regression correction
in the same convolutional layer. In the Decoupled Head, classification and regression
correction are separated into two convolutions for prediction. Because of two convolutions,
the overall computation will be relatively large. However, the feature dimension is reduced
to 256 by 1 x 1 convolution and then divided into two branches for classification and
regression of the convolution. The classification branch is responsible for classification,
and the regression branch predicts the position and size of object boxes and correction
boxes. As a result, the overall amount of computation is significantly reduced. Only a few
parameters are added, so the overall speed is similar to the original Coupled Head. The
overall convergence speed and accuracy are higher than in the previous versions.

3.1.3. SSD

The Single-Shot MultiBox Detector (SSD) [35] was developed in 2016 by Szegedy et al.,
which belongs to a one-stage object identification method. For an input image, SSD could
extract features through convolutional neural networks (CNN), which generate a feature
map. The default box is then generated at each point in the feature map, and then all the
default boxes are aggregated, followed by the NMS (Non-Maximum Suppression) for most
of the bounding boxes. For 300 x 300 image inputs, SSD achieved a FPS of 59 and mAP of
74.3% in the VOC test, and mAP also performed 76.9% for 512 x 512 inputs, outperforming
the Faster R-CNN model.

The backbone of SSD is VGG16 in which the Pool5 layer is changed from (size =2 x 2,
Stride = 2) to (size = 3 x 3, Stride = 1), and the last two fully connected layers FC6 and
FC7 are replaced by 3 x 3 and 1 x 1 convolution, respectively. The dropout layer and FC8
layer are also removed and four convolution layers are added. SSD adds the Pyramidal
Feature Hierarchy, which detects features in different sizes, and references Anchors in
Faster R-CNN [36], which sets default boxes with different sizes and aspect ratios on each
Feature graph. The prediction boxes refer to these default boxes to make predictions, so the
model does not have to learn the boxes’ size, making it easier to train.

3.2. System Design and Architecture

This subsection describes the system schematic diagram for rail track inspection, as
shown in Figure 1a, which consists of two cameras, a GPS device (Thinkstar technology
company, New Taipei City 234, Taiwan (R.O.C.)) with Gyro, a storage device, a laptop
PC, and a cloud server. The communication between the local and the cloud server is via
a wireless communication module. Use a flat patrol car, as shown in Figure 1b, as the
platform loading human operators and all hardware, including a dynamo. Steel frames
are used to install and fix three laptop computers and six high-speed cameras, as shown
in Figure 1c, along with all wire connectors. The laptop PC (Micro-Star International Co.,
New Taipei City, Taiwan (R.O.C.)) specs are Intel i9-10980HK CPU, 32 GB DDR4 memory,
and Nvidia GeForce RTX 2080 super 8G GPU. The laptop can process two video streams
from two cameras without delay. As shown in Figure 1d, LED lights are also fixed under
the flat car so we can take a picture of the track for subsequent identification. The GPS with
inertial navigation records the position when capturing images. OpenCV API library [37] is
adopted to acquire images taken by the high-speed camera and later processing. To utilize
the laptop’s full power, the multi-thread parallel processing technique is used to implement
the recognition program.

3.2.1. Real-Time Recognition System Diagram

The rail inspection workers must fix the missing components right after spotting them.
We must develop the inspection software to process the image right after capturing it. The
real-time identification system in this study was performed directly by a high-performance
laptop. The identification results are displayed after neural network identification. Consid-
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ering that the system is run on a flat car traveling at 30 km/h or more and that the track is
divided into left and right rails, two GoPro images must be read simultaneously. It was
calculated that each image would cover a distance of approximately one meter. The flat
car moves approximately eight meters in a second. So eight images per second need to be
processed. Moreover, because two cameras are capturing the scene simultaneously, the
computer needs to identify 16 or more images at the same time to ensure no missing images.
Therefore, it is necessary to select a neural network with good identification accuracy and
high FPS as the identification model of the system.

| Camera 1 |——>f

Laptop o |, ) Coud

¢
GPS/Gyro PC module Server
| Storage |<—-\

Figure 1. System architecture. (a) system schematic diagram; (b) a flat patrol car; (c) the red triangles
are the positions of the cameras; (d) LED lights are used for the illumination.

