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Abstract: Heatstroke is a concern during sudden heat waves. We designed and prototyped an
Internet of Things system for heatstroke prevention, which integrates physiological information,
including deep body temperature (DBT), based on the dual-heat-flux method. A dual-heat-flux
thermometer developed to monitor DBT in real-time was also evaluated. Real-time readings from the
thermometer are stored on a cloud platform and processed by a decision rule, which can alert the
user to heatstroke. Although the validation of the system is ongoing, its feasibility is demonstrated in
a preliminary experiment.

Keywords: heatstroke; deep body temperature; dual-heat-flux thermometer; thermal regulation;
IoT system; wearable device; continuous non-invasive temperature monitoring; core temperature;
clinical thermometry

1. Introduction

Heatstroke is caused by overheating, typically as a result of prolonged physical exer-
tion at high temperatures [1,2]. As the most serious type of heat injury, heatstroke occurs if
the body temperature rises to 40 ◦C. Heatstroke often occurs when there is a sudden change
in ambient temperature (e.g., from spring to summer) and the thermoregulation system is
not functioning optimally. The risk of heatstroke at high temperatures differs according to
age. Heatstroke requires emergency treatment. Untreated heatstroke can cause permanent
damage to the brain, heart, kidneys, and muscles. Continuous monitoring of vital signs can
provide physiological information, and a digital marker sensitive to subtle physiological
changes may be useful for disease prevention. A shift in vital-sign measurement from a
hospital to an ambulatory setting has been facilitated by the popularity of wearable devices.

The symptoms of heatstroke include high body temperature, nausea, vomiting, flushed
skin, high heart rate, and rapid breathing. Some symptoms can be monitored by wearable
devices combined with biosensors. Deep body temperature (DBT) is difficult to measure
noninvasively given that it reflects the temperature within body cavities; therefore, invasive
measurement is necessary, typically of the rectum temperature in nosocomial settings. DBT
monitoring is needed not only in hospitals but also in daily healthcare. The real-time
physiological monitoring of construction workers is important because there are strict
regulations to protect outdoor workers. For this purpose, ambient temperature control
based on the wet bulb global temperature (WBGT) is currently used [3]. However, given
the interindividual differences in thermal regularization, an individual index is needed.
Wearable devices enable the collection of physiological information about the user. Heat
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strain control is a crucial measure, especially in summer. In Japan, it is recommended that
workers wear long-sleeve jacket and trousers for safety reasons. However, this hampers
heat dissipation. Hence, close monitoring is needed.

Thermal regulation requires the monitoring of DBT rather than skin temperature.
Strictly speaking, only noninvasive methods are desirable for DBT measurement. Some
medical devices such as the CoreTemp (TERUMO Co., Tokyo, Japan) and Bair Hugger
(3M, Saint Paul. MN, USA) [4–8] can accurately approximate the DBT. These devices are
fabricated based on the zero-heat-flux method (ZHFM) [4], which requires an external
power supply to achieve heat equilibrium in the probe. Devices based on ZHFM are
active sensors, which typically contain a self-heating layer to prevent heat transfer between
the skin and external environment, which makes the probe temperature equivalent to
the DBT [5]. A servo-controlled heater that requires considerable power is necessary to
compensate for heat loss to the ambient environment. Given the power consumption
and risk of low-temperature burns, prolonged use is difficult. Newer sensors with no
heater can accurately approximate DBT, for example, the aural canal thermistor (ACT)
measures the temperature of the tympanic membrane [9]. The DBT thermometer based on
the dual-heat-flux method [10–12] is wearable and suitable for prolonged use. In contrast
to the ZHFM, the dual-heat-flux method (DHFM) (Section 3) estimates/calculates the DBT
using two heat fluxes from the core through the skin into the probe. To calculate the DBT,
the two heat fluxes must travel via two paths with different thermal resistances. Compared
with the ACT, which is used only at rest because it is inserted into the ear canal, the DHFM
is theoretically capable of being used for monitoring devises without requiring the subject
to be at rest.

