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Citation: Popović, I.; Radovanovic, I.;

Vajs, I.; Drajic, D.; Gligorić, N.
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Abstract: Because the number of air quality measurement stations governed by a public authority
is limited, many methodologies have been developed in order to integrate low-cost sensors and
to improve the spatial density of air quality measurements. However, at the large-scale level,
the integration of a huge number of sensors brings many challenges. The volume, velocity and
processing requirements regarding the management of the sensor life cycle and the operation of
system services overcome the capabilities of the centralized cloud model. In this paper, we present
the methodology and the architectural framework for building large-scale sensing infrastructure
for air quality monitoring applicable in urban scenarios. The proposed tiered architectural solution
based on the adopted fog computing model is capable of handling the processing requirements of
a large-scale application, while at the same time sustaining real-time performance. Furthermore,
the proposed methodology introduces the collection of methods for the management of edge-tier node
operation through different phases of the node life cycle, including the methods for node commission,
provision, fault detection and recovery. The related sensor-side processing is encapsulated in the
form of microservices that reside on the different tiers of system architecture. The operation of system
microservices and their collaboration was verified through the presented experimental case study.

Keywords: air quality; fog computing; sensor fault; microservices; management life cycle

1. Introduction

In recent years, rapid population growth in urban environments coupled with the evo-
lution of society is creating structural challenges for the functioning of large cities. A smart
city concept tries to overcome these challenges and to satisfy the needs of citizens using
modern technology. In addition to the structural problems in urban environments, there is
a necessity to provide access to the citizen’s services anytime and anywhere [1]. Aside from
the structural challenges, the growth of the population of cities (50% population is living
in urban areas nowadays, with a prediction of 70% of the world population in 2050 [2])
consequently influences the increase in the air pollution in the city. Massive urbanization
results in a strong increase in traffic (road vehicles), energy use and industrialization (80%
of world CO2 emission and 75% of total energy consumption is related to cities [3]). A high
level of air pollution is directly linked to human health, increasing associated symptoms
and diseases. On the other hand, the citizens expect a better quality of life in the cities,
which leads to an expectation of high air quality, among other parameters. High air quality
is quite important to ensure the future development of the city, considering attracting
tourists and investors that would furthermore increase its businesses growth.

Air quality can vary on a micro-location level, due to locally predominant atmospheric
flow conditions and locally specific emission sources. Air quality monitoring in the cities
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is mainly performed by using public monitoring stations, but due to their high cost and
demanding maintenance, the number of areas covered by them is rather limited. Therefore,
most of the places of interest are left out of range for air quality monitoring. In order to
overcome this shortage, a network of low-cost sensors could be developed for comple-
mentary measurements which will expand spatial density and measurement resolution,
thus allowing more locally traceable pollution monitoring and identification of highly
polluted areas for citizens. In the paper [4], authors provided a detailed analysis of low-cost
sensors’ advantages, their calibration and measurement accuracy problems. They have
also presented the approach on how to obtain the tempo-spatial heterogeneity in order to
identify pollution hotspots with the final aim of creating city pollution maps that provide
a pollutant spatial distribution over the areas of interest [4]. In order to create highly
accurate measurements and pollution maps, it is obvious that a highly dense network of
monitoring devices needs to be created, keeping in mind that it should be cost-effective.
The current trend in air quality monitoring is the usage of devices with low-cost sensors
to create large-scale environmental monitoring deployments. On the other hand, sensors’
calibration is not done in laboratories because such a procedure would make installations
prohibitively expensive. Instead, the sensors that come initially pre-calibrated from the
manufacturers are then calibrated using the collocation calibration method. The obtained
data might not always be precise because it is well known that the relative humidity and
temperature could have a negative effect on the performance of sensors and electronic
circuits, given that a sensor has its own sensitivity to these properties. Thus, appropriate
correction algorithms should be developed and applied.

Aside from the identified issues related to the sensor-side data processing—e.g., sensor
calibration, correction, and accuracy—there are many challenges regarding their integration
in large-scale deployment scenarios and applications, like their identification, configuration
and discovery, life cycle management, etc.

Nowadays, the implemented solutions in the domain of air quality monitoring are
often based on cloud computing. However, they have expressed certain limitations regard-
ing indeterministic latency, lack of mobility support, and location awareness. Large-scale
deployment of low-cost sensors requires the integration of a substantial number of sensors,
which consequently brings many challenges and open issues. In general, a centralized cloud
model is not always optimal considering the data volume, communication and processing
requirements of large-scale deployments. Additionally, a cloud-only solution is identified
as a bottleneck in providing autonomy of operation, orchestration and management of
system services.

A newly introduced fog computing concept, as an extension of the cloud-only systems,
provides advanced solutions for these problems [1]. The fog computing concept extends the
traditional cloud computing concept to the physical edge of the IoT network, enabling the
creation of refined, scalable, time-aware and location-aware applications and services [5].
As a novel trend in computing, fog computing aims to process data near the data source, by
pushing away the application services and computing resources from the centralized cloud,
located at the network core, toward the logical extremes of a network. This way some of
the decision-making processes could be performed at the adjacent fog nodes instead of the
distant cloud core services [5].

In the context of Air Quality Monitoring (AQM), we adopted fog computing as a frame-
work that is capable of addressing the majority of the concerns in building infrastructure
for AQM. These concerns are not only related to information processing and data commu-
nication but also to the issues of security, availability, reliability, serviceability, openness,
manageability, etc. Additionally, fog computing is helping to sustain IoT momentum and
to overcome the limitations of traditional cloud-only solutions found in large end-to-end
delays and bandwidth constraints. The limitations of cloud-only solutions are expected
to be more noticeable in handling high velocity and large volumes of data generated by
distributed IoT sensors in large-scale deployments. The introduction of fog tiers, where
the data are processed near the edge of the network, is found to be beneficial to improve
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the quality of service of the IoT network, reducing bandwidth requirements and saving
processing time and resources at the cloud end. Moreover, filtering and pre-processing of
irrelevant or erroneous data results in a more efficient and computationally more reliable
AQM system. Therefore, fog computing concepts provide the generalized framework
to effectively solve the problems of creating sophisticated and scalable system solutions
capable of meeting the requirements of the AQM as a part of a future smart city.