We use multi-process to implement the system program and divide it into three
processes: user interface, image processing, and Al recognition, which run simultaneously.
Moreover, use the object-oriented way to package the recognition results. Use two queues
as a medium for processes to communicate with each other. First, when the program is
started, the identification model will be loaded at the same time. Turn on the left and
the right camera and display the user interface. The camera will resize all the captured
images first, convert them to 416 x 416 and then store them in Queuel. The identification
thread will also detect whether there are pictures in Queuel that need to be identified.
If Queuel is not empty, take it out and identify it. Then, store the result in Queue2. At
this time, the user interface will also continuously read whether Queue2 has recognized
pictures to display. If Queue? is not empty, then display detailed identification results,
GPS positioning, and other information on the user interface. Finally, when the program is
terminated, all recognition results will be exported to an excel sheet for users to view. A
detailed system activity diagram is shown in Figure 2.

In order to allow users to operate and view conveniently, this system uses PyQt5 to
implement the user interface. First, open the real-time interface system, which will enter
the initialization interface. The user can select information such as rail station interval,
track type, and lens to record the left and right track images, respectively. After pressing
the button on the top view or the side view, it will enter the recognition interface. The
screenshot of recognition is shown in Figure 3. Three images will be displayed on the top.
The leftmost is the image of the left track, the middle is the image of the right track, and
the far right is the image of the missing fastener. Then, there is the current time and the
track information just selected. The bottom of the table will list the details of all damaged
fasteners. After closing the system, the form will be automatically downloaded as an Excel
file. Moreover, store all missing fastener photos for easy viewing by users.
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Queue2 is

press exit bottom

Figure 2. Software activity diagram.
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4 R ATX KFFF 4000 44jpg o (m] 4 negsE KFFF 0000 108jpg m] u]

Figure 3. The interface of the track fault detection system.

3.2.2. Image Acquisition

In this study, images were captured using area cameras. The camera needs to be set up
on the flat maintenance car. The driving speed of the flat maintenance car is approximately
30 km/h, and the distance between consecutive fasteners is approximately 30 cm. To ensure
every fastener can be covered by at least one image, the camera needs to capture at least
30 images per second so there will be no missing frames. Therefore, when choosing a
camera, the FPS should be at least 30 when capturing images. The most important aspect of
image recognition is the clarity of the image. If the image is blurred, it may not be used for
classification. Therefore, it is necessary to use a camera that can effectively absorb shocks
to avoid unclear images caused by the shaking of the flat car. The weather during the
inspection may be rainy. The camera must also have a specific waterproof function so that
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it can be used usually, whether it is rainy or sunny. The camera must also be connected to
the laptop so the program can capture it directly. The camera should not be too complicated
to operate so that inspection personnel can use it easily. In addition, the price should not
be too high. Based on the above considerations, the GoPro7 and GoPro8 cameras were
finally selected.

The GoPro camera is a well-known sports camera in recent years, and its main feature
is the ability to record while exercising. This product has a high resolution and excellent
hyper smooth super shockproof and waterproof function to a depth of 10 m. GoPro cameras
themselves have other features such as built-in Wi-Fi and Bluetooth. This device can be
directly used for wireless network transmission, and there is no need to purchase other
network modules.

3.3. Rail Track Component Classes and Data Collection

The Dajia Branch of the Taiwan Railway Administration provided this study with
the track component data, including the image of defective components. Moreover, we
discussed with the Dajia branch whether the classification of components meets the status of
track inspection operations. Then, we marked and trained the data for this study. Afterward,
the Dajia Branch Office provided missing data from time to time and continuously updated
the number of data for use in model training. According to the style of camera setup, there
are two kinds of datasets: top view and side view.

3.3.1. Top-View Dataset

The top view of the rail track components dataset is divided into ten categories: slightly
defective e-clips, severely defective clips, slightly defective spikes, severely defective spikes,
slightly defective rail surfaces, severely defective rail surfaces, minor defective track spikes,
severely defective track spikes, other missing and shadowed components. The description
along with image of defective components is shown in Table 2 [38], where X represents
slightly defective, and XX represents severely defective. Sample pictures are shown in
Figures 4 and 5.

Figure 5. Three samples of severely defective (XX) track components where the fasteners are missing.

There are 1417 images in the top view missing construction data and 2380 images
in the standard dataset. The total number is 3800 images. In this study, the number of
top-view training samples is 3420 images, and the number of test samples is 380. Table 3
shows the distribution of top-view data samples.