In the past, heatstroke-prevention systems based on surface temperature (ST) and
heart-rate measurements have been developed [13–15]. DBT has been predicted using algo-
rithms such as the fuzzy control [13], conversion [14], and bioheat transfer equations [15].
However, none of these studies attempted to measure DBT directly.

In this study, we developed an Internet of Things (IoT) system consisting of an im-
proved wearable DHFM-based thermometer with high accuracy and a DBT prediction
model based on sensor reading. We validated the system in a high-temperature environ-
ment. The feasibility and performance of the system are discussed further in [2–6]. See the
end of the document for further details on references.

2. System Concept

DBT, which reflects the core temperature of a body cavity, provides physiological in-
formation, indicates immunologic functional status, and reflects the circadian rhythm. DBT
is more stable than skin temperature because it is less affected by the ambient environment.
We developed a rapid and easy-to-use IoT system for heatstroke prevention (Figure 1).

The DBT, heart rate, and acceleration are measured, and ambient temperature and
humidity are obtained as references. These physiological and environmental data are
used to predict the risk of heatstroke and prompt the user to take preventive measures
as necessary. Low-power Bluetooth wireless communication is used to transmit data to a
smartphone. Despite claims of a transmission range of ~ 100 m, Bluetooth devices reliability
operate at a range of 5–10 m. This may be insufficient for monitoring the physical status of
an outdoor worker. Therefore, we added a microSD memory card to prevent loss of data.

The heatstroke risk level is calculated using physiological and environmental informa-
tion collected by the sensor, and the user is warned to check their physical state to prevent
thermal damage. The device was designed to maximize ease of use.
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Figure 1. The IoT heatstroke-prevention system.

3. Wearable Deep Body Thermometer

Wearable devices can automatically and instantly monitor physiological informa-
tion. Heatstroke warnings from wearable devices will be useful for users in hazardous
environments or with poor health, by making them aware of the risk of heatstroke. There-
fore, we designed a wearable heatstroke detection device for workers using a deep body
thermometer.

3.1. Principle of the Dual-Heat-Flux Thermometer

A dual-heat-flux thermometer (DHFT) calculates DBT based on the heat flux inside a
probe and was proposed by Kitamura et al. [9]. By doubling the heat path inside the probe,
the DBT can be calculated by embedded temperature sensors. The principle of DHFT is
shown in Figure 2. A substrate material with four embedded temperature sensors is the
core of the probe. The substrate material has similar physical properties to skin; when
attached to skin, heat from the core body arising from the difference between the DBT and
skin temperature flows into the substrate material. Additionally, through a “heat isolation
peripheral boundary condition”, heat flows longitudinally. Because the two heat paths (T1
− T3 and T2 − T4) are transversely proximal, the thermal resistors in the skin layer of the
two heat paths are identical. Thus, DBT can be calculated by the four sensors using the
equation below, where k (=R1/R2 in Figure 2) is the ratio of the probe heat resistors in the
two heat paths [9].

Td = T1 +
(T1 − T2)(T1 − T3)

k(T2 − T4)− (T1 − T3)
(1)

The prototype had an accuracy of <0.1 ◦C relative to the reference deep body ther-
mometer, although an additional urethane sponge cover must be used. The method
was modified by Huang et al. based on theoretical simulations and experimental valida-
tion [10,11] (Equation (2)). The first assumption is that heat flows vertically to the surface.
However, as shown by using finite element simulations, the heat flew into the probe in a
diffuse manner. Accuracy can be improved by modifying the conventional formula:

Tcc = T1 +
(T1 − T2)(T1 − T3)

k(T2 − T4)− (T1 − T2)
, k = 2 (2)

This method is more suited to long-term measurements than the zero-heat flow
method, which uses a heater because of the low power consumption of that device. The
absence of an external heater markedly reduces energy consumption, which facilitates
wearable applications.
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3.2. The Effect of Ambient Temperature and Calibration Device

The deep body thermometer is used to monitor core temperature noninvasively during
surgery, and for patients in critical condition in intensive care, where ambient temperature
is constantly maintained. By contrast, a wearable thermometer monitors DBT in daily life,
so the DHFT must consider the effect of ambient temperature.