Our paper addresses different architectural and implementation aspects in building
AQM infrastructure applicable in urban environments. Architectural aspects include the
system-level architecture, deployment architecture and fog nodes software architecture.
Implementation aspects include the methods for sensor side data processing and the
methodology for their implementation in the form of system services. Both software
architectures and the service operation are analyzed from the manageability perspective as
one of the most important system concerns found in large-scale deployment. In addition,
the proposed system is seen as a foundation leading toward more advanced urban planning,
land use regulations, air pollution control and population exposure assessments for facing
environmental challenges while promoting sustainable development in urban areas.

Direct benefits and contributions of the presented fog-based architectural solution for
building low-cost sensing infrastructure for air quality monitoring in urban areas are given,
as follows:

• A fog-based implementation framework provides a scalable system solution applicable
for AQM in large-scale metropolitan areas, complementary with the requirements of a
smart city concept.

• The implemented metrics enable the discovery of erroneous measurements as well
as sensor and other operational faults, thus improving the reliability of the informa-
tion, CAQI (Common Air Quality Index) [6] estimation accuracy and the life-cycle
manageability of AQM devices, including their maintenance and recovery.

• Integration of low-cost AQM with reference monitoring infrastructure improves the
spatial density of CAQI measurements enabling the execution of location-aware ser-
vices applicable in intelligent traffic control, control of industrial facilities, monitoring
and prevention of pollution peaks, air pollutant transport and dispersion monitoring,
prediction of environmental risks, etc.

• Deployment of AQM services and their real-time operation, including automatic
reporting, diagnostics of sensor faults and operational irregularities as well as recovery
capabilities are verified in an experimental case study, as given in Section 4.

• The introduced management model supports the successful management of edge tier
operation through the different phases of the edge node’s life cycle, including the node
provision, early life, functional life and node decommission phase.

This paper is outlined as follows. In Section 2, a review of the most recent studies
and approaches for the utilization of low-cost sensors and their integration as a part of
air quality measurement systems is provided. The details of the adopted methodology
for sensor-side data processing for peak elimination, noise cancelation, sensor calibration
and measurement correction, as well air quality estimation methods, are provided as a
part of Section 3. The architecture descriptions, given from different viewpoints, especially
from the manageability perspective, are also given in Section 3. Section 4 presents several
use-case scenarios, where the operation of individual services and their collaboration was
investigated during the different phases of the edge-tier node’s lifecycle. Concluding
remarks and the directions for future work are given in the final Section 5.

2. Related Work

Building an infrastructure for air quality monitoring in urban areas introduces many
issues that belong to different problem domains. Most of the research efforts were focused
on the methodology for sensor-side data processing, targeting correction of measurement
data, detection of sensor faults, monitoring and estimating air quality, creating pollution
maps, etc. However, there is a lack of research directed to the design and implementation
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of the infrastructure, especially from the scalability perspective. Therefore, our paper is
addressing the gap between the current research efforts and the scalable system solution
applicable in large-scale deployment scenarios. To handle scalability issues, a systematic
approach is required as opposed to the proprietary solution. We adopted the distributed
processing model as a generalized framework capable of addressing the scalability prob-
lems, although it introduces additional complexity in the implementation of processing
services. Another important factor is that, when talking about the building of the complete
system, the design of infrastructure elements cannot be detached from the responsibilities
of integrating, controlling and maintaining the infrastructure. This issue is particularly
elevated in large-scale deployment scenarios because human interventions and manual
workaround, in solving integration and maintenance requests, are not feasible. Our solu-
tion is offering a systematic framework to address all the identified issues in building air
quality monitoring infrastructure.

This section gives insight into the actual research efforts and the studies addressing
the range of the problems in utilizing low-cost sensors in air quality measurements and in
designing complete system solutions.

The first part of the literature review analyzes the methodologies and approaches tied
to the processing of sensor measurements and the detection of sensor faults. The operation
of sensors and obtained measurements is subjected to numerous errors, and appropriate
methods for error minimization and elimination should be used in the post-processing of
obtained raw measurements. Recently, different statistical techniques for sensor failure
and outlier detection have been analyzed [7]. To overcome measurement errors, analytical
redundancy and hardware redundancy, an approach is recommended in [8]. Authors
in [9] have proposed a fully automated detection of erroneous raw data and concluded
that for filling the gaps in low-cost air pollution measurements, linear interpolation has
the best performance. A peak (a raw value that has extraordinarily low or high values in
comparison to neighboring measurements) detection and correction algorithm is proposed
and verified in paper [10]. Issues regarding the existence of measurement noise, which is
in most cases caused by cheap electronic components, could be resolved using a moving
average filter [11]. Because most of the low-cost sensors are only factory calibrated, it is
of high importance to perform an additional in situ calibration. So far, there is no exact
procedure for laboratory calibration of low-cost sensors, and the laboratory calibration
could also be very expensive. One of the most commonly used calibration procedures is
the Environmental Protection Agency (EPA) co-location method with a linear regression
algorithm, described in [12]. Additionally, measurements of low-cost sensors are very
sensitive to environmental conditions such as air temperature and relative humidity;
therefore, the modeling of this influence and the development of correction algorithms is
also of crucial importance. Because these dependencies can be quite complex, machine
learning (ML) models [13] are often used as an adequate solution. The analysis presented
in [13] has shown that from different evaluated ML models, the random forest algorithm
expresses the best performances, in most of the observed cases, while in some cases artificial
neural networks (ANN) could improve the performance as well. In [14–17], various kinds
of machine learning algorithms were proposed and evaluated for different air pollution
monitoring scenarios. Due to aging, sensors gradually begin to lose their sensitivity or
start to show a drift in their measurements. In order to detect these anomalies in sensor
behavior, it is important to identify and follow errors’ trends. In [18], data metrics, as a set
of statistical parameters including Root Mean Squared Error (RMSE), Mean Squared Error
(MSE) and Mean Absolute Error (MAE), are proposed to measure, quantify and evaluate
the quality of measurements.

