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Abstract: The use of monitoring systems based on cloud computing has become common for smart
buildings. However, the dilemma of centralization versus decentralization, in terms of gathering
information and making the right decisions based on it, remains. Performance, dependent on the
system design, does matter for emergency detection, where response time and loading behavior
become very important. We studied several design options based on edge computing and containers
for a smart building monitoring system that sends alerts to the responsible personnel when necessary.
The study evaluated performance, including a qualitative analysis and load testing, for our exper-
imental settings. From 700+ edge nodes, we obtained response times that were 30% lower for the
public cloud versus the local solution. For up to 100 edge nodes, the values were better for the latter,
and in between, they were rather similar. Based on an interpretation of the results, we developed
recommendations for five real-world configurations, and we present the design choices adopted in
our development for a complex of smart buildings.

Keywords: edge computing; Internet of Things; containerization; sensor systems; performance testing

1. Introduction

The transformation of people’s lives through the use of smart buildings has become
a trend for residential purposes, university and corporate campuses, and commercial
complexes, where it is important to focus on both socioeconomic and environmental
factors that can be facilitated by smart technologies [1], including the Internet of Things
(IoT) and cloud computing [2,3]. The multiple sensors embedded into built environments
increase efficiency, security, and comfort [4], but also require new information models and
architecture to gather relevant data. In this context, a complex of smart buildings is also
exposed to a large variety of risks with regard to its administration and the protection of its
residents [5]; therefore, it is necessary to deploy a multitude of sensors to detect motion,
pressure, contact, temperature, smoke, light intensity, flame, carbon monoxide, moisture,
and leaks [6].

Edge computing is a paradigm that is highly distinguishable in the IoT world and
is very helpful for building monitoring systems. Khan et al. described the challenges
of implementing edge computing solutions by analyzing various implementations [7].
Although edge computing is similar to cloud computing in some respects, it differs when
the location of the resources is taken into account; the computing resources are situated in
a local network, called the edge network, where services are provided correspondingly, as
in the case of cloud implementation. In such an architecture, data that are processed on
multiple different devices at the edge of the network are sent to the Cloud to be further
analyzed and used by other applications. Another term that is used in conjunction with
edge devices is fog computing. This includes the use of dedicated nodes to transform data
that originate from edge devices and are sent via a local network. These nodes gather data
from the sensing devices and process them; after that, data are sent for further processing
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in the Cloud [8]. The term “fog computing” has been primarily used by Cisco to define
devices that can process data in the field.

By its nature, the edge network is designed to lower the latency period between the
moments that data are acquired by the devices and when they are processed in the Cloud,
by implementing processing nodes in the field, closer to the acquisition location. The
implementation of an edge network can be applied in the case of warning and emergency
alert systems, because data are processed on the monitored area, and local alarms can be
triggered directly based on the values obtained from sensors. The implementation of a
smart building network was discussed in [9], where architecture was proposed with the
main goal being to obtain environmental parameters to reduce the energy footprint of
the building.

The objective of our research was to design smart building architecture by combining
the advantages provided by an edge network located within a building and the cloud host-
ing the monitoring application. Similar to [10], our main functionalities were monitoring
multiple environmental parameters using different sensors, detecting abnormal situations,
and sending notifications in both centralized and decentralized ways. The result was the
Edge Watcher System (EWS), which was conceived for monitoring a complex of smart
buildings and detecting emergency events. A critical part of our work was the selection
of architecture to best fit this use case. An early version of this system, strictly dedicated
to implementation in a university campus, is described in [11]. Given the existing design
alternatives, our research focused on testing the performance of the EWS smart building
monitoring system. This evaluation was essential for managing building risks because
it provided the means to determine whether the EWS system runs within the desired
parameters for various inputs, similar to real-world situations. The importance of this
critical step mostly relies on the idea that every new development piece must be tested on
different pre-defined scenarios where different performance metrics are monitored.

To properly evaluate performance, the tests covered multiple aspects for which dif-
ferent sections of the cloud application were verified. The first aspect was information
gathering in the Cloud, and this was based on data sent by the edge nodes. The method
applied simulated various edge node configurations that send data to EWS to be further
analyzed. Another important aspect of this evaluation was the scale of the monitoring
system based on sensors. With this setup, multiple building edge node configurations were
simulated; larger buildings required multiple edge nodes in order to cover a larger area. The
tests were defined and executed for scenarios corresponding to (1) a small apartment, (2) a
house, (3) a small apartment building, (4) an office building, and (5) a complex of buildings,
such as a university campus. In addition, more stress test cases, from 100 to 1000 nodes,
were considered, and this was followed by a detailed analysis of the reports generated for
all of these cases. Another aspect taken into consideration with the previously mentioned
tests was the software architectural design. A comparison between a centralized solution
hosted in a public cloud and a decentralized one where each building/complex of buildings
has the monitoring system deployed on its own local datacenter was conducted. Similar
tests were executed for the two architectural options, both including a container-based
service, such as a Kubernetes cluster. This comparison showed how much cloud implemen-
tation affected the response times for the application, compared to when the same solution
was deployed on the same network as the edge nodes. In [12], the topic of performance
testing for a cloud-based solution is further detailed. Last, but not least, another aspect
considered was the performance evaluation of the emergency detection algorithm used to
decide whether the collected data are critical or not. For this purpose, it was important to
see how fast the algorithm would run on a cloud-based container solution, compared to
the same implementation deployed on a local container cluster. Another important factor
was the algorithm’s performance against a high number of requests, represented by a large
edge network located in a complex of smart buildings.

The contributions of this research are summarized below:
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• The article addresses a timely issue—the use of smart building monitoring systems to
identify emergency events and transmit notifications to the responsible personnel. It
presents a qualitative analysis of design options considering two criteria: the location
of the container-based services in the software architecture, and the edge network.

• For the containerized architecture, we set up testing environments for two architectural
options: a centralized one, with a cluster hosted in a public cloud, and a decentralized
one, with a similar cluster deployed in a local datacenter. The tests were executed
for different numbers of edge nodes corresponding to real-life situations: a small
apartment, a house, a small residential building, an office building, and a complex of
smart buildings.

• Based on the measured performance, the article makes recommendations for choosing
between the public cloud and local deployment with respect to the number of edge
nodes used for building monitoring.

• We explain the design choices and several implementation details for a complex of
smart buildings gathering data from numerous edge nodes (up to 1000), for which
performance tests demonstrated that a cloud solution for identifying and notifying
emergencies is expected to deliver better response times.

