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Abstract: Estimation and monitoring of cable tension is of great significance in the structural as-
sessment of cable-supported bridges. For short cables, the traditional cable tension identification
method via frequency measurement has large errors due to the influence of complex boundaries,
which affect the accuracy of estimation. A new cable tension estimation method based on mode shape
identification with a multiple sensor arrangement on the cable can take the influence of boundary con-
ditions into account and its accuracy has been verified. However, it requires more sensors compared
to the traditional frequency-based method, which will significantly increase the cost of long-term
monitoring in practice. Therefore, a novel approach for cable tension monitoring considering both
cost and accuracy is further proposed in this study. The approach adopts multiple sensors to measure
the influence of boundary conditions. Then, only a single sensor is required for long-term monitoring
of the cable. In this paper, an analytical model of the cable is firstly established. The influence of
boundary conditions is calculated, which ensures the accuracy of mode shape identification. Further-
more, a field experiment is carried out to verify the effectiveness of the new approach. The results
have demonstrated the effectiveness and accurateness of the proposed method in long-term short
cable tension monitoring.

Keywords: short cable; cable tension; mode shape; monitoring; experimental validation

1. Introduction

Cables are important components of cable-supported bridges. The monitoring of cable
states is of great importance in the maintenance of bridge stability and safety [1]. Further-
more, the variability of cable tension is also a crucial factor for estimating the state of cables
in service [2]. Therefore, the accurate identification and long-term monitoring of cable ten-
sion is a meaningful problem in health monitoring and the evaluation of cable-supported
bridges [3]. At present, the commonly used cable tension identification methods [4] can be
divided into direct measurement methods and indirect measurement methods. The direct
measurement methods are used to identify the cable tension directly with a series con-
nection of measuring devices on the cable, so as to achieve accurate measurement of the
cable tension. Commonly used methods include the direct measurement method and the
pressure transducer method [5]; that is, by connecting the tension meter in series on the
cable, the cable tension can be identified directly through the tension meter. This method
has high accuracy and simple operation. However, this method can only be used during
cable installation and testing. For the cable in service, the two ends are connected to the
bridge, which makes it impossible to identify the cable tension by this method.

Compared to the direct measurement method, the indirect measurement method can
calculate the value of cable tension by measuring the corresponding indirect parameters
of the cables. Generally speaking, by measuring some parameters—with easy-to-obtain
values—the cable tension can be estimated. Therefore, this method has good engineering
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practical value. Commonly used indirect measurement methods include the magnetic
flux sensor method [6], fiber Bragg grating sensor method [7,8], vibration method [9], etc.
The magnetic flux sensor method converts the output voltage measured by the electro-
magnetic induction system and the material parameters of the core material to obtain the
permeability of the material, and then the stress state of the core material can be obtained
indirectly. This method is relatively less used because of its high cost and complex calibra-
tion work. The fiber Bragg grating sensor method arranges fiber sensors around the cable;
then, the deformation of the cable can be identified by the sensors. Finally, these data can
be used to estimate the cable tension. This method is suitable for long-term monitoring of
cable tension. However, in practical use, this method is also sensitive to strain, temperature
and other factors, which is limited.

The vibration method estimates cable tension according to the modal characteristics of
cable vibration. The frequency method [10] is the most commonly used method in place of
the vibration method. Its principle is to measure the natural vibration frequencies of the
cables by directly arranging sensors on the cable, and the cable tension can be calculated
through the analytical formulas. The formulas between cable tension and frequencies can
be obtained by using the analytical model under pinned–pinned boundary conditions.
Since the frequencies are one of the simplest parameters to obtain from the acceleration or
displacement sensors installed on the cables, it is currently the most widely used in practice.
The basic formulas of the frequency method can be divided into taut string theory and
beam theory according to whether the influence of bending stiffness is taken into account.
Flat taut string theory [11] regards the cable as a flat taut string without bending stiffness,
so its calculation formula is:

T = 4ml2
(

fn

n

)2
, (1)

where fn is the n-th order natural frequency in Hz. T, m and l represent the cable tension,
mass per unit length and cable length, respectively. For short cables or cable structures
with large bending stiffness, ignoring the bending stiffness will cause great errors of the
cable tension estimation. Therefore, the cable is further regarded as a beam model with
tension and bending stiffness, and the calculation formula is:

T = 4ml2
(

fn

n

)2
− n2π2 EI

l2 , (2)

where EI represents the bending stiffness of the cable. However, the two methods are
derived by assuming the cable with pinned–pinned boundary conditions. Therefore,
the vibration mode shape of the cable is sinusoidal. However, the boundary conditions of
cables may be more complex in practice. If the frequency method with analytical formulas
are directly used for cable tension identification, it may cause large errors. For example,
the installation of cable dampers [12] will influence the mode shape of cables, especially
for long cables. Hence, on the basis of the analytical formulas, some scholars have further
proposed empirical formulas [13–16] that consider the influence of more parameters than
analytical formulas. The essence of empirical calculation methods are to fit the parameters
into a proposed formula and neglect its physical meaning, so the accuracy and convenience
of calculation are not as good as the analytical theory.

With the popularity of radar and digital image correlation, non-contact methods such
as the laser method [17] and image recognition [18–21] are adopted to identify the dynamic
characteristics such as frequencies or mode shapes to estimate cable tension. Feng et al. [20]
proposed a non-contact measurement method to estimate cable tension by using digital
image processing. Xu et al. [21] calculated the vibration displacements of multiple target
measurement points of the cable, and then the frequency method was further used to
obtain the cable tension. Compared with the traditional method of arranging sensors on
the cable, the non-contact measurement method does not need to install sensors on the
bridge. Thus, it is more convenience and has a longer measurement range. Furthermore,
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the non-contact method can generally identify the information of multiple cables at the
same time. For cable-stayed bridges and suspension bridges, it can measure the entire
cable plane at one time, so it has a good application prospect. However, the non-contact
method is only applicable to short-term measurement, which can not meet the requirement
of long-term monitoring in practice.

In recent years, Yan et al. [22,23] proposed a novel cable tension identification method
based on mode shape measurement. This method has good accuracy in estimating the
cable tension of cables with complex boundary conditions. By introducing the “equivalent
cable length”, the modal vibration of the cable under complex boundary conditions is
equivalent to a pinned–pinned cable with “equivalent cable length” [24], and then the cable
tension can be further calculated by analytical formulas. Wu et al. [25] and Chen et al. [26]
conducted relevant numerical verification and corresponding cable experiments. However,
an important prerequisite for using this method to accurately identify cable tension is
the reasonable arrangement of sensors. When the sensors are arranged too close to the
boundary, there is a large influence of hyperbolic mode components, which will lead to a
large difference from the assumption of “sinusoidal mode” provided by equivalent pinned–
pinned cable structure. Therefore, sensors on the cable need to be arranged away from the
boundaries to avoid the influence of hyperbolic mode components. Furthermore, when
considering long-term cable tension monitoring by this method, it is necessary to arrange
multiple sensors measuring the sinusoidal mode shape to identify the equivalent cable
length, which significantly increases monitoring cost and complexity of data analysis.

In this paper, a novel long-term cable tension monitoring method is proposed and its
accuracy and feasibility are verified.The new method adopts multiple sensors installed
on the cable to identify the equivalent length for the first time. Then, only one sensor
remains on the target cable for monitoring the variation of cable frequencies. With the
combination of unchanged equivalent cable length identified by the first step and time-
varying frequencies obtained by the remaining sensor, the cable tension can be acquired
accurately at all times.

The paper is structured as follows. Section 2 presents model of cables with complex
boundary conditions and the components of the different modes are solved by the dynamic
stiffness method. The influence of the boundary conditions on the proportion of the
hyperbolic mode in the cable mode shape is analyzed, and then a more accurate sensor
layout strategy is obtained in Section 3. Section 4 proposes the novel long-term cable
tension monitoring method. Section 5 takes a real bridge as an example, the accuracy and
feasibility of the method for long-term cable tension estimation are analyzed. Section 6
concludes the paper.

2. Cable Model with Complex Boundary Conditions
2.1. Simplifed Cable Model

According to Chen et al. [26], the boundary conditions of the cable can be simplified
into a cable structure supported by four spring structures, as shown in Figure 1, and then
theoretical analysis can be carried out. Among them, Kr0 and Kr1 represent the rotation
constraint at both ends of the cable. For a pinned–pinned structure, Kr0 = Kr1 = 0, and for a
clamped–clamped structure, Kr0 = Kr1 = ∞. For cables with normal boundary conditions,
Kr0 and Kr1 simulate the angular influence of boundary conditions in practical structure.
Furthermore, Kl0 and Kl1 represent the vertical linear constraints at both ends. Due to
the influence of sleeve, damper and other impact factors in the project, the cables may
exist with certain linear displacements at the ends, and this effect can be simulated by
different spring coefficients of Kl0 and Kl1. T and L represent the cable tension and cable
length, respectively.
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Figure 1. Simplifed cable model.