Besides the native requirements for the processing of sensor measurements, the inte-
gration of sensors in different deployment scenarios is gathering attention. To distinguish
the airport emissions from long transport emissions, the complex sensor network with
40 devices has been deployed at the London Heathrow Airport [19]. After the successful
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evaluation of network performances, they conclude that their approach could be used for a
broad range of environmental pollution studies.

Recent studies have proposed air quality monitoring systems based on IoT platforms
that provide a high number of requested parameters in real-time. The systems for air quality
measurement are often cloud-based, using centralized network storage and computational
power, regardless of the amount and origin of data [20,21]. The data is collected from
different low-cost sensors, transmitted by a low-power and long-range communication
protocol to the core of the network [20,22].

The solution explained in [23] presented a low-cost portable device with IoT technol-
ogy that connects to the internet through a GSM module and sends all real-time measure-
ment data to a cloud platform for further processing and storage. In [24], the air quality
measurement system, composed of a distributed sensor network that has been connected
to the cloud system, has been implemented. The cloud centralized computing system
has been performing all data processing and analysis by applying artificial intelligence
techniques in the core of the network [24]. Similarly, the cloud computing-based mon-
itoring system using the provided data from the Raspberry Pi hardware platform with
built-in Wi-Fi connectivity enables the complex analysis of different air pollutants only on
a periodical basis [25]. By combining both fixed and mobile IoT sensor nodes, the study
has presented different ML algorithms compared to real-world data in order to provide
effective monitoring and predicting of air quality [26].

The concept of pushing computing closer to the network edge, where various sensor
devices gather their data, is found as a promising approach in designing modern IoT
systems and applications. For many applications, including automated machinery, home
automation, self-guided vehicles and robots, it is essential for the processing to be executed
locally. Toward the same line, in [27] the edge of the network has been proposed for data
storage and processing, including sensor calibration, training of calibration models, etc. On
the testbed deployment case in Helsinki [28], massive scale air quality monitoring has been
implemented, integrating tens of thousands of sensors (CO, NO, PM, T and RH) for air
quality monitoring with fine spatial resolution. They identified and evaluated calibration
methods as a key challenge in the design, deployment and maintenance of devices.

With a systematic solution for integration problems in mind, fog computing is intro-
duced as a computing approach implemented as an intermediate platform between end
devices and cloud computing data centers, where the processing is performed closer to
the network edge. The fog-based approach of system design offers a scalable solution for
a variety of applications with real-time and low-latency requirements, at the same time
supporting location-aware processing and large-scale deployment scenarios [5,29–31].

As given in [32,33], the fog computing concept effectively solves the problems of
big data processing, data transmission and network scalability. Furthermore, it promises
increased performance, energy efficiency, reduced latency, quicker response time, and
better localized accuracy for different smart city applications [34]. In order to integrate such
applications and services, and to meet the real-time requirements, fog computing relies on
the tiered architectural model positioned as an intermediary layer between the network
core and end-devices [29,35].

Adopting a fog-based computing approach enables a hierarchically organized data
transport with a unified integration model of locally connected end-devices, both result-
ing in large-scale upload capabilities in vertical communication and horizontal service
integration [29].

In the context of AQM, in accordance with a high number of data generated from
different types of sensors, which are usually mounted throughout a wide area or on mobile
platforms, using fog computing finds its justification in the processes of AQM. A study
presented in [35] proposed using fog computing to monitor the environmental parameters
and response in real-time based on the decision-making process that can be done on fog
nodes. As an extension of cloud computing, in [36,37], fog computing has been promoted
due to its inherent property of bringing the intelligence to the proximity of the edge of the
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network, and the effects on the performance of the service execution. The proposed AQM
system based on fog computing presented in [38] introduces a distributed fog computing
layer to effectively process the air pollutants’ data sent by the sensor layer. The proposed
solution is seen as a feasible solution capable of surpassing the limitations of a cloud-only
solution. The proposed system utilizes a fog layer to filter the irrelevant data using pre-
processing and clustering techniques in order to consume less space on the cloud layer and
reduce the communication bandwidth requirements. The solution presented in [39] follows
the same design pattern, where service allocation is performed on fog resources, close to
the IoT sensors, allowing real-time processing and data analytics at the edge of the IoT
network. The presented approach enables the design of delay-sensitive IoT applications
with reduced bandwidth costs because data samples are filtered and processed near the
source of the data.

Following the same decentralized processing concept, the research given in [40]
presents a scalable solution for air quality monitoring, offering detection and monitor-
ing of air pollutants. To enable large-scale deployment of prediction services, the hardware
platform has been integrated with the mobile application [41]. On the other hand, targeting
system mobility as a most prominent area of research interest, applicable in urban envi-
ronments, the approach based on mobile nodes, has been introduced in [42]. The focus of
this study is to increase the level of mobility by using the existing communication infras-
tructure for exchanging data with the stationary nodes. The presented solution utilizes
pre-processing as a data aggregation technique, applied before the data has to be sent to the
centralized nodes. In [43], the real-time air quality monitoring system has been tested in a
case study applied in the metropolitan city area. The system has been designed as a low-
cost and scalable solution connected to the cloud-hosted application. The developed data
analytics and Artificial Intelligence (AI) have been used to identify the incident situation
and potential pollution sources.