This paper continues with the presentation of related work (Section 2) followed by
a qualitative analysis of architectural design options regarding container-orchestration
system deployment and the edge topology (Section 3). Section 4 describes the testing plan,
including the tools and technical settings used to execute the performance tests and evaluate
the two architectural options based on Kubernetes. Section 5 presents the results obtained
with JMeter regarding the execution success, the response time, the throughput, and the
run time of the emergency detection algorithm. Then, Section 6 presents recommendations
based on a comparison of the tested options and presents the final design choices with
several details about the development of the EWS.

2. Related Work

The research areas related to our work and to the contributions presented above are
edge computing, emergency management, and performance testing. For this paper, we ana-
lyzed the literature that presents edge computing for emergency detection (Section 2.1) and
that related to performance testing (in Section 2.2); this included studies on the performance
of edge architecture, among others.

2.1. Edge Computing for Emergency Detection

The implementation of alerting systems is described in [13] as being vital for every
building and even more so for smart buildings. These systems also serve to provide
effective evacuation of the occupants in case of an emergency. One of the most important
alerting systems, typically present in a building, is a fire alarm, triggered when smoke is
detected. In a smart building, such a system must communicate with the HVAC (Heating,
Ventilation, and Air Conditioning) system to contain the fire. Moreover, when an alarm
is triggered, the access control system must unlock all doors that are used for evacuation.
In case of a fire, the use of the elevator is prohibited; thus, along with the detection of the
fire, the elevator must be blocked if it is empty. This chain of events that must be triggered
after the detection of a fire must also be shown on a control panel that is controlled by a
trained operator. This system can fluidify the evacuation of all people from the affected
building and provide vital data to the rescue personnel. Regarding emergency detection
and warning topics, a study on the influence of deployment choices used in such a system
for a university is presented in [14]. Additionally, related to our current concerns about
smart buildings, the solution presented in [15] introduces communication between smart
buildings at the level of a smart city and presents a discussion on how one can react under
different circumstances.

Edge computing can be integrated into many application domains to process some
of the data that come from a sensor network on the field. This approach can be easily
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integrated into a monitoring system, with the aim of detecting an unwanted event and
limiting loss linked to its effects. Syafrudin et al. presented a warning system integrated into
a manufacturing factory that can detect different defects and unwanted events that occur
on the assembly line [16]. Edge computing can have multiple applications and be effective
in multiple scenarios. Shuja et al. presented a way of improving resource management
in the context of using computing tasks for big geo-textual data that are moving from
centralized cloud platforms to distributed edge nodes [17]. A more detailed presentation
on the integration, architecture, and possible use of sensor networks for smart cities is given
in [18], where different implementations are presented, including performance testing and
comparisons.

2.2. Performance Testing

Evaluating performance is very important in edge and cloud computing and even
more so for the use of these systems in emergency management. It requires multiple tests
of “responsiveness, reliability, throughput, interoperability, and scalability” under a given
workload [19]. Haseeb-ur-rehman et al. developed a sensor cloud taxonomy that covers
network, communication, data management, architecture, heterogeneity, and security
aspects [20]. Energy consumption, delay time, scalability, latency, reliability, response time,
and availability were the main objective functions considered.

Platforms that integrate IoT devices with cloud computing environments also need
to measure performance parameters, such as the response time of sensor data acquisition
and the throughput of the HTTP server [21]. For example, for the FIWARE platform,
a cloud-based testbed is created to generate the load of protocols and emulate large-
scale deployments of devices that send data [22], taking into account the cloud-based
deployment, the performance observability, the massive load generation, and adherence to
standards. The ability to support latency-sensitive applications of an edge cloud system
was also analyzed in [23] from scalability and performance points of view. Li et al. used
performance testing to evaluate their proposed replica creation algorithm based on the
Grey–Markov chain model [24]. The testing simulated the data access situation in the edge
cloud system, and the access frequency of the data block was calculated according to these
data access situations and then used to determine the data heat in the proposed replica
creation algorithm. Another experiment was conducted by Palade, Kazmi, and Clarke to
evaluate the response time, the success rate of the deployed functions, and the throughput
performance of open serverless frameworks in an edge computing environment [25]. This
was achieved using a distributed load testing procedure and was orchestrated using a
client desktop machine. In this system, each serverless framework uses a device to trigger
HTTP requests to invoke the functions deployed on it; the tool is configured to perform
10 queries for various levels of concurrency. Liu et al. also simulated a large number of
user access cases in the system in an edge computing environment [26] and proposed
mechanisms to enhance the availability of the edge network resources and an auto-scaling
mechanism for microservices in order to efficiently use the limited resources on the edge
network. A comparative analysis based on an increasing computational workload in a
network overhead for high-end cloud and edge servers is given in [27]. Scheuner and
Leitner focused on a Function-as-a-Service performance evaluation in [28].

In various IoT and Wireless Sensor Network applications, the large volume of data
collected from different sources [29] requires the optimization of data gathering techniques.
The challenges of design and deployment are related to energy consumption, quality of
service, security and privacy, adaptability, and localization. Several deployment possibili-
ties, ranging from traditional infrastructure to platforms including container technology, a
container scheduler/orchestrator, a storage, network, services, and continuous delivery,
are discussed in [30].

A smart building integrates physical and computational elements to sustain an environ-
ment offering energy efficiency, comfort, and safety for its inhabitants. Various technologies
related to data analytics, acquisition, storage, and visualization support its management
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systems. Performance awareness is key to the reduction of energy consumption, optimal
building operation, timely detection, and the diagnosis of faults as they emerge, as well as
providing the ability to spot various trends of decline in deteriorating components. A re-
view of smart buildings based on the adoption of IoT is presented in [31]. Ferrández-Pastor
et al. proposed a model that integrates smart services that are distributed using edge and
fog computing techniques [32]. Santos et al. evaluated the performance of the IoT sensors
and edge-fog components of smart building infrastructures using the utilization level, drop
rate, mean response time, and flow rate metrics [33]. Continuous performance testing is
also proposed in [34] as a service for smart buildings.