3.3.2. Side-View Dataset

The targets of side-view recognition are steel rails and fishplates, and it mainly recog-
nizes areas that the top view cannot see. This study divides the side-view defect categories
into the following four categories—weld cracks, rail cracks, fishplate cracks, and fishplate
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bolts falling off—as shown in Table 4. In addition, regular fishplates and regular welds
are included in the training dataset to reduce misjudgments as much as possible. There
are 259 images of defective components in the side view, 708 images of regular data, and
967 images total. In this study, the number of side-view training samples is 795, and the
number of test samples is 172. The detailed data distribution of each category is shown in

Table 5.

Table 2. Types of the defective track components from the top view [38].

No. Types

Sample Images

Description

1 e-Clip_X

v

|

Fastener deviated or not positioned

2 e-Clip_XX

.

Fastener is lost or broken

3 Spike_X

Wl

The upper spike is deviated or not positioned

4 Spike_XX

Two spikes are lost or broken

5 Rail surface_X

Depression in the center of the rail surface, and
slight damage to the rail surface.

6 Rail surface_XX

Rail break on top of rail surface

7 Slab e-Clip_X

e-Clipper position deviated or bolt loose

8 Slab e-Clip_XX

Missing or broken e-Clip or bolts

9 Covered

;5

Fasteners are obscured by lines, ballasts, plants, etc.

10 Others

Other foreign objects, garbage on the track

3.3.3. Data Augmentation

In order to produce effective training results, a certain amount of data is required for
deep learning. This research has particular difficulties in collecting data. Some missing
component data are not easy to obtain, such as missing rail surfaces in top-view data
and rail cracks in side-view datasets. Therefore, it is necessary to use data augmentation
technology to increase the amount of data to prevent the overfitting neural network problem

during training.
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Table 3. Top-view dataset.

No Types Real Images Count (Frame)
1 e-Clip_X 52 52
2 e-Clip_XX 276 276
3 Spike_X 37 37
4 Spike_XX 58 58
5 Rail surface_X 77 77
6 Rail surface_XX 226 226
7 Slab e-Clip_X 35 35
8 Slab e-Clip_XX 28 28
9 Covered 17 17
10 Others 611 611
11 Normal 2383 2383

Total 3800

Table 4. Types of defective track components from the side view.

No. Types Sample Images Description

Cracks appearing on rail side

1 Weld fracture welds

Cracks appearing on the side of

2 Rail crack the rail

3 Fishtail plate fracture Cracks appearing on the fishplate

4 Fishplate bolts fall off Fish plate bolts are loose or fall off

Table 5. The original side-view dataset.

No. Types Real Images Count (Frame)
Rail_welding_XX 20 7 27
Rail XX 70 38 108
Fishplate_bar_XX 25 12 37
Fishplate_bar_X 61 26 87
Fishplate_bar_O 257 34 291
Rail_welding_O 362 55 417

Total 795 172 967

For the rail surface defect categories in the top-view dataset, Taiwan Railway Dajia
Branch can only provide a little information. Therefore, this study uses random flipping,
translation, grayscale, and blurring methods to amplify the dataset size. We expand the
original picture into four, and try to solve the problem of insufficient data. An example of
augmented data is shown in Figure 6.
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Figure 6. Examples of data augmentation. (a) original; (b) gray; (c) rotation.

The Dajia Branch Station can only provide dozens of image data for the rail cracks
in the side-view dataset. Welding cracks are entirely unobtainable. The dataset cannot
be effectively expanded by conventional augmentation methods such as flipping and
translation. Therefore, this study first uses the method of artificial synthesis to remove
the background of the wall crack images found on the Internet and then paste them on
the normal railway track pictures, as shown in Figure 7. However, artificially compositing
images is time-consuming, and generating multiple images at once is impossible. Therefore,
this study uses the generative adversarial neural network Cycle GAN [39] to generate
rail crack images automatically. The total number of training iterations is 1000, and the
time is approximately six hours. The training set consists of 30 images of regular rails and
30 images of artificially synthesized broken rails. Input the pictures of regular rails during
the test can automatically generate synthetic rail crack pictures, as shown in Figure 8. The
side-view dataset currently has 144 authentic images and 115 artificial images. The detailed
distribution of natural and artificial image data of each category is shown in Table 6.