A summarized review of the proposed solution and recent studies, addressing different
issues regarding the design and the development of low-cost sensing infrastructure and
the methodology for air quality estimation, is given in Table 1. The selection of viewpoints,
used for the classification of reviewed system solutions, was performed to reveal the critical
aspects regarding the research approach, research directions and intended applications of
the proposed solutions.

Table 1. A summarized review of recent studies regarding the design, analysis and implementation
of AQM methodology and architectures.

Research Approach Targeting Applicability Properties

Proposed solution Fog based IoT
Architecture review and data

processing methodology
and services

Distributed fog application Monitoring, Manageability,
Scalability

[20,21,40] Cloud-based IoT Device design Sensor cloud application Monitoring

[22] Cloud-based IoT Device design and
architecture review Sensor cloud application Monitoring

[23] Cloud-based IoT Device design and data
processing algorithm

Sensor cloud application,
sensor calibration Monitoring and calibration

[24] Cloud-based IoT Device design and data
processing algorithm

Sensor cloud application air
pollution detection Algorithm efficiency

[25] Cloud-based IoT Device design Sensor cloud application Monitoring and notifications

[26] Cloud-based IoT Device design and data
processing algorithm

Sensor cloud application,
predictive analytics Monitoring and predictions

[35,38] Fog based IoT Architecture review Sensor cloud application Monitoring

[36] Cloud and Edge based IoT Device design and
architecture review

Open-source sensor
cloud application,

Monitoring,
Scalability

[39,42] Cloud and Edge based IoT Architecture review Ubiquitous sensing in smart cities Mobile sensing, Scalability
[43] Cloud-based IoT Device design Sensor cloud application Monitoring and logging

The majority of reviewed system solutions given in Table 1 [20–26,35,36,40,43] utilize
a sensor-cloud approach given as an infrastructure that allows persistent system operation
using sensors as an interface between physical and cyber worlds, the cloud computing
services as the cyber backbone and the internet as the communication medium. Although
architecture review can be found as a part of the associated research papers [22,35,36], the
research novelty in these papers is more often related to the hardware design of sensing
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devices and algorithms for data processing. Data processing in such a sensor-cloud ap-
proach is either given as a functionality implemented in sensing devices [20,25,40,43] or
with cloud-based data services [24,26]. Rarely, this data processing is shaped as multi-stage
processing [26,36], where the first step in sensor processing is performed on the sensing
device or intermediary gateway device. Compared with the traditional cloud-based IoT
approach, cloud-edge based architecture for AQM introduces an additional processing tier,
at the same time offering enhanced system scalability [36,42]. Regardless of the design ap-
proach, neither of the solutions, reviewed in Table 1, is truly distributed, offering unlimited
scalability and system performance. Additionally, from the viewpoint of building AQM
infrastructure, neither of the solutions addresses system design, perceiving the manageabil-
ity of the infrastructure, supporting its commission and maintenance. On the other hand,
the solution, proposed in this paper, is offering a distributed processing approach where
data processing methodology and its implementation are carefully tailored to fulfill the
manageability requirements of the future system deployment.

3. Methodology and System Overview

Distributed system infrastructure and the scalable requirement impose additional chal-
lenges in the domain of design and deployment of system functionalities. This complexity
burdens the implementation of sensor-side data processing services because it introduces
the requirements for automated provision, commission, recovery and maintenance of the
underlying infrastructure. Therefore, the methodology for sensor-side processing is seen
as a part of a distributed processing framework that handles additional requirements of a
system-level design. The system cross-cut concern that represents the methodology and
implementation context of system design is found in its manageability perspective.

The section provides the details of the underlying methodology for sensor-side data
processing and its encapsulation in the form of system services. The architecture description,
given as a collection of system views, service deployment and service collaboration from
the fog manageability perspective, is also given.

Section 3.1 introduces a collection of methods used in the processing of sensor mea-
surement data, including the methods for peak elimination, sensor calibration, correction
of sensor measurements, extraction of correction model parameters, detection of sensor
faults, air quality estimation, etc. Section 3.2 gives the representation of different structural
aspects of system architecture, while the service deployment, operation and data flow are
given in Section 3.3.

3.1. Methodology Overview

The causes of measurement errors can be numerous, and it is of high importance to
monitor, estimate and evaluate the accuracy, reliability and quality of the obtained results.
Because their influence on the output of data processing services can be significant, it is
found to be important to compensate for these data points. The following section gives the
details of the proposed methodology given as a collection of processing methods used as a
background for building sensor-side data processing services.

Because our previous study has proven the efficiency of the peak correction algorithm
described in [10], we utilize the same approach for handling such scenarios. The peak
elimination algorithm is applied to the sequence of raw sensor measurements xk . . . xk+n,
with n data points, where n is selected according to the configured time window T as
n = T/Ts, where Ts is the sensor sampling period.

The criterion for detecting peak values is evaluated for each input sample through the
expression [10]:

∀i, i ∈ {k, . . . , k + n}, |xi|
|x| > K1, (1)

where x is calculated as a mean value of the input data sequence while K1 is a method
parameter, whose value depends on the observed pollutant.
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If the expression given by Equation (1) is fulfilled in less than K2 consecutive data
samples, the peak value in the input sequence is detected. K2 is an additional method
parameter. In the event that a peak value is detected, the replacement value is calculated as
the mean value of the preceding and succeeding regular sensor reading.