There are many tools available for testing performance. An example is the Apache
JMeter, which was used to evaluate smart building systems in [19,35], and several other
options are presented in [36]. Bryant and Marín-Pérez compared solutions to verify the
load testing of HTTP servers, configure the interaction of virtual users with the site, and
determine the concurrency of activities [30]. An analysis of the essential metrics provided by
Apache JMeter is provided in [37], where it is recommended that the desired response time
that is considered acceptable for the developers of the application is defined. This metric
is related to the throughput, because the maximum capacity for the system is computed
as the maximum supported throughput, concerning the maximum acceptable response
time for the clients. For this study, different test cases are presented using metrics such
as the ramp-up period, the number of virtual users, and the loop count (the number of
calls performed by a user). Banias et al. developed a technique to generate test cases and
highlight non-functional and functional testing, and metrics applied over REST APIs in
order to analyze performance and functionality [38].

3. Analysis of Design Options for the Edge Watcher System

The Edge Watcher System is a building manager that was conceived to gather informa-
tion from the building environment and the people inside with the purpose of notifying the
responsible personnel when an emergency event is detected. A building administrator can
create a configuration and set up the sensing devices according to the model of the building;
every building has a different topology: a certain number of floors, rooms, hallways, etc.
These elements are important because, in a building monitoring system, the location of
a sensing device influences the detection of a possible problem on time. The monitoring
application makes it possible to view the relationships between each floor and its sensing
devices, configure the sensors, and inspect the recordings when critical values are notified.

The problem addressed in this paper is determining how to choose the architecture of
a system such as the EWS, taking into consideration the multiple design options revolving
around two main points: the location of the software components and the edge network
topology. Multiple architecture possibilities were analyzed and subjected to a performance
evaluation before choosing one to fulfill the requirements. The EWS uses a native cloud
computing approach based on containers and also employs the edge computing paradigm.
Therefore, we analyzed the options for:

(1). The architectural design of the container-orchestration system (analyzed in Section 3.1);
(2). The method of connecting sensing devices to the Cloud (analyzed in Section 3.2).

3.1. Options for the Containerized Architecture

The EWS services are based on containerization to automate application deployment
and allow an easy configuration for various smart building models. Hence, regarding the
location of the building manager services, there are two deployment possibilities: within a
public Cloud, or within a local building datacenter.

Architectural Option A—Public Cloud Kubernetes Cluster. The first analyzed solution
locates the EWS service on a Kubernetes cluster deployed in a public cloud. The data are
collected by the cloud monitoring system directly from the sensing devices distributed
throughout the building with the aim of detecting emergency situations and notifying the
responsible personnel (see Figure 1). The advantage of deploying the Kubernetes cluster
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remotely is related to the principle of separating the monitoring system from the monitored
target building. In this case, the building monitoring system would not be affected by
the different outages that can appear when an emergency occurs. Nonetheless, there are
other important aspects, such as maintenance costs and the initial hardware acquisition
costs, which are zero with this public cloud option. There are, indeed, usage costs which,
in the end, are lower compared than those required for the acquisition and maintenance
of a small data center, including the personnel involved in these operations. However,
a disadvantage that applies to a system using this approach is the dependence of the
monitoring system on a reliable Internet connection for sending data to the cloud. This
issue can be easily mitigated by providing backup connectivity in case the main Internet
connectivity is not available by coupling the system with mobile Internet connectivity,
which should be present on each edge node/smart sensor node, to independently send
data to the monitoring system if other Internet options are not available.
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In conclusion, the main advantage that supports this design option is that the monitor-
ing system does not depend on the building resources to function, and the costs to maintain
a local datacenter are removed. As a disadvantage, the Cloud datacenter is located further
from the building and the requests from the sensing devices take longer to be fulfilled.

Architectural Option B—Local Datacenter Kubernetes Cluster. In the second solution, the
local data center design implies that the monitoring system is installed on the hardware
located inside the building (Figure 2). The advantage of this approach is faster communica-
tion between the sensors and the monitoring system. Communication in the local network
is faster than in the one that operates via the Internet. This is coupled with the fact that the
system does not depend on having a reliable Internet connection to send environmental
data to the monitoring system. The big drawback that comes with the implementation
of this solution is the dependence of the monitoring system on the building’s electrical
grid. When there is a problem with the electrical system, the monitoring system cannot
be kept online. This issue is only applicable for the data center’s hardware. The sensing
devices consisting of edge nodes and sensors are composed of low-power devices that
can function on a battery for a very long time, providing the necessary data from the
building environment.
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Compared to the location design of the first method, with this approach, the main
advantage is the lower latency period in the transmission of data between the local edge
network and the local cluster. The main disadvantage is that if a critical event occurs, the
monitoring system can be also affected, since it is located in the same facility.

3.2. Options for the Sensing Devices

The previous section analyzed design options based on the location of the monitoring
system, i.e., public cloud and local datacenter deployments. Other important aspects
regarding the edge topology, the options for the sensing devices, and how these devices are
connected to the cloud and used to collect data for the monitoring system are discussed
subsequently.

Edge Option A—Edge Nodes. The first design option considered for the sensing devices
is based on an architecture composed of microprocessor-based edge nodes that gather data
from wireless, low-power, microcontroller-based sensor nodes (Figure 3). The purpose
of the edge nodes is to gather data from multiple sensing devices and send them to the
cloud monitoring system. This approach can be installed in any building to monitor the
environmental parameters. The edge nodes are connected to the Internet and can also
function on a battery for shorter time frames compared with the sensor devices.

Edge Option B—Sensing Edge Devices. The second design option taken into considera-
tion for the implementation of the sensing devices was to connect sensing edge devices
directly to the cloud (Figure 4).

This system is similar to the edge node presented earlier, but the sensors are connected
through a physical connection to the node. The sensing edge devices are based on micro-
processors, and the number of sensors would be close to that of the microcontroller-based
sensor nodes from the previous design choice. As microprocessors are more expensive than
microcontrollers and consume more power, this approach would be a lot more expensive
than the previous one while providing the same functionality in our use case. This is further
discussed in Section 6.2.



Sensors 2022, 22, 1002 8 of 25
Sensors 2022, 22, x FOR PEER REVIEW  8  of  25 
 

 

 

Figure 3. EWS design with edge nodes. 

 

Figure 4. EWS design with sensing edge devices. 

4. Performance Evaluation of the Containerized Architecture Options 

Based on the design options presented in Section 3.1, we hereby present the method 

used to determine the performance of the system with multiple sensing devices on the 

edge. The tests compared the performances of the two architectural design options: (A) 

the public cloud Kubernetes cluster; and (B) the local datacenter Kubernetes cluster. These 

were both connected with sensing devices through edge nodes based on the first option 

from Section 3.2. The tests conducted  involved  load and stress testing. The goal of this 

comparison was to gain a detailed view of the performance requirements needed for the 

Figure 3. EWS design with edge nodes.