We designed two types of probes (Figure 3). The probe on the left is the original type
(40 mm in diameter), and that on the right is a miniature probe with a length of 30 mm.
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The effect of ambient temperature is shown in Figure 4. Accuracy is affected by
ambient temperature; error increases as ambient temperature decreases, possibly because
total thermal resistances combined with probe material (aluminum) and heat-insulator at
different ambient temperatures.

The thermal resistance ratio, k, is defined as the ratio of the probe heights. We con-
structed a calibration system consisting of a thermostatic water bath to simulate brain
temperature, and a layer of gypsum with thermal conductivity similar to the forehead
(bone and skin) (Table 1, Figure 5).

Table 1. Thermal conductivity of different materials.

Material Thermal Conductivity (W/m K)

Skin 0.45
Bone 0.45

Gypsum 0.43
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Figure 5. Calibration device mimicking the forehead.

Due to the temperature difference, heat flows through the aluminum plate and gypsum
layer into the probe. Because aluminum has high thermal conductivity, the delay of the
heat flow can be ignored. The experiment was conducted in a thermal chamber with the
temperature controlled to within ±0.05 ◦C. We simulated ambient temperatures of 15–36 ◦C
at a constant core temperature (water temperature) of 37 ◦C. The ambient temperature was
measured at air inside the chamber. Then, estimated the DBT Tcs is as follows:

Tcs = T1 +
(T1 − T2)(T1 − T3)

k(T2 − T4)− (T1 − T2)
(3)

where T1, T2, T3, and T4 are the measured temperature values. It follows that

k =
(Tcs − T3)(T1 − T2)

(Tcs − T1)(T2 − T4)
(4)

ktei at different ambient temperatures, Tai, is obtained, followed by the averaged k value kav):

kav =
1
n

n

∑
Tai=1

ktei (5)

3.3. Evaluation Study

With using of known core temperature Tcs. For different ambient temperatures,
different k values are obtained, and at the end an average value = kav are calculated by
Equation (5).
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The calculated kav-values of the standard and miniature probes at different ambient
temperatures were 1.42 ± 0.01 and 0.98 ± 0.03 (mean ± standard error), respectively
(Figure 6). The estimated error was −0.46 ± 0.50 at a constant k ratio of 2. Therefore,
thermal resistance is affected by ambient temperature, and a calibrated k-value should be
used to minimize the error in DBT measurement.

This result indicated thermal gradient affected by the ambient temperature.
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4. Prediction Model

Thermal modeling is a quantifiable and repeatable method of predicting thermal
and physiological responses to various conditions that enables data-driven guidance.
Early models were designed to address specific environmental conditions. However,
the models have become increasingly more sophisticated to provide higher-resolution
information on human physiological responses, and the use of combinations of models has
become necessary. Although the validation of thermoregulation models is important for
increasing confidence in their results, their utility for monitoring physiological parameters
is limited. In the real world, the number of monitoring devices must be controlled. A small
number of environmental and physiological variables, as well as physical activity and
clothing properties, are used to simplify the heat balance equation. In prior studies of core-
temperature estimation, only skin temperature, skin heat flux, and heart rate were used to
estimate core temperature using a Kalman filter [16] and a linear regression model [17] due
to the lack of core temperature information. In our model, however, the temperature was
directly detected by the DHFT, and predictions were made based on DBT changes.

Figure 7 shows typical temperature changes during exercise. The temperature in-
dicated by the device lags behind the actual temperature T of the subject. Therefore,
beginning at t0, the temperature rapidly increases from TR to T1 at times t0 and t1. The
rate of increase in the indicated temperature is relatively stable between t1 and t2, and
thereafter it gradually returns to the stabilization temperature TF. Our system is capable of
analyzing early temperature data, for example, between t1 and t2, and predicting the final
temperature, TF.

There is a need, therefore, for a measurement system predictive of a stabilization
temperature that can adapt to the changing heat-flow characteristics of both the body under
measurement and the measurement system itself, unlike a first-order model. Adaptive
techniques that use sets of simultaneous equations solved in real-time to yield a likely
temperature-rise curve that indicates the stabilization temperature have been proposed.
However, a considerable amount of time may be required to acquire the temperature-rise
curve. The goal is to predict the stabilization temperature as early as possible.
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Figure 7. Sensor temperature signals over time showing the measurement start time, a critical
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moving averages and estimation were made by temperature changes with 30 s.