As an extension of peak elimination, simple filtration of sensor data is often per-
formed [11] because the low-cost sensor measurements can be noisy. We selected a moving
average filter as a basic technique used for removing noise as a random interference from
data measurements. As a simplified form of a low-pass filter, the moving average technique
removes higher frequency information by simply smoothing out the original data sequence.
One should have in mind that the window size is the single parameter of the moving
average filter, where selecting a too-large window size leads to over-smoothing, where
critical information about the time series data may be lost. On the other hand, selecting
a too-small window size leads to under-smoothing, where the output data sequence can
end up still being very noisy. Having this in mind, the moving average presumes a time
window containing m samples of the data array xk . . . xk+m resulting in the filtered signal
xout according to [44]:

xout,k+m =
1
m

m

∑
i=0

xk+i. (2)

The parameters m can be altered through the configuration of the noise elimination service.
Regardless of whether the sensors are initially calibrated or not, in order to improve

measurement accuracy, sensor in situ calibration is often recommended. As a method
for sensor calibration, in its actual environment, we suggest the commonly used sensor
calibration based on the EPA co-location with a linear regression algorithm [12]. Co-location
assumes the process where both the reference sensor and the target, nonreference sensor
operate at the same time interval and at the same location under the same conditions. In
our case, reference sensor measurements are obtained from the reference area node, based
on the reference air quality station located in the target area, other nearby sensors attached
to the same area node, and their geo-location info. Thus, our method uses the low-cost
pollutant measurements X (xk . . . xk+n ∈ X) and the estimated reference pollutant measure-
ments Xre f

(
xre f ,k . . . xre f ,k+n ∈ Xre f

)
, both of length n, to evaluate the linear regression

parameters a and b according to the equation [45]:

a =
n ∑
(

xxre f

)
−∑ x ∑ xre f

n ∑ x2 − (∑ x)2 , (3)

b =
∑ xre f

n
− a ∑ x

n
. (4)

Parameters a and b, are later used to correct any future low-cost measurement x,
obtaining a calibrated measurement xout [45]:

xout = ax + b. (5)

The length n of the co-location interval, used for creating the calibration dataset
(X, Xre f ), is a part of the configuration of the sensor calibration service that encapsulates
the proposed method.

As given in [13], low-cost sensors’ measurements are highly influenced by environ-
mental conditions, so the modeling of this influence and the correction of the sensor
measurements are of special interest. Because linear regression is a method of modeling the
linear relationship between the observed datasets, in order to compensate for the influence
of meteorological conditions on the low-cost sensor measurements, which are complex
dependencies, a more sophisticated ML model is required. Each selected ML model comes
with its own set of parameters and hyperparameters, which can be set up as a part of the
related service configuration or model training process.

In order to compensate for the influence of meteorological factors on low-cost sensor
measurements, an ML technique is used in this paper. This process will be referred to
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as the correction of sensor measurements, and it will represent an implementation of
the random forest (RF) algorithm [46] as a simple, fast and flexible tool for addressing
different regression problems. For the selected set of RF hyperparameters, found during
the cross-validation process, an RF model is trained using a time series of calibrated sensor
measurements xk . . . xk+n, temperature and relative humidity data as inputs and reference
measurements as outputs. All mentioned time series are of the same length, i.e., each data
point contains information about the four mentioned variables. The different types of input
variables used in the training process are called features (calibrated sensor measurements,
temperature and relative humidity), and the number of features can be higher or lower
than the default value of 3, based on the availability of environmental data. The number of
gathered samples corresponds to the duration of the training interval.

The RF represents an ensemble of decision trees and the training process of an RF
algorithm on a dataset X with N instances, and an input feature set S (includes calibrated
sensor measurements, relative humidity and temperature data by default) is as follows.

Creating N subsets of X, each with m timepoints with all available features, one subset
for each of the N decision trees,(

Xi, Xi
re f

)
i ∈ {1, . . . , N}, (6)

Creating a subset of the feature set S for each decision tree,

Si i ∈ {1, . . . , N}, (7)

Training each decision tree, hi i ∈ {1, . . . , N} on its respective

(Xi
Si

, Xi
re f ), (8)

The prediction of the random forest for a given x is

1
N

N

∑
i=1

hi(xSi

)
. (9)

To reiterate, each decision tree is trained on a subset of all data points, and on a
subset of features, with the output of the entire RF being the average of all decision trees.
This method is called bagging, and it involves averaging a number of individual “weak
learners” (simple algorithms) that are trained on subsets of all available data to provide
an accurate overall prediction. Hyperparameter tuning of the RF relies on experimental
model evaluation based on the gathered direct sensor measurements and the estimated
reference values.

Considering a wide range of possible sensor faults, for the detection of sensor faulty
operation, we selected a correlation analysis based on the monitoring of two statistical
parameters, RMSE and R2 [47]. Correlation analysis tracks the relationship between the
low-cost and reference sensor measurements. One should have in mind that reference
measurements are not directly observed but rather estimated based on the measurements
of other neighboring sensors and the reference air quality station located in the target area
according to the equation:

xre f ,i = ∑
k

wkxi,k, (10)

where xi,k being the sensor readings obtained from the same area, for sensors placed in the
vicinity of the location of the observed sensor, and wk being the weights that are assigned
based on the distance from the observed sensor’s geo-location (regulated by index k).

The parameter RMSE is calculated as

RMSE =

√
1
n

n

∑
i=1

(xi − xre f ,i)
2, (11)

and the parameter r is calculated as

r =
C
(

x, xre f

)
σxσxre f

, (12)
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where C is the covariance of x, xre f and σx, σxre f are variances of x and xre f , respectively.
The RMSE quantifies the exact Euclidean distance between the two signals, and the

R2 = r2 explains the agreement of trends of the predictor variable and the response variable.
The criterion for detecting sensor faulty operation is evaluated during the selected sliding
time window with the number of samples n (duration T = nTs), thus taking into the
consideration a time series of data X (xk . . . xk+n ∈ X) and Xre f

(
xre f ,k . . . xre f ,k+n ∈ Xre f

)
with n samples each. The sensor faulty operation is detected if the following logical
expression is fulfilled:

R2
(

X, Xre f

)
< tR2 ∨ RMSE

(
X, Xre f

)
>tRMSE (13)

where parameters n (and therefore T) are defined through the selected time window, while
tRMSE and tR2 are threshold values defining the tolerances of statistical parameters. All
parameters are part of the configuration of the appropriate service that encapsulates the
fault detection functionality.