2.2. Differential Equations of Cable

Assuming that the cable is an axially tensioned Bernoulli–Euler beam [10], its differen-
tial equation is expressed as

EI
∂4V
∂x4 − T

∂2V
∂x2 + m

∂2V
∂xt = 0, (3)

where V(x, t) is the lateral displacement of the cable, EI represents the bending stiffness
and m is the mass per unit length.

Since the location x and time t in the displacement function V(x, t) are independent,
variable separation can be carried out as

V(x, t) = φ(x) · eiωt. (4)

For the convenience of further analysis, the relevant parameters are dimensionless
and normalized as

x = L · x̄,

γ =
T
EI

,

η2 =
mL4

EI
.

(5)

Equation (3) can be expressed as

φ(4)(x̄)− γφ(2)(x̄)− η2ω2φ(x̄) = 0. (6)

Equation (6) is a quartic differential equation. By solving the equation, the general
solution can be obtained as

φ(x̄) = A1 sin(αx̄) + A2 cos(αx̄) + A3 sinh(βx̄) + A4 cosh(βx̄), (7)

where α =

√√
γ2+4ω2η2−γ

2 and β =

√√
γ2+4ω2η2+γ

2 .
It can be found from Equation (7) that the cable mode shapes are mainly composed of

four components, which are sine, cosine, hyperbolic sine and hyperbolic cosine, respectively.
In other words, when using the analytical formulas (taut string theory or beam theory) for
cable tension estimation, only the sinusoidal mode is taken into account, which is the main
reason leading to a larger error.

2.3. Solution of Cable Frequency by Dynamic Stiffness Method
2.3.1. Principle of Dynamic Stiffness Method

As shown in Equation (7), the vibration modes of the cables are related to the parame-
ters α and β, which are determined by the cable tension T, bending stiffness EI, mass per
unit length m, cable length L and natural frequency ω. However, these parameters are
dependent. When T, m and L are determined, the natural frequency ω can be calculated
from the above parameters. Since the cable is not a pinned–pinned structure, its natural
frequencies cannot be expressed as an explicit analytical solution. Therefore, a mature
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numerical method, the dynamic stiffness method, is considered to obtain the numerical
solution of natural frequencies (ω).

The key of the dynamic stiffness method [27] is to obtain the dynamic stiffness matrix
of the structure to meet the following equation

F = K(ω)δ, (8)

where F is the node force vector and δ is the node displacement vector of the structure,
respectively. For the free vibrations, the node force vector F = 0, and Equation (8) becomes
a homogeneous linear equation group. To ensure it has a non-zero solution, the determinant
of K(ω) is zero, so the frequencies ω can be calculated.

To calculate the equation |K(ω)| = 0, Wittrick and Williams [28] proposed the W–W
algorithm, which is used to solve the equation more conveniently and accurately. The solu-
tion of the W–W algorithm was further simplified through an improved W–W algorithm
proposed by Han et al. [29].

The principle of the improved W–W algorithm is to calculate the modal frequency
count of the structure J(ω∗) with a given trial frequency ω∗. J(ω∗) represents the num-
ber of mode orders when frequencies are smaller than the trial frequency ω∗. It can be
calculated as

J(ω∗) = J0(ω
∗) + JK(ω

∗) = J̄0(ω
∗)− J̄K(ω

∗) + s{K∆(ω∗)}, (9)

where JK(ω
∗) represents the count, which is related to the dynamic stiffness matrix. It is

equal to the number of negative elements on the main diagonal of triangular matrix K∆(ω∗),
as K∆(ω∗) can be calculated from the Gauss column transformation of the dynamic stiffness
matrix K(ω∗). J0(ω

∗) is the modal frequency count of the corresponding clamped–clamped
structure, which represents a structure with identical parameters of the original structure
except the boundary conditions are fixed at both ends. Since the structure frequencies of
the fixed end structure are difficult to express in an analytical formula, it can be further
simplified by “hypothetical structure”. Therefore, J0(ω

∗) can be counted by the difference
between corresponding pinned–pinned structure J̄0(ω

∗) and the upper triangular matrix
count of dynamic stiffness under pinned–pinned boundary conditions J̄K(ω

∗).