@ (b)

Figure 7. Human synthesized images. (a) crack image; (b) human-made images.

)

Figure 8. Automatic image generation. (a) original image; (b) cycle GAN-generated images.



Sensors 2022, 22,9970

13 of 23

Table 6. The augmented side-view dataset.

Type Real Image (Frame) Human Synthesized Subtotal
Rail_welding_XX 0 27 27
Rail_XX 42 66 108
Fishplate_bar_XX 15 22 37
Fishplate_bar_X 87 0 87
Total 144 115 259

4. Experimental Results and Analysis

Section 4.1 presents the training results and comparison of each neural network
model in this study in detail. Section 4.2 gives the results of the field test of the real-time
identification system of this study to verify its feasibility. The last section carries out the
cost calculation of this system.

4.1. Al Model Training

The training environment of this study uses a self-assembled personal computer with
an AMD Ryzen 7 2700X processor, a GeForce RTX 2080Ti graphics card, and 16G memory.
We compare five neural network models, namely YOLOv4, YOLOv4-Tiny, YOLOX-Tiny,
SSD512, and SSD300. The neural network model used in the real-time recognition system
must have a reasonable recognition rate and recognition speed to avoid frame loss. The
reference indicators for comparison are mAP, the recall rate, precision, and FPS.

The evaluation Index of the Al model is mainly focused on the confusion matrix. TP
(True Positive) means that the prediction is positive and the ground truth is also true. TN
(True Negative (TN) means that the prediction is negative and the ground truth is true. FP
(False Positive) means the prediction is positive, but the ground truth is false. FN (False
Negative) means that the prediction is negative and the ground truth is positive. Precision
is the ratio (TP/TP + FP) that is predicted to be positive and is positive. The recall rate
means the ratio (TP /TP + FN) that is positive and is indeed predicted as positive. The mAP
is the average of all category Aps. As for AP, it is the area covered by precision and the
recall rate under different confidence values (precision-recall curve).

4.1.1. YOLOv4 and YOLOv4-TinyModel Training

In this experiment, the YOLOv4 model is trained with 12,000 epochs. The total time for
top-view training was approximately 11 h, and the side-view training took approximately
9 h. The training of YOLOv4-Tiny has 12,000 iterations, the total time for top-view training
is approximately 4 h, and the side-view training takes approximately 3 h. The amount
of top-view training data used is 3800, and the amount of side-view training data is 967.
Before training, it is necessary to mark all the components in the image. This study uses
Labellmg [40] data labeling tool, as shown in Figure 9. When marking the defective
components, the marking scope will also be extended to the peripheral sleepers and a part
of the rail surface.

There are ten types of top-view data in this study. At first, the result of the first version
of YOLOv4 training was 82% precision, a 95% recall rate, and 83.16% mAP. The first version
of YOLOv4-Tiny training results has a precision of 82%, a recall rate of 96%, and an mAP of
90.77%. Among them, the results of precision and mAP are not ideal, and it was found that
the main reason is that there are too many FPs. Most of these FPs are standard components
that were misjudged as defective. Therefore, this study added all misjudged test data
to the training set during the second version of the training and relabeled these data as
background data.

Moreover, review all markup data to avoid markup inconsistencies. Retrain the neural
network to reduce the chance of misjudgment. After this adjustment, the mAP of YOLOv4
top-view training results increased to 94.47%, the precision increased to 94%, and the



Sensors 2022, 22,9970 14 of 23

recall rate increased to 91%. YOLOv4-Tiny training results mAP increased to 91.66%,
precision increased to 92%, and recall rate was 91%. Among them, the recall rate has
slightly decreased because, in the data of the minor defect category of the E buckle clip,
the displacement of the buckle clip is less clear. The dataset will be continuously updated
to improve this situation. The performance comparison between the first version and the
second version for YOLOv4 and YOLOv4-Tiny is shown in Tables 7 and 8, respectively. It
can be seen from the training process that the loss has continued to decline while the mAP
has continued to rise. The confusion matrix for each category is shown in Tables 9 and 10.
Figure 10 is an example of the recognized defective components in the top view.