Besides the sensor faults resulting from the changes in the sensor behavior, there
are other operational faults that denote problems in sensor connection, data communica-
tion, power supply or sensor mechanical damage. These sensor operational faults can be
observed through simple criteria where missing data in the predefined time interval or
catching the sensor measurements that are out of the predefined range can trigger different
types of the alarms.

Apart from processing sensor readings and detecting faults in sensor operation, sensor-
side processing implies monitoring of air quality as its primary concern during regular
sensor operation. In order to present the air quality index to the general public since 2006,
the CAQI has been used in Europe [6,48]. According to the adopted methodology for the
quantification of air quality, the level of pollution is divided into five categories (1–5), i.e., in
five different colors (green to red) visually understandable to the observers. In our system,
the following pollutants are observed: CO, NO2, SO2, O3 and PM10 on an hourly basis.
CAQI of air pollution is categorized as very low, low, medium, high and very high. For
each pollutant p, five boundary values for five ranges of values are given as rP(i), and
the CAQI index IP given as i ∈ {1, 2, 3, 4, 5} is estimated based on the measurement mP
as follows:

IP = i, rP(i) ≤ mP < rP(i + 1). (14)

As the rP values are predefined for each pollutant, no configuration is needed for the
corresponding CAQI calculation service.

3.2. AQM System Architecture

The integration of the proposed functionalities required for building a low-cost sensing
infrastructure for air quality monitoring conforms to the adopted fog computing approach.
Fog computing infers that physical deployment of system elements is organized according
to the tiered architectural style, as given in Figure 1. The previously defined methods
for sensor side data processing, given in Section 3.1, are encapsulated as service compo-
nents that reside on different tiers of system architecture. The number of fog nodes at a
particular tier corresponds to the geo-locational distribution and the density of deployed
measurement stations.

Fog nodes at Tier 1 communicate with the connected sensor and/or measuring stations
retrieving raw information on CO, NO, NO2, CO2, SO2, O3, PM air pollutant concentra-
tions, as well as temperature and relative humidity measurements. After being processed
by analytic services from Tier 1, measurement data and the estimated CAQI values are
transferred to reference Tier 2 nodes. Analytic services at Tier 1 include a collection of
sensor data processing services for sensor calibration, data correction, extractions of model
parameters, etc.

Fog nodes at Tier 2 execute several correlation-related services providing information
about air quality, performing accident detection and event notification, and detection of
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sensor faulty operation. They also provide reference measurements data necessary for
the configurations of analytic services at Tier 1 related to the sensor calibration, sensor
correction, etc. Reference data can be obtained from the in-area located reference air quality
monitoring station, other closely located reference stations, or provided as a result of a
fusion of all available sensor measurements.
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Fog nodes at Tier 3 combine information obtained from a wider district or metropoli-
tan area. Because the nodes closer to the network core services located in the cloud have
higher processing and communication capabilities, they perform more complex analytics
to provide more sophisticated services related to the creation of high-resolution air pollu-
tion maps, pollution control, urban planning, land use regulation, population exposure
assessment and other advanced services at the metropolitan area.

Apart from the deployment viewpoint of the AQM system, a description of system
architecture, as a top-level system representation, regularly includes a description of many
other structural viewpoints. We selected a software view as the one that represents the most
important aspects of the system operation. In particular, our paper addresses the software
view from the manageability perspective, as the cross-cutting system is responsible for
ensuring successful node operation during its lifecycle.

In order to bind the implementation of sensor-side processing with the service deploy-
ment and operation, we defined the manageability perspective of the edge tier. In general,
fog management has a collection of responsibilities, from automated identification and
discovery, advertisement of features and capabilities, provisioning of endpoint devices
to more complex recovery operations. When talking about the edge tier, automation of
node operation is essential during all phases of the node lifecycle because human interven-
tion is impractical in large deployment scenarios. To enable such automation, our node
management implementation complies with the finite state machine given in Figure 2.
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Different phases of the management life cycle are adopted from the OpenFog reference
architecture [30], where transitions between lifecycle phases are aligned with the operation
of introduced node services.
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The Commission phase is the initial phase of a fog node lifecycle when the managed
entity performs certain actions before it is ready for collecting and providing availability to
its resources. These actions include the initialization of basic node functionalities related
to data and sensor communication, node security and its identification, configuration and
service accessibility, etc. From the manageability perspective, prior to the node provision,
the sensor calibration process needs to be performed. Firstly, the node is connected to the
reference area node with the node’s GPS coordinates and the information of connected
sensor types. Secondly, during the configured commissioning interval, the node collects
raw sensor measurements and the received reference data, extrapolated for the particular
node location at the reference area node.

Based on the gathered time series of reference and raw sensor measurements, calibra-
tion model parameters are calculated according to equations 3 and 4. After the calibration
service is configured with the obtained model parameter values, service operation is en-
abled and the node proceeds into the Provision phase. The Provision phase corresponds to
the node early life, where sensor measurements are collected from the reference area node
in order to train a ML model used for correction of sensor measurements influenced by
particular environmental conditions. After the provisioning interval has elapsed, and the
supervised ML model is trained, the correction service at the edge tier is configured and
enabled, indicating node transition to its functional-life phase.