Sensors 2022, 22, x FOR PEER REVIEW  8  of  25 
 

 

 

Figure 3. EWS design with edge nodes. 

 

Figure 4. EWS design with sensing edge devices. 

4. Performance Evaluation of the Containerized Architecture Options 

Based on the design options presented in Section 3.1, we hereby present the method 

used to determine the performance of the system with multiple sensing devices on the 

edge. The tests compared the performances of the two architectural design options: (A) 

the public cloud Kubernetes cluster; and (B) the local datacenter Kubernetes cluster. These 

were both connected with sensing devices through edge nodes based on the first option 

from Section 3.2. The tests conducted  involved  load and stress testing. The goal of this 

comparison was to gain a detailed view of the performance requirements needed for the 

Figure 4. EWS design with sensing edge devices.

4. Performance Evaluation of the Containerized Architecture Options

Based on the design options presented in Section 3.1, we hereby present the method
used to determine the performance of the system with multiple sensing devices on the
edge. The tests compared the performances of the two architectural design options: (A) the
public cloud Kubernetes cluster; and (B) the local datacenter Kubernetes cluster. These
were both connected with sensing devices through edge nodes based on the first option
from Section 3.2. The tests conducted involved load and stress testing. The goal of this
comparison was to gain a detailed view of the performance requirements needed for
the cloud system when data are received from multiple nodes. Each test conducted
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corresponded to a real-world configuration for a type of building, with specific needs
regarding the number of edge nodes and installed sensors required.

4.1. Scenarios

For both architectural options, our concern was to identify testing scenarios based on
configurations of real-world building examples, from a small apartment to an entire com-
plex of buildings, such as a university or a corporate campus. Therefore, the performance
tests were executed for EWS services hosted on containerized environments following the
scenarios described below. We selected examples inspired by the occupancy classification
and definitions given in The International Building Code [39] and from the ten classes of
buildings established in [40].

Small Apartment. This scenario refers to an individual unit in a residential building.
We considered the setup for a small apartment with two rooms and one edge node. In this
scenario, the edge node needs to collect environmental data from sensors to detect motion,
temperature, and contact when the door opens or closes. For testing purposes, an API call
is simulated from the edge node to the EWS, which results in the addition of a new reading
in the database. The decision algorithm compares each value to a predefined threshold to
verify if an alert should be considered. The scenario is equally applicable for a shop in a
shopping center if the sensor monitoring is done separately by the shop tenant.

House. The second scenario targeted a standalone residential building. We considered
the example of a detached house with five rooms and two floors. In this scenario, an edge
node is installed on each floor to collect environmental data and send it to the EWS. The
difference from the first scenario is in the use of two edge nodes; therefore, it may also be
appropriate for a housing unit in a group of attached dwellings.

Small residential building. The small building scenario encapsulates a total of five simu-
lated edge nodes installed on each floor of the building. Each node receives environmental
data sent by sensors installed in the public space and inside the individual apartments
situated on the same floor. The monitoring and the alert notifications are managed for the
entire building by the responsible personnel.

Office building. In this scenario, we simulated the case of a building with 10 floors
and 20 edge nodes. In this scenario, two edge nodes are installed on each floor in order
to receive environmental data from the sensors and send them to the EWS for further
processing. We considered this example of a non-residential building used for professional
or commercial purposes, because this type of building is more often used as a smart
building; therefore, it can take advantage of services for emergency detection and alerting,
such as those considered in our study.

A complex of buildings. We considered a scenario at a larger scale, corresponding to a
group of related smart buildings with residential, business, or institutional usage. They
may correspond to a shopping center, a university, a corporate campus, or a residential
complex. They may occupy a smaller or larger area, with multiple sensors used to measure
environmental data connected to EWS through multiple edge nodes. We first considered
three cases for performing load and stress testing:

• 50 edge nodes—scattered around multiple buildings that comprise the complex;
• 100 edge nodes—to test the capacity to work under a high load by registering a high

number of environmental data points sent within a short period of time;
• 1000 edge nodes—to test the limits of the cluster configuration and the capacity to

simulate 1000 requests sent to the system without a ramp-up period; the requests
are sent immediately to the server, and it has to address each request as soon as the
previous one has been fulfilled.

Then, we also executed tests for edge node numbers of between 100 and 1000 with
steps of 100.
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4.2. Performance Test Settings

For the EWS, performance testing was conducted using Apache JMeter version 5.4.1, in
order to simulate the requests from the edge nodes and verify whether they were addressed
without error and if the response time was low enough. The machine used to run the
JMeter tests was powered by a 4-core Intel i7 CPU, coupled with 8 GB of RAM.

The performance testing architecture is illustrated in Figure 5. Test cases were devel-
oped for different sizes, starting from a small apartment and finishing with a complex of
buildings. The tool setup consisted of creating threads to simulate groups of edge nodes
and executing requests against the EWS reporting API. Regarding the JMeter configuration,
there were three important parameters to set up:

• The number of threads: represents the number of edge nodes used to send environ-
mental data to the application;

• Ramp-up period: the time that it would take to get to the full number of threads;
• Loop count: the number of tests to be executed.
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To plan the tests conducted for the EWS, the setup had to be changed for each scenario.
The ramp-up period was set to 0, the loop count was 1, and the number of threads changed
with the number of desired simulated edge nodes.

The actual functionality targeted for these tests was the capacity of the application
to successfully receive the environmental data from the edge nodes and insert them into
the database. Therefore, a POST request had to be executed against the EWS API. The
simulation of the HTTP requests for web services was based on the approach described
in [41]. In the Apache JMeter interface, a dedicated HTTP Request section can be added
to the test where a request can be configured [42]. The JMeter provides a dedicated setup
page to configure the necessary calls to the application. Here, a POST request is configured,
providing the server hostname and the port for the target API, along with the path on
which the request is performed. The most important setup for this POST request is the
actual body data sent. This JSON body represents the simulated data sent by the edge
nodes and represents environmental readings taken from the different sensors employed
throughout the monitored building. Moreover, each sensor that is connected to a node is
registered to the EWS during the building setup stage, where floors, nodes, and sensors are
configured for each building. In this way, one can filter the data collected by each sensor,
providing separate views.
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In addition to the settings presented earlier, related to the HTTP request body and
path, another important setting that has to be addressed is the HTTP request header. The
accept parameter indicates the response content that the Apache JMeter wants to receive
from the server. For the current case, this was a JSON response. The content-type parameter
indicates the request body data type. The EWS requires authentication in order to access its
APIs. Therefore, the authorization token must be provided to perform calls on the API.