File Edit View Help
Box Labels

- E (At Labal

L diffcnls

L] e afinlt Jabal

[ slab_track_eclip_break o

File List ]
CAUsershkatie\OneDrive\s BVAE Z\pah, ~
CAUsersikatieOneDrive\st BV \jpat
CAUsersykatieOneDrive\ 3 EVE S\ jpah
CAUsersikatie\OneDriver\ 2 BNV \jpal.
CAUsershkatieOneDrive\ 2 BT T\jpal,
CAUsersykatie\OneDr ive\ = ENAED\jpah,
CUsershkatietOneDrivenst

nalion
®~ CaUsersikatienOneDr ive s’ pan
ZeomIn CAsersikatishOnel ve s jpa
TS ‘ CaUsersikatie\OneDrive s ENAESTypg
CAsersikatiehDnelrive) s BRI pal
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Figure 9. The tool Labellmg is used to create the training dataset.

Table 7. Performance of the 1st and the 2nd version of YOLOv4.

YOLOV4 (1st) YOLOvV4 (2nd)
mAP 83.16% 94.47%
Precision 82% 94%
Recall 95% 91%

Table 8. Performance of the 1st and the 2nd version of YOLOv4-Tiny.

YOLOV4-Tiny (1st) YOLOvV4-Tiny (2nd)
mAP 90.77% 91.66%
Precision 82% 92%
Recall 96% 91%

(@) (b) (0)

Figure 10. Examples of the detected defective track components in the top view. (a) rail surface_XX;
(b) e_Clip XX; (c) slab e_Clip XX.



Sensors 2022, 22,9970

15 of 23

Table 9. YOLOV4 training results for each defective type in the top view.

Type TP FP FN
e-Clip_X 9 2 5
e-Clip_XX 68 4 3
Spike_X 36 0 2
Spike_XX 16 2 0
Rail surface_X 25 2 0
Rail surface_XX 25 4 3
Slab e-Clip_X 8 1 1
Slab e-Clip_XX 11 2 0
Other 5 0 0
Covered 133 6 18
Total 336 22 33

Table 10. YOLOv4-Tiny training results for each defective type in the top view.

Type TP FP FN
e-Clip_X 8 2 6
e-Clip_XX 63 3 8
Spike_X 35 1 3
Spike_XX 16 3 0
Rail surface_X 24 6 2
Rail surface_ XX 27 1 1
Slab e-Clip_X 8 1 1
Slab e-Clip_XX 11 2 0
Other 5 0 0
Covered 138 11 13
Total 335 30 34

This study’s first version of side-view track component detection by the YOLOv4-
Tiny neural network model was trained with the side-view dataset. Only four missing
categories are used for training. The training result mAP is 99.00%, precision is 100%,
and the recall rate is 99%. The data seems to be good. However, there are too many false
positives in the actual test, and almost all the welds in the entire rail are regarded as weld
fractures. Therefore, this study added two categories of normal welding and regular fishtail
in the second edition of training to reduce the misjudgment of the actual test. The result
of YOLOV4 training mAP is 99.24%, precision is 97%, and the recall rate is 95%. The
YOLOvV4-Tiny training result mAP is 99.16%, precision is 96%, and the recall rate is 94%.
The overall mAP has also continued to rise. After the actual test, the misjudgment of the
whole video also dropped a lot. The detailed confusion matrix of each category is shown
in Tables 11 and 12. Observing the data in the table, we can find that the number of FPS
with fractured welds is still not zero, and these are regular welds that have been misjudged
as weld cracks. In the future, these misjudged data will continue to be added back to the
training dataset to improve the overall recognition rate as much as possible. In addition,
there are multiple FNs at the regular welds, and these FNss are because the side rails will
be captured together with the rear rails when shooting. However, the welding image on
the rear track is too small to be recognized by the neural network, as shown in Figure 11.
Figure 12 shows some examples of side-view defective track component identification.
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Table 11. YOLOV4 training results for each defective type in the side view.

Type TP FP FN
Rail XX 36 3 2
Rail_welding_XX 7 0 0
Rail_welding_O 77 0 8
Fishplate_bar_XX 12 2 0
Fishplate_bar_X 25 0 1
Fishplate_bar_O 49 1 0
Total 206 6 11

Table 12. YOLOv4-Tiny training results for each defective type in the side view.