The Operate phase of the node functional life suggests its normal operation where all
identified sensor-side processing services are active, especially services used for detecting
sensor faulty operation. Upon sensor fault operation detection, node operation proceeds
to the Recovery phase. If the detected faulty operation corresponds to the defined alarm
conditions at the edge tier, recovery operation implies notification upon the spotted node
condition. In the case that the faulty operation is related to the fault indicated by the
correlation service executed at the area node, automated sensor recalibration and correction
model training is performed. If the implemented recovery, i.e., the recovery procedure, is
not found to be effective, and the output of correlation services is still indicating sensor
faulty operation, the node operation state will be transferred to the Decommission phase.
The Decommission phase assumes the removal of all hardware-related node instances
and interactions between software components that exist in the service execution chain.
Decommission procedures are found to be more significant from the perspective of higher-
tier nodes. If the recovery procedure is found to be successful, regular node operation is
continued in the Operate state.

From the architectural viewpoint, the distributed system design imposes some limita-
tions that also need to be pointed out. From the security perspective, distributed systems
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are exposed to security threats because of the extensive internode communication. These
threats are related to achieving data confidentiality and disabling interference and attacks
by unauthorized parties. Furthermore, distributed infrastructure results in a security model
with complex trust, authentication and confidentiality requirements that pervade the design
of the entire system.

3.3. Service Operation and Deployment

The software architecture of Tier 1 and Tier 2 nodes is presented in Figures 3 and 4
respectively. Positioning of node services and the details of their individual and collabora-
tive operation, especially from the manageability perspective, are also presented. Software
architecture layers, adopted from the OpenFog reference architecture [30], include the
Application Services layer, Application Support layer and Software Backplane layer with
in-band node management. As given in the Figures, the tree software layers are positioned
on the top of the hardware platform layer.
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The software backplane is required to run any software on the fog node and facilitate
node-to-node communications, Operating system, software drivers, file system, operational
and security management, etc. The Software Backplane layer orchestrates horizontal and
vertical pathway communication providing data confidentiality and integrity services.
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The application support layer includes different software components that are commonly
shared by multiple microservices. It may contain execution environments for microservices,
application servers and middleware components, application data management, including
different data representation formats, data encryption/decryption and persistent storage
and analytic tools. The role of the application service layer is to support building a particular
application. In general, fog computing applications are composed of a loosely coupled
collection of microservices found at the application service layer. According to their role,
these services are organized through several logical service layers including core services,
support services, analytic, user interface and connector services. User interface service
allows the configuration of node services, real-time access to the sensor measurements
and air quality estimates, as well as access to node in-band management services. The
fog connector service operates on top of the protocol abstraction layer translating the
produced data into common data structures and data formats. Fog connector service is
involved in internode communication over the different communication pathways across
the device-to-fog-to-cloud continuum.

The majority of node services relevant for the air quality monitoring application are
found at the application service layer, where particular sensor-side processing methods are
encapsulated as individual node services. Related system functionality is given in the form
of sequential processing steps executed through the sequence of microservices that may
reside on the same or on the different architectural tiers.

The peak elimination service encapsulates the peak elimination method which is
executed on Tier 1. The service inputs are the raw sensor measurements gathered from
connected low-cost sensors, given in the form of time-series data. The output of the
peak elimination service is given in the same form and is used as the input to the noise
elimination service executing on the same node. Upon the node initialization and the
configuration of service parameters, at the beginning of the commission phase of the node
management life cycle from Figure 2, the service is constantly active.

The noise elimination service encapsulates the moving average method as a method
for removing noise from sensor measurements. Both the input and the output of the service
are given in the same form of time series data. The service output is used as the input for
the next step of the sensor-side processing sequence, where sensor calibration is performed.
Upon the configuration of the noise elimination service, during the commission phase of
the node life cycle, the service is periodically executed at the rate at which the input data
sequence is updated. Although the parameters for this service have default values, they
can be changed manually.

The sensor calibration service, located on Tier 1, encapsulates the sensor calibration
method. After the service is configured with the extracted parameters of the adopted
linear regression model, calibrated sensor measurements are regularly calculated according
to Equation (5). The model parameters are found using Equations (3) and (4) based on
the gathered time series of the observed sensor measurements and the reference sensor
measurements collected from Tier 2 during the commission phase. The actual calculation is
performed by the simple processing engine at the application support layer on Tier 1. Upon
sensor calibration service configuration, the node continues its operation in the early-life
phase, as defined in Figure 2, when the node correction service is going to be provisioned.

As a final step in the sequence of sensor-side processing services, the sensor correction
service is executed on Tier 1. This service encapsulates the RF algorithm as an ML technique
used in the correction of sensor measurements. After the node carries forward its operation
in the functional-life phase, the model is used to correct the sensor data samples that come
out of the sensor calibration service. The configuration of correction service is performed
every time the model training process on Tier 2 is finished, where model training is initiated
by the transition of Tier 1 node to provision phase or its transition to the recovery phase
upon the detection of sensor faults on Tier 2. All transitions between Tier 1 node life-cycle
phases are defined according to the finite state machine given in Figure 2.
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During the Tier 1 node operation in the functional-life phase, CAQI calculations are
performed on Tier 1. The calculation is based on the gathered hourly data that come out of
the correction service. CAQI service on Tier 1 calculates the pollution state for each of the
air pollutants according to expression (14). The calculated CAQI index is then regularly
sent to the reference area node on Tier 2, indicating very low, low, medium, high and very
high pollution states.

Besides the services related to the processing of sensor data, the application layer of
the Tier 1 node contains the fault diagnostics service for detecting node operation faults
related to sensor operation, data communication, power supply problems, etc. Regarding
the sensor operation, the service is configured to send notification messages and alarm
warnings if the missing data event, sensor communication packet loss or data out of range
condition is found.

Our focus in the following discussion is to analyze the operation of relevant Tier 2 node
services, given at the application service layer in Figure 4. Services are involved in the
collaborative operation with the Tier 1 services, providing estimated reference sensor
measurements, performing cross-correlation analysis and configuring and reconfiguring
data analytic services at the edge tier.