2.3.2. Solution of Cable Structure

(1) Solution of J̄0(ω
∗)

The different coefficients of the springs simulate the influence of different boundary
conditions, and the spring coefficients are expressed as Kr0, Kr1, Kl0 and Kl1, respectively.
By the dimensionless treatment, it can be obtained that

K̄l0 =
Kl0L3

EI
, K̄r0 =

Kr0L
EI

,

K̄l1 =
Kl1L3

EI
, K̄r1 =

Kr0L
EI

.
(10)

For a “hypothetical structure” with pinned–pinned boundary, the cable tension can
be calculated through an analytical expression, as shown in Equation (2). Therefore,
the calculation formula of frequencies is shown as

ωn =
nπ

l

√
T
m

+
n2π2EI

ml2 . (11)

Equation (11) is a monotonically increasing function of the n-th order for a given trial
frequency ω∗, as:

ωn ≤ ω∗ < ωn+1, (12)

where J̄0(ω
∗) = n.
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(2) Solution of J̄K(ω
∗)

For a pinned–pinned structure, the dynamic stiffness matrix is expressed as

K̄ =

[
k11 k12
k21 k22

]
, (13)

where: k11 = k22 = ∆(λ2
1 + λ2

2)(−λ2 cosh(lλ2) sin(lλ1) + λ1 cos(lλ1) sinh(lλ2)),
k12 = k21 = ∆(λ2

1 + λ2
2)(λ2 sin(lλ1)− λ1 sinh(lλ2)),

λ1 =
√
−T
2EI +

√
T2+4mω2EI

2EI ,

λ2 =
√

T
2EI +

√
T2+4mω2EI

2EI ,
∆ = EI

2λ1λ2(cos(lλ1) cosh(lλ2)−1)+(λ2
1−λ2

2) sin(lλ1) sinh(lλ2)
.

The upper triangular count of the corresponding pinned–pinned structure J̄K(ω
∗) is

then calculated by the Gauss column transformation of upper triangular transformation of
K̄(ω∗) as discussed in Section 3.2.

(3) Solution of JK(ω
∗)

Fv represents the vertical forces and M represents the bending moments at the struc-
tural nodes, so the cable internal forces provided by the equivalent spring at the boundary
can be expressed as 

Fv(0) = −
d3φ(0)
d(x̄3)

= K̄l0φ(0),

M(0) = −d2φ(0)
d(x̄2)

= −K̄r0
dφ(0)
d(x̄)

,

Fv(1) =
d3φ(1)
d(x̄3)

= K̄l1φ(1),

M(1) =
d2φ(1)
d(x̄2)

= −K̄r1
dφ(1)
d(x̄)

.

(14)

Let s = sin α, c = cos α, sh = sinh β and ch = cosh β, then Equation (14) can be
expressed as

α3 A1 − K̄l0 A2 − β3 A3 − K̄l0 A4 = 0,

K̄r0αA1 + α2 A2 + K̄r0βA3 − β2 A4 = 0,

(K̄l1s + α3c)A1 + (K̄l1c− α3s)A2 + (K̄l1sh− β3ch)A3 + (K̄l1ch− β3sh)A4 = 0,

(K̄r1αc− α2s)A1 − (K̄r1αs + α2c)A2 + (K̄r1βch + β2sh)A3 + (K̄r1βsh + β2ch)A4 = 0,

(15)

which can be shown in matrix form as

K(ω∗) · A = 0. (16)

The dynamic stiffness matrix K(ω∗) is

K(ω∗) =


α3 −K̄l0 −β3 −K̄l0

K̄r0α α2 K̄r0β −β2

K̄l1s + α3c K̄l1c− α3s K̄l1sh− β3ch K̄l1ch− β3sh
K̄r1αc− α2s −K̄r1αs− α2c K̄r1βch + β2sh K̄r1βsh + β2ch

, (17)

while the mode shape vector is shown as

A =
[
A1 A2 A3 A4

]T . (18)

Furthermore, the upper triangular matrix K∆(ω∗) can be solved according to the
dynamic stiffness matrix, and the JK(ω

∗) can also be obtained.
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Thus, for each trial frequency ω∗, the corresponding count J(ω∗) can be calculated
by this method. The counting function J(ω∗) of the required order frequency can be
approached continuously by changing the trial frequencies ω∗, and the numerical solution
of each order frequencies are obtained. In addition, through the Equation (16), the mode
shape vector can also be calculated, and the components of sine and hyperbolic mode are
then analyzed.