Type TP FP FN
Rail_XX 37 0 1
Rail_welding_XX 7 9 0
Rail_welding_O 73 0 12
Fishplate_bar_XX 12 0 0
Fishplate_bar_X 26 0 0
Fishplate_bar_O 49 0 0
Total 204 9 13

Figure 12. Some examples of detected defective track components in the side view by the trained
YOLOvV4-Tiny. Upper left: Fishplate_bar_XX (generated); upper right: Rail XX (real); lower left:
Fishplate_bar XX (real); lower right: Rail_welding_O.
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4.1.2. YOLOX-Tiny Training

For comparison with the YOLOv4-Tiny neural network, the same dataset was used
for training. The original dataset is allocated 80% as the training set and the other 20% as
the test set. The top-view training iterates 3000 times and takes approximately 72 h in total.
The number of iterations of side-view training is 3000 times, and it takes approximately
30 h in total. The overall training time of YOLOX-Tiny is relatively long. The mAP of the
top view training is 85.22%, the precision is 83%, and the recall rate is 78%. The result of
side-view training is that the mAP is 75.26%, the precision is 89%, and the recall rate is 77%.
The comprehensive data of YOLOX-Tiny is not ideal. The detailed confusion matrix of each
category is shown in Tables 13 and 14.

Table 13. YOLOX-Tiny training results for each defective type in the top view.

Type TP FP FN
e-Clip_X 6 10 1
e-Clip_XX 36 4 15
Spike_X 29 0 3
Spike_XX 12 2 1
Rail surface_X 16 0 0
Rail surface_XX 32 4 1
Slab e-Clip_X 12 8 0
Slab e-Clip_XX 17 0 3
Other 2 0 1
Covered 97 24 49
Total 259 52 74

Table 14. YOLOX-Tiny training results for each defective type in the side view.

Type TP FP FN
Rail_XX 17 1 1
Rail_welding_XX 4 0 1
Rail_welding O 45 0 24
Fishplate_bar_XX 4 2 1
Fishplate_bar_X 11 0 1
Fishplate_bar_O 46 12 10
Total 127 15 38

On examining all the incorrectly identified pictures, it was found that FN and FP
mostly appear in blurred or rotated and toned pictures, as shown in Figure 13a. Photos
of this type account for a relatively small percentage of all datasets. It is inferred that the
recognition performance may be degraded due to the lack of such data. Therefore, we
redistribute the dataset, setting 90% of the photos as the training set and 10% as the test set.
Retrain the model using the same number of iterations. The top-view result of this training
was 86.87% mAP, 92% precision, and a 82% recall rate. The mAP of the side-view result
is 97.55%, the precision is 99%, and the recall rate is 99%. The overall performance has
increased significantly; the comparison is shown in Table 15. Although the YOLOX-Tiny
neural network model is relatively low in data, it can effectively identify far and small
objects. For example, the side-view rail and the rear rail will be included in the shot. The
welds on the rear track can also be identified by YOLOX-Tiny, as shown in Figure 13b.
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Figure 13. Some false examples. (a) too blur to identify; (b) multiple detection of Rail_welding O.

Table 15. YOLOX-Tiny re-training performance in the top view and the side view.

Top View Side View
8:2 9:1 8:2 9:1
mAP 85.22% 86.87% 75.26% 97.55%
Precision 83% 92% 89% 99%
Recall 78% 82% 77% 99%

4.1.3. SSD Training

This study also compares the SSD neural network with the YOLOv4-Tiny neural
network. The same dataset is used for training and testing during training. On the training
data, SSD adopts the VOC data format. During the initial training, it was found that the
training speed was slow, and it was found that the overall training speed was slowed
down when the picture was resized. Therefore, before training, this study takes image
pre-processing and resizes all images (416 x 416) to reduce the overall training time. The
top-view training time SSD512 takes approximately 48 h, the precision is 90%, the mAP is
91.10%, and the recall rate is 89%. The SSD 300 took approximately 24 h, the precision was
93%, the mAP was 91.20%, and the recall rate was 96%. Detailed top-view training results
are shown in Table 16.

Table 16. SSD 512/300 training results of the top view.