4.3. Containerized Environment Setup

To test the containerized architecture options for the EWS, we implemented two
configurations, corresponding to the analysis presented in Section 3.1:

(A) The IBM Cloud Kubernetes cluster was implemented for the public cloud Kuber-
netes cluster design option with the following technical details:

• Deployment in IBM Cloud data centers;
• Free one node Kubernetes cluster with two cores and 4GB of RAM (default free tier);
• Kubernetes version: 1.21.7 (default).

The IBM Cloud Kubernetes service is the main offering for deploying containerized
implementations in IBM Cloud targeting production workloads [43].

(B) The Docker Desktop local cluster was implemented for the local datacenter Kuber-
netes cluster design option with the following technical details:

• Deployed on a Windows machine with 4-core Intel i7 CPU, coupled with 8 GB of
RAM-Windows Subsystem for Linux (WSL) 2;

• Docker Desktop WSL 2 backend version 4.1.1 with Kubernetes;
• Memory and CPU allocated dynamically to improve resource consumption;
• Kubernetes version 1.21.5 (default).

The Docker Desktop is a tool that is usually deployed on Windows and Mac machines.
It is used to easily deploy a container development environment that contains the Docker
engine and the Kubernetes container orchestration [44].

Both the IBM Cloud Kubernetes cluster and the Docker Desktop local cluster feature
the same deployments that consist of different pods used by the application. A pod is the
smallest Kubernetes unit and can contain one or more containers. A container implements
the necessary software components and configurations used to run the application [45].
The Sensor Readings pod contains the MySQL database, which is used to store the data
collected from the edge nodes (see Figure 6). It is exposed through a ClusterIP service that
only permits network access from the local cluster network. This service is accessed by two
pods. The first one is the Database Admin, which is used to configure the database after
deployment and to create the necessary application users. This pod is exposed through
a NodePort service that permits external access by using the worker node public IP. The
Edge Watcher API pod hosts the system backend, which is also exposed by a NodePort
service, in order to receive calls from different users or from the building edge nodes. In
the case of a testing scenario, the Apache JMeter executes requests against the EWS API,
which are processed and saved into the MySQL database.

Regarding the configuration files, there is a difference between the IBM Cloud Ku-
bernetes cluster and the Docker Desktop local cluster. For the IBM Cloud Kubernetes
service, the IBM Cloud Container registry is used in order to store the EWS Node.js Docker
image. Because this is a secured private registry, the Edge Watcher Kubernetes deployment
contains the imagePullSecrets attribute that points to the container registry Docker con-
figuration secret, which contains the access token. For the Docker Desktop local cluster,
we created a local Docker registry that does not require authentication and, hence, can
only be accessed from the local machine. As a result, the above-mentioned attribute is not
necessary for local deployment on the Docker Desktop Kubernetes.
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4.4. Performance Metrics

The Apache JMeter makes it possible to output an HTML result that offers multiple
parameters that are related to the response time of the tested request. The attributes that
are relevant to our study are the execution errors, the response time, and the throughput
(to determine the system’s performance). They are associated with the following metrics:

• Error % (for the execution);
• Average response time;
• Minimum response time;
• Maximum response time;
• Median response time;
• Percentiles;
• Transactions/s (for the throughput).

The ratio of the failed requests, the Error %, should be 0 for a successful test.
The Median response time metric was computed by ordering the numbers in the

dataset in ascending order. Afterward, if the number of values was odd, the median was
taken from the center value. If the number of values was even, the median was taken as
the arithmetic average of the numbers from the center [46].

Median(X) =

 X
[

n+1
2

]
, n is odd

X[ n
2 ]+X[ n+2

2 ]
2 , n is even

, (1)

where X is a list of ordered numbers, and n represents all numbers [47].
“Percentiles” represents the percentage of values placed below the nth percentile. The

rest of the values were calculated by subtracting the nth percent from 100 [46]. Among the
results obtained with JMeter were the 90th, 95th, and 99th percentiles. This means that the
request time for the nth percent of the user calls should fall below these numbers. This is a
good indication of the application performance for most users.
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“Transactions/s” was used to measure the throughput as it represents the number of
transactions that an application can handle. This metric is very important because it can
show the capacity of a certain website to address the needs of its respective users [48].

Troughput =
number of requests

total time
, (2)

4.5. Emergency Detection Algorithm Used in Testing

Another factor influencing performance testing besides the JMeter HTTP calls was
an algorithm that was used to verify whether the collected sensor values exceeded a pre-
defined (configurable) threshold. For the performance testing of the algorithm, a Node.js
dedicated library that measures the run times of different functions was employed.

The purpose of the algorithm, located on the containerized environment, was to filter
the data received from sensors in order to detect a possible emergency (see Figure 7) and
then to send alerts to the responsible personnel. Hence, the environmental data were
compared to a pre-defined threshold that was set up during the configuration of the EWS
for each building/complex of buildings it was applied to. The critical values were stored in
the database, and alerts were sent to the responsible personnel based on these values.
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For the algorithm, the metric employed was the average execution time, which was
computed on the CSV file generated using the execution-time Node.js library. For each of
the performance tests, there are two cases presented, corresponding to the two architec-
tural options.

5. Results

For each of the two containerized environment setups (i.e., the IBM Cloud Kubernetes
cluster and the Docker Desktop local cluster—see Section 4.3), multiple performance tests
were executed to simulate the relevant scenarios identified in Section 4.1. The monitored
results correspond to the metrics obtained for the JMeter HTTP calls, simulating the
information gathered from a number of edge nodes (presented in Section 4.4) plus the
run time of the decision algorithm for emergency detection, which was measured with a
Node.js library, as explained in Section 4.5. Thus, the performance testing was executed
both for the local and the public cloud cluster implementations.