3. Influence of Boundary Conditions on Cable Mode Shape

In Section 2, the calculation method of the cable mode shape under different boundary
conditions are derived in detail. Furthermore, the influence of different boundary condi-
tions on cable mode shape are considered, it provides theoretical support for the sensor
layout strategy.

3.1. Simplification of Boundary Conditions

In the model provided in Section 2, both ends of the cable are completely equivalent.
Therefore, in order to simplify the calculation, complex boundary conditions are mainly
considered at the 0-end, and the boundary of the 1-end is assumed pinned; that is, K̄l1 = ∞,
K̄r1 = 0; then the dynamic stiffness matrix of the structure can be simplified as

K(ω∗) =


α3 −K̄l0 −β3 −K̄l0

K̄r0α α2 K̄r0β −β2

s c sh ch
−α2s −α2c β2sh β2ch

. (19)

The mode shape vector is then expressed as

A =


A1
A2
A3
A4

 = C


−(K̄r0 − β2)β · c · ch− (K̄l0 + β2)c · sh
(K̄r0 − β2)β · s · sh + (K̄l0 + β2)s · sh
(K̄r0 + α2)α · c · ch + (K̄l0 − α2)s · ch
(K̄r0 + α2)α · c · sh− (K̄l0 − α2)s · sh

, (20)

where C stands for any real number. Therefore, substitute Equation (20) into Equation (7)
and the general solution of the cable mode shape can be expressed as

φ(x̄) = C[(−(K̄r0 − β2)β · c · ch− (K̄l0 + β2)c · sh) sin(αx̄)

+ ((K̄r0 − β2)β · s · sh + (K̄l0 + β2)s · sh) cos(αx̄)

+ ((K̄r0 + α2)α · c · ch + (K̄l0 − α2)s · ch) sinh(βx̄)

+ ((K̄r0 + α2)α · c · sh− (K̄l0 − α2)s · sh) cosh(βx̄)].

(21)

To study the influence of boundary conditions for short cables, the corresponding
research parameter values are set as shown in Table 1.

Table 1. Parameters of cable for theoretical study.

Length L (m) Tension T (kN) Mass m (kg/m) EI (N · m2)

10.00 1500 80.00 3000

3.2. Influence of Rotation Coefficients

Rotation coefficient Kr0 represents the degree of fixed cable rotation. When Kr0 = 0,
the structure is not constrained on the corner, which is a pinned end. When Kr0 = ∞,
the structure is constrained completely, so the influence amount and range of hyperbolic
mode components near the boundary should be larger.
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Set Kl0 = 109 N/m, the proportion of the hyperbolic mode is calculated with the Kr0
of 0, 107 N ·m, 108 N ·m, 109 N ·m, 1010 N ·m and ∞. The influence amount and influence
range of the hyperbolic mode shape for first six orders are calculated as shown in Figure 2.

Figure 2. Influence of hyperbolic sine on vibration mode under different rotation coefficients with
Kl0 = 109 N/m and: (a) Mode 1; (b) Mode 2; (c) Mode 3; (d) Mode 4; (e) Mode 5; (f) Mode 6.

Through the calculation, it can be seen from Figure 2 that with different rotation
coefficients of the cable, the hyperbolic sinusoidal mode has a great influence near the
boundary. However, the theoretical analysis of hyperbolic mode shapes is more complex.
When the distance from the boundary is about 10% of the cable length, the influence of
hyperbolic sinusoidal mode can be almost ignored. Furthermore, when the distance from
the boundary of the cable reaches 15%, the hyperbolic components vanish.
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3.3. Influence of Linear Coefficients

Linear coefficient Kl0 will also affect the mode shape near the boundary. In practice,
cables are usually equipped with dampers near their ends for suppressing vibrations, which
will lead to a linear displacement on its vertical direction.

In this section, set Kr0 = 108 N ·m, the proportion of the hyperbolic mode is calculated
with the Kl0 of 106 N/m, 107 N/m, 108 N/m, 109 N/m, 1010 N/m and ∞. The influence
amount and range of hyperbolic sinusoidal mode components for the first six orders are
calculated, as depicted in Figure 3.