Type TP FP FN
e-Clip_X 3/7 2/0 4/0
e-Clip_XX 51/51 3/4 1/1
Spike_X 20/20 2/0 2/0
Spike_XX 10/9 3/4 5/4
Rail surface_X 17/23 2/0 11/5
Rail surface_ XX 39/49 5/1 11/0
Slab e-Clip_X 13/13 0/0 0/0
Slab e-Clip_XX 19/20 5/2 4/3
Other 13/12 1/0 1/2
Covered 150/150 15/16 4/0
Total 335/356 38/27 43/15

The side-view training time for SSD512 takes approximately 48 h, the precision is 91%,
the recall rate is 95%, and the mAP is 99.98%. The SSD 300 took approximately 24 h, the
precision was 92%, the recall rate was 94%, and the mAP was 99.49%. The detailed training
results of the side view are shown in Table 17.
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Table 17. SSD512/300 training results of the side view.

Type P FP FN
Rail XX 37/36 4/3 1/2
Rail_welding XX 7/7 10/9 0/0
Rail_welding_O 82/82 1/1 1/1
Fishplate_bar_XX 12/11 0/0 6/7
Fishplate_bar_X 25/25 0/0 1/1
Fishplate_bar_O 49/49 6/6 2/2
Total 212/209 21/19 11/13

4.1.4. Comparisons of the Neural Models

Table 18 compares the results of top-view training, and Table 19 compares the results
of side-view training. From the perspective of the recall rate, SSD300 will be a better choice.
From the perspective of precision and mAP, YOLOv4 is the better choice. However, from
the comparison table, it can be found that YOLOv4-Tiny is not inferior to other neural
network models. In the side view training results, the precision of YOLOv4-Tiny is 7%
higher than that of SSD512. In addition, this research advocates a real-time identifica-
tion system, so in addition to considering various data, the identification speed (FPS) is
also essential.

Table 18. Comparisons of the top-view training results among different neural models.

YOLOvV4-Tiny YOLOv4 YOLOX-Tiny SSD512 SSD300
mAP 91.66% 94.47% 85.22 91.10% 91.20%
Precision 92% 94% 83% 90% 91%
Recall 91% 91% 78% 89% 95%
FPS 150 20~22 50~55 22~24 45~47

Table 19. Comparisons of the side-view training results among different neural models.

YOLOv4-Tiny YOLOv4 YOLOX-Tiny SSD512 SSD300
mAP 99.16% 99.24% 75.26% 99.98% 99.49%
Precision 96% 97% 89% 93% 92%
Recall 94% 95% 77% 96% 94%
FPS 150 20~22 50~55 22~24 45~47

Based on the above data, YOLOv4-Tiny has an excellent performance in various
data indicators. Moreover, the recognition speed is 3~7-fold higher than other neural
networks. Therefore, this research considers speed without losing accuracy and finally
chooses YOLOvV4-Tiny as the neural network model used in the real-time identification
system of this research.

4.2. Field Test Results

This study conducts field AI detection of the rail track component on the East-West
Main Line between Taichung Port Station and Qingshui Station and conducts mutual
verification with human detection. First, the defective component needs to be fabricated.
Due to the difficulty in producing defective components, it is impossible to produce all
defect categories. Therefore, the top-view defect components are mainly the severe defect
of the e-clip, while the side-view defect components are mainly the cracks of the rail and
the falling off of the fishplate bolts. Moreover, because it is impossible to create natural rail
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cracks, the cracks on the rail side of the rail were simulated with a marker pen, aluminum
tape, and black tape. The simulated crack images were discussed with the personnel of
Dajia Railway Station in advance, and they are all similar to the actual rail crack images,
as shown in Figure 14. A total of 32 artificial markings were made by hand, including
13 severely missing(XX) e-Clips, one fishtail plate bolt falling off, and 18 simulated
rail cracks.

Figure 14. Simulated rail cracks by using (a) aluminum tape on rail head, (b) marker pen to draw,
(c) aluminum tape on rail belly, (d) aluminum tape, (e) aluminum tape on rail bottom, and (f) black tape.

A total of 13 top-view defective components were artificially fabricated. Al detected
14, and the detection rate was 14/13 = 107%. Manual foot inspections found 15. Although
Al patrol inspection is less than manual foot inspection by one, the overall time and human
resources spent are relatively much less. In the future, we will continue to increase the
dataset to reduce misjudgment. The detailed fault track component detection is shown in
Table 20.

Table 20. Top-view defect inspection by Al and human.