For each test executed, JMeter generated a report containing charts and tables regard-
ing the throughput, the response time percentiles, the response time overview, and the
response time distribution, etc. Several examples of charts obtained from JMeter for the
IBM Cloud Kubernetes cluster and 50 edge nodes are presented in Figures 8–11. Note that,
in Figure 8, color-coded reference time ranges for evaluating the performance are presented,
according to JMeter: green for response times of less than 500 ms, yellow for response
times between 500 and 1500 ms, and orange for response times greater than 1500 ms; red is
reserved for errors in requests. A more detailed distribution of the response times is given
in Figure 9.
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Thus, we generated 30 JMeter reports, each containing a multitude of graphics and
data. To analyze them comparatively, several important results are summarized in Table 1
for the IBM Cloud Kubernetes cluster and in Table 2 for the Docker Desktop local cluster.
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Table 1. Summary of the test results for the IBM Cloud Kubernetes cluster.

Test Executions Response Time
(ms) Throughput

Emergency
Detection
Algorithm

Scenario Samples
(Edge Nodes)

Error
(%) Average Min Max Median 95th

Percentile
Transactions

/s
Run time

(ms)

Small apartment 1 0 389 389 389 389 389 2.57 3.52

House 2 0 375.5 371 380 375.5 380 5.26 4.42

Small residential
building 5 0 380 371 385 382 385 12.89 3.49

Office building 20 0 405.75 374 437 405.5 436.8 43.8 21.8

A complex of
buildings

50 0 472.84 391 560 461 553.45 81.04 167.43
100 0 574 376 748 574 729 115.74 144.42
200 0 556.83 375 815 563.50 789.00 203.87 278.9
300 0 906.49 446 1336 947.50 1309.95 196.34 564.4
400 0 981.00 380 1461 936.00 1412.85 236.27 554.4
500 0 1393.26 420 2090 1394.50 2014.85 212.04 560.3
600 0 1614.98 391 2282 1602.00 2225.95 223.46 846.57
700 0 1584.66 374 2373 1620.00 2288.90 246.05 448.3
800 0 1832.57 398 2759 1855.0 2651.95 250.16 677
900 0 2026.60 499 3056 1994.0 2954.85 230.00 1036.5

1000 0 1992 384 3538 1927 3359 189.9 939.89

Table 2. Summary of test results for the Docker Desktop local cluster.

Test Executions Response Time
(ms) Throughput

Emergency
Detection
Algorithm

Scenario Samples
(Edge Nodes)

Error
(%) Average Min Max Median 95th

Percentile
Transactions

/s
Run time

(ms)

Small apartment 1 0 9 9 9 9 9 111.11 3.22

House 2 0 11 9 13 11 13 153.85 3.59

Small residential
building 5 0 24 16 32 23 32 151.52 19.62

Office building 20 0 68.2 31 109 69.5 107.7 176.99 57.3

A complex of
buildings

50 0 228.44 97 288 239 285.8 130.89 155.5
100 0 322.33 78 460 311 447.9 175.75 288.86
200 0 543.18 138 978.6 553.7 930.7 176.3 447.3
300 0 768.05 147 1390 769.3 1322.1 179.2 574.5
400 0 995.9 164 1821.6 1002.5 1741.1 179.92 762.5
500 0 1316 181 2378.3 1318.3 2293.3 177.93 1030.9
600 0 1597.8 360 2855.6 1515.6 2737.8 175.79 1211.2
700 0 2296.3 426 3262.4 2094.1 3151.5 164.04 1881.5
800 0 2589.2 363 3698.7 2515.5 3560.75 173.05 2232.5
900 0 2849.8 147 3994.4 2842.3 3757.9 162.14 2588.6

1000 0 3098 243 4431 2914 4284 171.59 2975.23

We also present the results in comparative graphics to show the difference in the
average response time for the two architectural design options: the IBM Cloud Kubernetes
cluster and the Docker Desktop local cluster. Figure 12 shows the response times versus
the number of edge nodes corresponding to the first four scenarios: one edge node for the
small apartment, two edge nodes for the house, five edge nodes for the small residential
building, and 20 edge nodes for the office building. Figure 13 represents the response
times for a complex of buildings versus the number of edge nodes, ranging from 50 to
1000. One can, thus, observe the influence of the container orchestration decentralization.
Figures 14 and 15 illustrate similar comparisons for the run time of the decision algorithm
for emergency detection.
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We observed that the Docker Desktop local cluster worked faster for the first four
scenarios with up to 20 edge nodes as a result of its location. However, the IBM Cloud
Kubernetes cluster also performed very well for the first four scenarios, keeping an average
response time of under 500 ms [49].

The IBM Cloud Kubernetes cluster (corresponding to architectural option A) per-
formed better than the Docker Desktop local cluster (architectural option B) on the most
demanding test cases, from 700 to 1000 edge nodes (almost one second faster). Option A
was represented by a cloud-dedicated cluster that was more powerful than Option B, which
runs on a workstation. However, in cases with more than 100 edge nodes, both performed
worse than the 500 ms limit, which is usually employed for web applications. As a conclu-
sion to these tests, in a production environment, a more powerful cluster is recommended
in order to provide satisfactory performance for cases with more than 100 edge nodes.
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6. Discussion

This section discusses the performance for the five scenarios considered in our study
(in Section 6.1) and the final design choices (in Section 6.2), taking into account both the
testing results from Section 5 and the qualitative analysis from Section 3. This work is the
basis of the Edge Watcher System’s development, for which some implementation details
are given in Section 6.3.

6.1. Performance Comparison Based on Scenarios

This section discusses the results obtained for the implementation of the two architec-
tural options for each of the scenarios presented in Section 4.1.

Small apartment. For one edge node, the differences that can be seen in the response
times (Figure 12) are mainly due to the fact that the Docker Desktop local cluster is de-
ployed on a local environment and the latency is lower compared with the IBM Cloud
Kubernetes cluster setup. Even though there were large differences between the respective
response times, the results for the public cloud implementation still fall under an acceptable
response time, i.e., under 500 ms. The run times of the algorithm for emergency detection
were similar.

House. For the two edge node configurations, the readings were not very different to
those obtained with the 1 edge node approach (from the small apartment scenario). The
results for both hosting options (Docker Desktop local cluster and IBM Cloud Kubernetes
cluster) were very similar to those obtained for the previous scenario, offering a good
performance.

Small residential building. With the increase in the number of edge nodes tested, most
of the changes related to the response time were registered on the Docker Desktop local
cluster (Figure 14). The most notable difference and the cause for this slower response was
related to the emergency detection algorithm run time, which increased significantly in the
case of the Docker Desktop local cluster. For the IBM Cloud Kubernetes cluster, the values
remained similar to those obtained with the two-edge-node approach.