Figure 3. Influence of hyperbolic sine on vibration mode under different linear stiffness with
Kr0 = 108 N ·m and: (a) Mode 1; (b) Mode 2; (c) Mode 3; (d) Mode 4; (e) Mode 5; (f) Mode 6.
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According to the calculation results in Figure 3, when considering the influence of
linear coefficient Kl0 on cables, the influence range of hyperbolic sinusoidal modes are
within 10%.

When estimating cable tension based on mode shapes, if sensors are arranged near the
boundary, the influence of the hyperbolic sine component cannot be ignored. Meanwhile,
the hyperbolic sinusoidal mode shape at the boundary condition is relatively complex,
which is related to many factors, such as orders, linear or rotation coefficients, cable tension
and so on. As shown in Figure 2, for the first, second, third and sixth mode, with the
increment of Kr0, the components of hyperbolic mode shape also increase. However, for the
fourth mode, the components of the hyperbolic mode are negatively correlated with Kr0.
Therefore, it is hard to determine the influence amount of the hyperbolic mode component
by the analytical calculation.

However, the hyperbolic mode components decay very quickly after a certain distance
from the boundary. Conservatively, when considering the arrangement position of more
than 15% of the cable length, hyperbolic sinusoidal mode vanishes.

4. Long-Term Cable Tension Identification Method
4.1. Cable Tension Identification Based on Mode Shape Measurements

As discussed in Section 3, when the complex boundary conditions of cables are
considered, the influence of the hyperbolic components is within 15% of the cable length
near the boundaries. That is, when the sensors are all arranged away from the influence
range of hyperbolic modes, there are only sinusoidal modes of the cables, which are
the same as pinned–pinned cable structures. Then, the cable length of the equivalent
pinned–pinned cable can be estimated as equivalent cable length. Therefore, only the
influence range of hyperbolic modes are taken into consideration in the following study
without further considering the actual influence quantitatively. Hence, the cable tension
identification can be greatly simplified without losing accuracy.

4.2. The New Long-Term Cable Tension Monitoring Method

The accurate identification of cable tension based on mode shape estimation mainly
relies on two pieces of vital information, i.e., the frequencies and the equivalent cable length
(or sinusoidal mode) of the target cable. The frequency measurement method is the same
as the traditional cable tension identification method and it can be directly measured by
installing acceleration or displacement sensors on the cable. The measurement accuracy
is guaranteed through conventional method. On the other hand, the measurement of the
equivalent cable length depends on the simultaneous installation of multiple sensors on
the cable, and the synchronous information of multiple sensors is required to obtain its
vibration mode (assuming only sine vibration mode exists) to fit the equivalent cable length.
Among them, the equivalent cable length mainly reflects the influence of its boundary
conditions. In the process of bridge operation period, the cable tension is mainly affected
by the environment (such as temperature, vehicle load, etc.), which will mainly cause
the change of cable frequencies, regardless of the cable boundary conditions. Normally,
the equivalent cable length is basically unchanged, while the change of cable tension is
mainly reflected by the frequency variations of the cable.

Therefore, a novel long-term cable tension monitoring method is then proposed, which
takes into account the convenience of the analytical formula method (long-term monitoring
by single sensor) and the accuracy of the method based on mode shape measurements (the
influence of boundary conditions is concerned by introducing equivalent cable length).
Firstly, multiple sensors are arranged on the cable, and the cable tension can be calculated
through the identification of mode shape and frequency measurement results, and the
value of estimated equivalent cable length is recorded. Subsequently, for the long-term
monitoring process, redundant sensors can be removed and only one sensor is retained.
The measured frequencies by reserved sensorss are combined with the former recorded
equivalent cable length to fit the cable tension. In addition, the equivalent cable length may
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also change due to the slow variation of boundary conditions, which can be corrected by
arranging sensors for reidentifying the equivalent cable length periodically.

The long-term cable tension identification procedure is shown in Figure 4.

Cable Tension 
Monitoring Method

Multiple Sensors 
on the Cable

Frequencies Equivalent 
Cable Length

Initial Cable 
Tension 𝑻𝑻𝟎𝟎

Remained Single 
Sensor on the 

Cable

Time-varying 
Frequencies

Time-varying 
Tension 𝑻𝑻

Basic Parameters 
of Target Cable

Hyperbolic 
Mode Influence

Sensors 
Arrangement 

Design Stage Arrangement Stage

Time-frequency transform Sine Mode Fitting

Analytical Formula

Long-term Monitoring Stage

Same
Order

S
en

so
rs

 L
oc

at
io

n

Figure 4. long-term cable tension monitoring procedure.