The temperature curve has a parabolic shape during the initial temperature rise
(Figure 7). During this parabolic phase, the sustained slope changes between T1 and T2
predict the final stabilized temperature. t1 is defined as a temperature difference of >0.1 ◦C
at a moving average of 60 s. After 30 s, t2 is detected and the slope is calculated. The
relationship between T1 and T2 is assumed to be a liner fashion and the slope (dT/dt) is
simply defined as

Slope = (T2 − T1)/(t2 − t1) (6)

The threshold temperature Tth is determined as 95% of a new steady state temperature
TF, e.g., 0.95 (TF − TR) + TR, and the crossing point time tth between an extended line
of slope and Tth is calculated. If the real deep body temperature is above the threshold
temperature at time tth, a warning is transmitted to the worker. In our evaluation, TF was
determined at 38 ◦C.

5. Experiment
Experimental Protocol

We evaluated the performance and feasibility of the wearable thermometers for the
prevention of heatstroke in a high-temperature environment with a physical workload
using the zero-heat flow thermometer (ZHFT) and the DHFT. In addition, the STs inside
and outside the jacket were monitored to determine the user’s thermal status.

Eight young male subjects (age, 25.3 ± 8.9 years; height, 169.6 ± 5.2 cm; and weight,
64.7 ± 8.6 kg) participated in the experiments. The experiment was conducted in an
isothermal chamber with an ambient temperature of 39 ◦C and 40% relative humidity. Each
experiment comprised acclimation (10 min), cycling exercise (20 min, 50 W), and recovery
(10 min) phases.

DBTs on the forehead and the STs inside and outside the jacket were measured using a
ZHFT (CoreTemp CM-210; TERUMO Co, Tokyo, Japan), the prototype DHFT, and a skin
thermometer (N543RV; Nikkiso-Thermo Co., Ltd., Tokyo, Japan). Both DBTs recorded the
temperature at 2-s intervals. The ZHFT and DHFT were applied to the forehead beneath a
helmet and sampled at 1-s intervals (Figure 8).

We evaluated the availability of DHFT in an environment with a higher temperature
than the DBT. Because the ZHFT has a maximum working temperature of 40 ◦C with a
0.1 ◦C error, it was used as the reference. We also evaluated the use of ST as the only
indicator of thermal status.
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Figure 8. Experiment setup.

The experiments were approved by the Ethics Committees of Tokyo Metropolitan Col-
lege of Industrial Engineering and were conducted in collaboration with Waseda University
and Nara Institute of Science and Technology (approved code 3-ITArakawa578 and date
of approval 18 November 2021). The subjects provided informed consent to participate in
the experiment.

6. Results

Because the DHFT is a passive device, the time lag exceeds (279)(283) 5 min depending
on the ambient temperature. Thus, the temperature was sufficiently stable during the
acclimation stage. The ST and DBT measured by the skin thermometer and DHFT are listed
in Table 2. The paired t-test was used to assess the significance of differences between the
exercise and recovery phases; the acclimation phase data were not analyzed. There was no
significant difference between ST and DBT (Table 2).

Table 2. Temperatures during the exercise and recovery phases.

Temperature During Exercise During Recovery

Surface (outside jacket) 38.96 ± 0.23 38.94 ± 0.13
Surface (inside jacket) 38.36 ± 0.19 38.39 ± 0.12

Forehead DHFT 37.26 ± 0.09 37.38 ± 0.03

Figure 9 shows forehead temperatures measured by the DHFT. Although the ambient
temperature was set at 39 ◦C and the ST was above 38 ◦C, the core temperature was below
38 ◦C. Several parabolic shapes were observed. The predetermined threshold temperature
was 38 ◦C, so no warning was transmitted in this experiment.