Office building. After increasing the requester number to 20 edge nodes, the response
times increased for both tested approaches: the Docker Desktop local cluster and the
IBM Cloud Kubernetes cluster. Nonetheless, the results show that both local and cloud
approaches are able to handle an office building where 20 edge nodes send environmental
data at the same time.

A complex of buildings. For this scenario, the size of the complex and the number of
edge nodes implanted can make an important difference from a performance point of
view; the cases that were simulated are discussed separately. For both implementations of
the containerized environment setup, the 50-edge-node experiments showed an increase
in the average response time, with a more visible change for the Docker Desktop local
cluster, where a developmental virtual machine was installed on a workstation. The smaller
increase in response time for the IBM Cloud Kubernetes cluster was influenced by the use of
a dedicated cluster to provide stability. Figure 8 shows that two-thirds of the requests had
a response time below the recommended value of 500 ms (most between 400 and 500 ms),
and the other third had response times of between 500 and 575 ms (Figure 9). Figure 10
presents the exact percentiles. The average response time was higher when the number of
active threads was low (Figure 11), because there were only a few users waiting for their
calls to be executed; the others had already been served, i.e., the load was high. The run
time of the algorithm for emergency detection increased for both approaches, providing
a similar value. For the 100-edge-node stress test, both setups showed an increase in the
average response times (Figure 13). For the IBM Cloud Kubernetes cluster, the run time
of the algorithm for emergency detection for the cloud system was very similar to the
result obtained for the 50-edge-node experiment. For the Docker Desktop local cluster, the
run time increased (Figure 15), again illustrating the advantage provided by a dedicated
cluster compared to the local workstation. Between 200 and 600 nodes, the response times
for the two design options were quite similar; yet, starting from 700 edge nodes, a clear
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advantage towards the IBM Cloud Kubernetes cluster was shown, due to the fact that both
the response times and the run times were better. The 1000-edge-node experiment verified
the behavior of the system when 1000 calls were sent to it. The error rate for each of the
systems was 0, which indicates that all environment data were successfully added to the
EWS database. A big difference that only occurred for this experiment, but not the other
scenarios, is that the Docker Desktop local cluster provided a higher average response time
compared with the IBM Cloud Kubernetes cluster. For the other scenarios, the result was
the opposite; the reason for this is that the request was sent locally, and the time difference
was accounted for by the fact that, for the public cloud option, the request was sent via
the Internet. Regarding the algorithm for emergency detection, the Docker Desktop local
cluster implementation provided a run time that was almost three times higher than that
obtained with the the IBM Cloud Kubernetes cluster.

This underlines the fact that the use of a dedicated cloud cluster can offer a more
consistent performance under a high load. However, as a general remark for the results
related to the public cloud option, an average response time of almost 2000 ms is too
high for this type of system. Based on these results, for a complex of smart buildings, a
more powerful cluster configuration than the one tested in this study and described in
Section 4.3 is recommended. The 1000 edge nodes represent a load experiment that may
occur in real-world situations for large building complexes, such as smart campuses or
large shopping centers.

An important limitation when working with a cloud solution may be related to the
location of the datacenter. This choice influences the network latency present in the call
to the application. For the tests presented in the paper, the free Kubernetes cluster was
automatically deployed in the IBM Cloud Dallas datacenter using the IBM Cloud Console,
which does not allow for a change in this location. However, for the purpose of our
evaluation, we also tested the network latency for different IBM Cloud datacenters using
SoftLayer, an official tool available for the IBM Cloud; it provides the ability to test the
network latency from a public IP to an IBM Cloud datacenter using the ping command.
Thus, the Round-Trip Time (RTT) can be measured for packets sent from the source to
the destination, including the time passed until confirmation is sent back to source. We
considered three different locations for the IBM Cloud datacenter, Dallas, Oslo, and Milan,
and obtained the following RTT average values: 156, 62, and 44 ms, respectively. The
location of the testing machine was Bucharest. Therefore, for a production IBM Cloud
Kubernetes cluster, Milan would be the best datacenter to install EWS for monitoring a
building in our area. On average, the RTT was found to be approximately 110 ms lower than
in Dallas, providing an improvement in the response time with 20% from the limit value.

To summarize, for a small apartment with one edge node, the response times were
better for the Docker Desktop local cluster, but they also had good values for the public
cloud Kubernetes cluster, whereas the run times for the decision algorithm were similar
for the two architectural options. For a house with two edge nodes, the results were quite
similar to those from the previous scenario. For a small residential building with five edge
nodes, the situation was not very different in terms of the average response times, but there
was a significant increase in the run times for the Docker Desktop local cluster. For an
office building with 20 edge nodes, the response times and the run times increased with
respect to the previous scenarios for both architectural options, but they remained within
acceptable limits. In conclusion, for situations with less than 50 edge nodes (corresponding
to a single building in our simulations), the test results showed an average response time
below the typical limit accepted in JMeter for web applications for both design options with
an advantage given to the local datacenter Kubernetes cluster, due to its shorter response
times. However, for a complex of smart buildings, especially for one with more than
600 edge nodes, the results prove the superiority of the architectural option based on a
public cloud Kubernetes cluster, with the recommendation being to use a more powerful
cluster configuration for very large complexes that need up to 1000 nodes. These results
were obtained for a free default cluster with one worker node in IBM Cloud and for the
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Docker Desktop local cluster installed on a workstation. A production-level cluster or a
high-performance local datacenter would improve the performance of the EWS under high
loads, as well as increasing the cost.

6.2. Final Design Choices

In Section 3, we analyzed several design options for the EWS, considering two crite-
ria: the containerized architecture and the edge network topology. After the qualitative
evaluation, the method applied for the performance testing of the two architectural design
options, (A) the public cloud Kubernetes cluster and (B) the local datacenter Kubernetes
cluster, was described in Section 4. Further, this section presents the design choices made
for developing EWS.

Containerized Architectural Choice: Based on the test results from Section 5 and the per-
formance comparison for the five scenarios from Section 6.1, we conclude that architectural
choice A (public cloud Kubernetes cluster) provides a stronger performance for a load
corresponding to a complex of smart buildings, where the number of edge nodes used
for gathering information is large. Another reason for this choice is the separation of the
building monitoring system from the actual monitored building. The main advantage in
case of an emergency that could produce an outage within the building is that the system
would not be affected, and it would retain the information in regard to the event. Another
major reason for this choice is related to the initial and maintenance costs, which are lower
with the public cloud approach. Cloud services also have a guaranteed Service Level
Agreement that assures the system can run for more than 99.9 percent of the time. This
aspect is crucial for a building monitoring system that includes the detection of different
emergencies that can occur in the building in its scope.