5. Field Experiment
5.1. Experimental Design

One cable from a three-span continuous arch bridge in Qixia City, China is selected
for the field bridge experiment. The experimental cable is shown in Figure 5. Cable No.
15–L–17 was selected for the cable tension estimation and monitoring experiment with the
proposed method. To verify the effectiveness of the new method, multiple methods for
cable tension identification were used to measure the force, including the traditional beam
theory formula, the mode shape identification method with multiple sensors and the single
sensor and magnetic flux method.

Figure 5. Experiment site.

The basic parameters of the experimental cable are shown in Table 2.
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Table 2. Parameters of experimental cable.

Length L (m) Mass m (kg/m)
Designed Cable Tension

T (kN)

8.1186 57.57 1408.0

According to the theoretical analysis results in Section 3, the influence of the hyperbolic
components could be ignored when the sensors are arranged away from the boundary 15%
of the cable length. On the other hand, if the sensors are arranged at much higher positions,
it will cause difficulties in the installation of the sensors. Combined with the above two
factors, the arrangement position of the sensors are shown in Figure 6.

Figure 6. Multiple sensor arrangements of the experiments. (a) Sensor layout in experimental field;
(b) sensors arrangement position.

The sinusoidal mode of the cable can be expressed as y = A sin(Bx̄ + C). The three
parameters to be identified are A, B and C, which represents that at least three sensors
are required to be arranged on the cable for identification. Furthermore, to ensure the
accuracy and determine the error during the fitting process, Sensor 4 was installed on
the cable. Sensor 5, at the bottom of the cable, was used to monitor the hyperbolic mode
component near the boundary conditions. When there is a hyperbolic vibration mode
component, the data measured by sensor 5 will have a large difference from the sine mode
of the previous four sensors, which indicates that the hyperbolic has a great influence in
the area and the cable in this range cannot be simplified as sine mode. The lowest sensor
(Sensor 5) was arranged 119 cm away from the bottom boundary, which basically meets
the position of 15% of the cable length. Therefore, it can be considered that the influence of
hyperbolic sinusoidal components at the boundary condition has been eliminated, and the
measurement results are only sine mode.

The experimental steps are as follows:

• Step 1: Multiple sensors (Sensor 1–5) were arranged to synchronously measure the
acceleration data of each position of the cable. The sampling frequency was 1000 Hz
and the sampling time was 2 min for each group. Three groups of experiments were
adopted in total.

• Step 2: Remove multiple sensors except one single sensor (Sensor 4) for measuring
frequencies simulating the monitoring process. The sampling frequency was 1000 Hz,
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and the sampling time was 2 min for each group. Three groups of frequencies were
measured.

• Step 3: The magnetic flux method was also used to identify the cable tension every
1 min, which is synchronized with the new method based on mode shape measure-
ment. The cable tension was identified by magnetic flux and averaged and compared
with the tension estimates calculated in Step 1 and Step 2 to verify the accuracy of the
new method.

5.2. Experimental Results Analysis

The measured acceleration data are shown in Figure 7a (taking the data in the first
group of Sensor 1 among multiple sensors as an example). Fourier transform was adopted
to obtain the spectrum diagram of the sensors, as shown in Figure 7b. For multiple
measurement sensors, since the same cables are arranged synchronously, the measurement
frequencies are identical.

Figure 7. Cable vibration data measured by Sensor 1 in the first group measurement. (a) Time-domain
acceleration data; (b) spectrum diagram.

The amplitudes of the cable were small under ambient excitation. Cable vibrations
identified in the process were mainly occurred in the low-frequency modes. Therefore, only
the first and second order amplitudes with good recognition effect were adopted for fitting
the mode shape. The acceleration data of cables at multiple points were fitted and the mode
shape was estimated by the Eigensystem Realization Algorithm (ERA). The fitting results
by mode shape identification method with multiple sensors were calculated and listed in
Table 3 with the cases Data Group 1–3.

The results show that the identification of equivalent cable length is relatively stable,
and the variation of frequencies is the main causes of cable tension estimation error, which
makes it possible to reserve one single sensor for long-term monitoring of cable tension in
subsequent analysis.