In the box plot, outliers were considered abnormal measurements (caused by the
sensor peeling off or by sweat) (Figure 10). We then generated a Bland–Altman plot
(Figure 11). The average difference between the ZHFT and DHFT was 0.07 ± 0.33 ◦C (95%
CI −0.3 to 0.2).
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In the evaluation of the model, the body temperature in our study did not exceed
38 ◦C. The threshold temperatures of individuals were calculated between 39.93 ◦C and
39.97 ◦C. None of the subjects exceeded the threshold temperature.

7. Discussion
7.1. Dual-Heat-Flux Thermometer

The desire to monitor health data is driving the rapid growth of wearable technologies
to measure body temperature, among other physiological parameters. The accurate and
continuous measurement of DBT by a wearable device is important for healthcare and
disease monitoring. However, the accurate monitoring of DBT is challenging; therefore,
accurate and continuous DBT thermometers are not readily available. The DHFT has shown
promise [18–20] and thus was developed herein; high accuracy was achieved.

We developed a heatstroke-prevention system based on a deep body thermometer.
This is the first report of direct measurement of DBT using a noninvasive body thermometer.
The DHFT is a passive device and must be periodically stabilized. The temperature is
sensitive to changes in activity after the DHFT has achieved equilibrium. Monitoring
temperature trends in DHFT provides information on core body temperature, which is
useful for assessing heat stress.

This study provides data on the accuracy of a non-invasive heat-flux-based thermome-
ter for continuous monitoring of core body temperature. The estimated core temperatures
showed good agreement (0.07 ± 0.33 ◦C) and no proportional bias relative to the clinically
approved deep body thermometer (CoreTemp), which is commonly used in operating
theaters. With precise calibration, its accuracy complies with the ISO 80601-2-56 standard
(≤±0.2 ◦C) and the Japanese industrial standard JIST1140 (≤±0.1 ◦C). The mean error was
comparable to the ZHFT temperature measurements, with a calculated limit of agreement
within ± 0.1 ◦C.

Although the developed thermometer has limitations for assessing core body temper-
ature during exercise, our system might be useful for detecting hyperthermic events. Our
novel non-invasive DHFT was able to detect changes in body temperature.

7.2. Prediction of Heatstroke

The results indicated that the core body temperature did not exceed 38 ◦C during the
experiments. Although the DHFT aids the assessment of the relationship between behavior
and physiological effects, further studies on its usability are required. In this study, the
thermometer was attached to a helmet. Although miniaturized, it can cause discomfort if
used over the long term; small and precise thermometers are thus needed.

The prediction algorithm was not fully evaluated in our experiments, but the predeter-
mined value allowed for safe and continuous working.

Most prior studies used thermoregulation models based on skin temperature and
heart rate. Multiple parameters are typically included in core-temperature prediction
equations [3,16,17,21–25]. However, in real working conditions, monitoring systems using
simple assumptions are preferred for continuous evaluation.

7.3. Proposed System

Our proposed device (Figure 1) measures DBT, heart rate, acceleration, ambient
temperature, and humidity. In this study, we focused on DBT measurement, although
heart rate actually changes more rapidly than DBT during exercise. Therefore, heart
rate and pulse rate measurements may be useful parameters for heatstroke-prevention
systems [16,17,21,22].

The multiple-parameter approach renders our device useful for personal healthcare,
including the determination of individual risk to high temperatures. Our system has a
compact design and is inexpensive. Compact designs improve the comfort and utility
of health-monitoring systems. Compared to other available systems, our device is easily
adaptable for comfortable use.
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Low-cost options for personalized health monitoring are of particular interest to
vulnerable populations, such as the elderly, who may not have access to telehealth. For
elderly persons in institutions or living alone at home, such monitoring systems may
be of particular benefit, and personal wearables for health monitoring can meet critical
healthcare needs. Additionally, such technology may facilitate research on the effects of hot
environments on the body. The emergence of health informatics and telehealth necessitates
low-cost, comfortable, and unobtrusive systems that can be seamlessly integrated into
daily life.

8. Conclusions

In conclusion, a heatstroke-prevention system with a non-invasive dual-heat-flux
thermometer is a feasible alternative to a ZHFM for assessing core temperature of outdoor
workers. The core temperatures estimated by the DHFM showed good agreement with
those of the ZHFM. A simple prevention algorithm was proposed but not evaluated; further
studies are therefore needed.
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