Edge Choice: Based on the qualitative analysis presented Section 4, we are in favor
of the design choice that uses sensor nodes connected to microprocessor-powered edge
nodes and not sensing devices based on microprocessors that are directly connected to
the EWS services on Kubernetes. The edge node’s role is to gather data, perform some
basic decentralized processing, e.g., for detecting when to activate local alarm devices,
and sends data to the EWS to be processed in a centralized way using algorithms that
require more resources. To estimate the costs corresponding to the two options for the
edge network, we assumed that the same types and number of sensors were used, and we
omitted other costs, such as those related to the containerized architecture. Let us consider
a microprocessor-based node run with Raspberry Pi [50]—a very popular development
board with the ability to act both as a sensing device (Edge Option B) and as a broker and
data processor edge node (Edge Option A). For both options, Raspberry Pi provides enough
computing power to run even more complex algorithms in the future [51]. The average cost
for a Raspberry Pi 3 (4× ARM CPU, 1.2 GHz, 1 GB RAM, 10/100 Ethernet, 2.4 GHz 802.11n
wireless) is $35. For Edge Option A, a microcontroller-based sensor node may be run with
NodeMCU v3 (32-bit CPU, 80 MHz, 128 KB RAM), a microcontroller-based board with
integrated Wi-Fi capability, to send data to an edge node. The average cost for a NodeMCU
board is approximately $7. Thus, our estimations show that a solution containing only
microprocessor-based sensing devices (Edge Option B) would cost five times more than one
that also includes microcontroller-based sensor nodes (Edge Option A). This is especially
important for the case of monitoring a complex of buildings with a large number of edge
nodes. Therefore, Edge Option A, containing edge nodes, was selected because, overall, it
is less expensive than the other option, and because it requires a smaller number of edge
nodes, which is a premise for providing a better performance.

6.3. Edge Watcher System

Based on the results from the performance testing, in the previous subsection we
concluded that our final solution for EWS should be composed of two parts: public
cloud monitoring software (Architectural Option A) and sensor nodes connected to edge
nodes (Edge Option A). Therefore, our system should be capable of gathering information
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from the edge network situated within the complex of buildings, processing it in the
cloud, and deciding when to send alerts to the responsible personnel, e.g., police, building
administrators, firefighters, etc. In this subsection, we present the EWS architecture and
several implementation details.

The cloud monitoring software was run on an IBM Cloud Kubernetes cluster and
represented a microservices container implementation. Multiple services comprise this
system (see Figure 16), such as the Monitoring Service, which gathers information from
sensors and user reports. The Notification Service is responsible for sending alerts to
the responsible persons and to neighboring smart buildings from the complex that are
monitored with the same EWS. The system is configurable from the EWS Portal, supporting
the possibility of adding multiple buildings, edge nodes, sensors, and users. The Database
represents the persistent part of the monitoring system where all configuration and data
are added.
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The EWS software has four main components: (1) a Web frontend written using the
Angular framework; (2) a Node.js backend (Monitoring service API); (3) a MySQL database
to retain the user settings, configuration sensor, and human input; and (4) the Notification
service. All of these are implemented on containers, and they run on Kubernetes. As a
result, there is a dedicated pod for each of these components. This application is flexible
and can run in every cloud with minimal modifications.

The sensor network architecture is based on the edge computing paradigm, which
assumes that supplementary data processing will be done by field devices that form an edge
network. An edge node can also activate local alarm devices based on a basic comparison
of the measured values to a pre-defined threshold. This can ensure a quick response in
case of an emergency event before the more complex centralized alert is activated, sending
notifications to the responsible personnel. The current implementation contains two edge
nodes that correspond to the second scenario for a house, but the system supports the
attachment of supplementary edge nodes, as they are needed for scenarios similar to those
considered in our study. A building administrator can create the edge node configurations
with multiple types of sensors/sensor nodes. For this use case, as well as for monitoring,
the cloud system employs a dedicated web portal that is able to receive requests from the
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edge nodes and provide configuration files that are used at the first edge node setup. The
web portal also offers visualization capabilities for the reported data.

Every building in the complex has a different structure in terms of, for example, the
numbers of floors, rooms, and hallways. These factors are important because the location
of a sensing device is essential for detecting a possible emergency. The EWS provides the
ability to configure the parameters for each building. One can configure the edge nodes
using two approaches: a dedicated menu that presents a tree-like view of the relationships
between a floor and its nodes, and an offering that edits the nodes for each floor from
the corresponding menu. A clear view of the nodes of the entire building architecture
can be displayed. From each of these nodes, sensors can not only be configured but also
inspected to see if critical data have been recorded—a feature that also appears on the
main Dashboard.

7. Conclusions

This study evaluated several design options for a system that monitors one or multiple
smart buildings with the purpose of gathering information from a large variety of sensors,
detecting abnormal situations (such as flames, toxic gas, leaks, etc.), and notifying the
responsible personnel when emergency events occur. The design options took into account
the container-based software architecture and the edge sensing devices. In addition to a
qualitative analysis, the paper presented work based on containerized environments to test
the performance, which has important weight in alerting systems. The provided response
times must remain under a certain threshold in order for the solution to be approved
and implemented in a production environment. We implemented two containerized
environment setups (an IBM Cloud Kubernetes cluster and a Docker Desktop local cluster),
and we simulated the behavior for five scenarios corresponding to real-world configurations
with 1 to 1000 edge nodes. For settings corresponding to a small apartment, a house, a
small residential building, and an office building, the average response time was 250 ms
higher for the public cloud than for the local cluster. However, for a complex of buildings
with more than 600 edge nodes, the response time was 700 ms lower for the cloud than for
the local solution

We used the performance evaluation findings and the edge options analysis to make
design choices for the Edge Watcher System, a solution with microcontroller-based sensor
nodes, microprocessor-based edge nodes, and monitoring, configuration, and notification
services with an IBM Cloud Kubernetes cluster.

In terms of future research related to building monitoring for emergency detection,
it is also necessary to study the dependability of such an architecture and to know how
reliable it would be in a production environment. In this regard, we plan to investigate the
importance of the edge nodes’ location and to implement endurance tests to provide a clear
view of how the system behaves for a longer period.
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