Man Made Markers ~ Human Visual Inspection Al Inspection
Top-view defects 13 15 14
Recall rate 115% 107%

A total of 19 side-view defect track components were manually fabricated. The Al
detected eight, and the human visual inspection by walking detected five. The defective
components that Al cannot detect are all images of simulated broken rails on, such as rail
head, rail belly, and rail bottom, as shown in Figure 15. The failure to detect is because the
features of these simulated broken tracks are too small, so the images of these broken tracks
cannot be captured. Because of this, Al cannot detect it correctly. Al can correctly detect
other prominent simulated broken rails. The overall Al detection is also three more than
the manual detection on foot. The details are shown in Table 21.

Figure 15. Simulated rail break on bottom in side-view.
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Table 21. Side-view defect inspection by Al and human.

Man Made Markers =~ Human Visual Inspection Al Inspection

5 (aluminum tape)
1 (black tape)
1 (marker pen)
1 (fishplate)

Recall rate 26.3% 42.1%

Total: 19, (9 if 10 short
Side-view defects tapes on track belly 5
are not counted)

4.3. Robustness Test

To validate the robustness of the proposed defective rail track classification system,
we collected another track dataset of mass rapid transportation that differed from the
previously used dataset. The total number of images in the training dataset was 528,
and the number of defect categories was five. During the training stage, YOLOv4 took
approximately 10 h for 12,000 iterations, while YOLOv4-Tiny took approximately 3 h for
the same number of iterations.

After testing, as shown in Table 22, we obtained a 97% precision rate, a 96% recall rate,
and 97.3% mAP for YOLOv4. On the other hand, we obtained a 98% precision rate, a 94%
recall rate, and 97.5% mAP for YOLOv4-Tiny. Although the mAP and precision rate of
YOLOv4-Tiny are good, the recall rate is lower than for YOLOv4. The reason is that there
are too many false negatives, and there is a slight overfitting phenomenon. In this test, we
successfully demonstrated that the proposed methodology using YOLOv4-Tiny is quite
robust. The performance indexes are all over 90%, which could be deployed for various
track applications.

Table 22. YOLOv4 and YOLOv4-Tiny training and testing results for a different dataset.

YOLOv4 YOLOvV4-Tiny
mAP 97.3% 97.5%
Precision 97% 98%
Recall 96% 94%

5. Conclusions

In this study, five neural network models were compared, namely YOLOv4, YOLOv4-
Tiny, YOLOX-Tiny, SSD512, and SSD300. After considering precision, the recall rate, mAP,
and FPS, YOLOv4-Tiny was finally selected as the neural network model used in this
real-time recognition system. Since the railway track is not open to the outside world, it
is challenging to collect damaged samples, which also leads to insufficient data for some
defect categories in training. In this regard, this study uses data augmentation methods
to increase the diversity of data as much as possible using rotation and grayscale. In the
side-view data, Cycle Gan is also used to automatically generate images of track cracks to
avoid overfitting as much as possible due to insufficient training data.

This system uses a GoPro camera to capture images. We used the multi-process method
to write programs and execute three processes concurrently. The recognition results are
packaged object oriented so that the system can quickly access data. Combined with the
flat maintenance car, real-time identification can be performed at approximately 30 km /h.
Moreover, inertial navigation can locate the position of defective components. This system
will integrate all the identification results into an excel report and record the storage location
of the identification results, 100 m piles, and photos of defective components in detail so
that users can view them in real time. While maintaining a reasonable recognition rate, the
efficiency of track inspection is greatly improved. Furthermore, it can have lower costs and
a safer maintenance environment compared with manual inspection.

Collecting the image data of track defects required in this study is difficult. Although
multiple defective component data have been generated through methods such as data
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enhancement or Cycle GAN, the same photo is still used for rotation and grayscale. There is
a slight improvement in overall data richness. In the future, we plan to cooperate with the
Taiwan Railway branches in various counties and cities to obtain more missing component
data to increase the dataset required for training.

The inertial navigation module used in this research can work in a short tunnel
within 500 m, and the positioning error can be less than 10 m. However, since the inertial
navigation error will accumulate over time, the positioning error will also increase when
encountering a long tunnel. In the future, we hope to find an inertial navigation module
with automatic correction or use the track map information provided by the Taiwan
Railway Administration to perform positioning correction. This system directly uses a high-
performance notebook computer for real-time identification. We want to use lighter neural
network models and embedded systems, such as TX2 or Xavier, for real-time recognition.
This progress can make the process more convenient to users.
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