For Step 2, only Sensor 4 was reserved for further measurement, which simulates the
process of long-term cable tension monitoring, and the equivalent cable length obtained
by the multiple sensors measurement at Step 1 is combined to realize the mode shape
identification method.The cable tension estimation by a single sensor is shown in Table 4
with Data Group 4–6. As shown in Table 4, the cable tension identification method with
single sensor (Data Group 4–6) had no significant difference to multiple sensors (Data
Group 1–3), which represents the accuracy and feasibility of the new method.
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Table 3. Cable tension estimation results based on mode shape measurement (Data Group 1–3).

Group/Order Frequency (Hz) Equivalent Length l (m) Cable Tension Tmulti (kN)

Data Group 1 1387
1 8.8779 8.5465
2 18.0239 7.5845

Data Group 2 1482
1 8.8944 8.9701
2 20.1651 7.7198

Data Group 3 1477
1 9.0258 8.8290
2 20.1070 7.7011

Average 1449
1 8.7819
2 7.6685

Table 4. Cable tension estimation results based on mode shape measurement (Data Group 4–6).

Group/Order Frequency (Hz) Equivalent Length
l (m)

Cable Tension
Tsingle (kN)

Beam Theory
Tbeam (kN)

Data Group 4 1442 1115
1 8.9713 8.7819
2 20.1674 7.6685

Data Group 5 1431 1104
1 8.9423 8.7819
2 20.1643 7.6685

Data Group 6 1412 1086
1 8.9004 8.7819
2 20.2333 7.6685

Average 1428 1105

At the same time, the cable tension estimated by beam theory (with the frequencies
measured by Sensor 4 from Data Group 4–6) and the magnetic flux method were also
calculated. To illustrate the accuracy of the method proposed in this paper, the designed
cable tension and multiple cable tension results identified by different methods are listed
for comparison, as shown in Table 5.

Table 5. Comparison of different methods for cable tension estimation.

Method Cable Tension T (kN) Error (%)

Designed cable tension 1408 –
Mode Shape Identification Method
(Multiple Sensors) 1449 2.91

Mode Shape Identification Method
(Single sensor) 1428 1.42

Magnetic flux method 1457 3.48
Beam theory method 1105 21.52

Through the comparison of the above methods, the new method has better stability
and higher cable tension estimation accuracy. Furthermore, the magnetic flux method can
also guarantee a relatively high accuracy. However, when considering identifying the cable
tension directly with the beam theory, there was a large error.

6. Conclusions

This paper proposes a novel approach for cable tension estimation and monitoring via
the mode shape method, and the effectiveness of the proposed method is demonstrated
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by a field experiment. Firstly, a model of cable with different boundaries is established,
with the effect of boundary conditions on the system dynamics discussed in detail. Based
on an on-site experiment of short cable, the accuracy of the method proposed in this paper
has been verified. The following conclusions can be drawn:

1. A refined cable model by considering the different boundary conditions is established,
and then the dynamic stiffness method is used to calculate the components variation
of sine and hyperbolic sine (including hyperbolic cosine) of cable mode shape under
different boundary conditions. The theoretical analysis illustrated that the influence of
the hyperbolic sine component is large near the boundary, which cannot to be ignored.
However, the influence range of the hyperbolic sinusoidal mode is limited. For the
different boundary conditions, the hyperbolic mode has a small component of the 10%
mode of the cable length away from the boundary. Furthermore, the hyperbolic sine
mode basically vanishes within 15% of cable length. Since the variation of hyperbolic
mode is relatively complex, it is suggested to keep the distance at about 10–15% of
cable length from the boundaries when arranging sensors for cable tension estimation
to avoid the influence of hyperbolic mode components.

2. The field experiments are conducted for the purpose of verification. The new monitor-
ing approach includes two parts. Using the data collected by the sensors installed at
multiple points of the cable, the equivalent length of the cable can be obtained via the
method based on mode shape measurement, and thus, the accurate identification of
the short cable tension is realized. Then, based on the equivalent cable length, a single
sensor can realize the long-term monitoring of cable tension accurately. The experi-
mental results show that the proposed method performs a great effect on cable tension
estimation and long-term monitoring. This method can control the error of cable
tension identification within 3%, which is more accurate than the commonly used
beam theory method, making it more advantageous in practical engineering.
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