Regarding the operation of correction services on the Tier 1 node, related Tier 2 node
functionalities include the determination of model hyperparameters and supervised model
training for the selected RF algorithm used for correction services. Hyperparameters
are determined through the cross-validation process performed during the Tier 1 node
provision and recovery phase. Model training is performed with the sensor measurements
gathered from the target edge node and the reference data extracted by Equation (7) for the
particular target node location. Reference data are found as a fusion of available reference
air quality stations or available sensor measurements of connected Tier 1 nodes. The trained
model, with its parameters, is then forwarded to the Tier 1 correction service triggering
node transition from the provision to the operate phase. Tier 2 operations regarding the
setup correction services are also performed during node recovery phase or seasonally.

Detection of sensor faults related to the changes of sensor behavior is encapsulated
in the form of correlation services located on Tier 2. As explained in the methodology
overview section, fault detection is based on the correlation analysis of sensor measure-
ments, gathered from target edge nodes, and reference data measurements extracted for
the particular sensor location. If the fault condition, evaluated through expression (13),
is fulfilled, sensor fault is detected; the corresponding edge node is transferred to the
recovery state, triggering reconfiguration of calibration and correction services. It should
be mentioned that the activation of fault detection services on Tier 2 are synchronized with
the transition of the corresponding Tier 1 node into the operating state. The further details
related to the operation of other services located on Tier 2 are out of the scope of this paper.

4. Experiment

This section presents a description of the experiment set-up, including node deploy-
ment and configuration, and obtained results illustrating operation and collaboration
between services during the conducted experiments. The dataflow between system ser-
vices during sensor-side processing is also given.

4.1. Experiment Set-Up

Adopted methodology, system services and service collaboration are verified through
the presented case study. To highlight the details of the dataflow between the system
services, first we introduce the algorithm for data collection and processing, given in the
form of sequential processing steps, shown in Figure 5.

Measured data from the sensors, i.e., raw values are collected from the connected
low-cost measurement station, with a time resolution of 1 min, although the recommended
acquisition interval can be slower. The first step in sequential processing is peak elimination,
followed by a simple moving average filtering as a technique for noise elimination. After
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filtering and calibration, the correction of sensor data is performed. The dynamics of
data processing in the preceding sequence is the same as the sampling rate of sensor data.
To perform the calculation of CAQI, the mean hourly averaging of the corrected sensor
measurements is performed as a part of the succeeding processing step. The same hourly
averaged values and the hourly reference measurement data are used as an input of cross-
correlation services. The output of this processing step is given in the form of RMSE and
R2 statistics and the fault status indicating the sensor faulty operation. In case the faulty
sensor state is evaluated as an output of the cross-correlation services, the recalibration
of the faulty sensor is performed. Finally, seasonally or due to the detected faults, the
correction model is retrained. The details of the execution of data processing services are
further evaluated as a part of the presented experimental study.
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The deployment of the experimental system setup, given in Figure 6, includes a
low-cost measurement station connected to Node #1.1 and nearby positioned reference
measurement station Node #1.2, both connected to area Node #2.1. Although the large-scale
deployment scenario is not covered within this case study, the proposed methodology and
the operation of services that reside on Nodes #1.1 and #2.1, during the commissioning, early
life and functional life phase of edge-tier node management life cycles were successfully
verified. Further analysis of the effective system performance and the scalability of the
solution requires large-scale deployment, although such properties are expected as an
inherent property of the adopted distributed processing model based on fog computing.

Our case study includes several experiments conducted during the six months of
system operation, from August 2020 to March 2021. As a low-cost measurement station,
we used the DunavNET ekoNET device AQ10x equipped with sensors for outdoor air
quality monitoring (depicted as AQ1 in Figure 6) [49]. This device contains the following
air-pollution sensors for CO, CO2, NO, NO2, SO2, O3 (Alphasense, Essex, UK), PM1, PM2.5,
PM10 (Plantower, District Beejing, China) and the temperature, air pressure and relative
humidity sensors (Bosch BME 280, Reutlingen, Germany). Sensor measurements from
the low-cost station are transferred to the fog Node #1.1 over GPRS connection, although
other communication technologies, like 3G, LTE, NB-IoT, LoRa, SigFox, WiFi, and BLE,
could be used. All sensor measurements are acquired at the Node #1.1 at the 1-min rate.
The reference sensor contains calibrated measurements of CO, NO2, temperature and
relative humidity (depicted as AQ2 in Figure 6.) and transfers data to the fog Node #1.2
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over a GPRS connection. Nodes #1.1 and #1.2 are connected to Node #2.1 via ethernet
connection and transfer data at a one-hour rate. The operation of Node #1.1 and Node #2.1
services are verified through the waveform analysis of time-series data gathered before
and after being processed by a particular service or a group of services covered by three
observed scenarios.
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The parameter values used for configuring sensor-side processing services at Node #1.1
and Node #2.1 are listed in Table 2.

Table 2. Configuration of Node #1.1 and Node #2.1 data processing services.

Service Parameters

Peak elimination n= 30, K1= 3, K2 = 3
Noise elimination m = 5

Calibration n = 50 min
Correction algorithm n = 200 h, Random Forest algorithm

Correction algorithm parameters 100 decision trees, max features ≤ 3 features, no max depth
Cross-correlation n= 200 samples, tR2= 0.5, tRMSE = 40
CAQI calculation t = 1 h, Number of levels = 5

4.2. Experiment Results

In this subsection, we present the results produced by the services forming our AQM
system during a real experiment. The first scenario covers the analysis of the operation
of basic sensor side processing services, e.g., peak elimination and noise elimination
services that reside on Node #1.1. Because the input for these services is the time series
of raw sensor measurements gathered from the low-cost sensors connected to Node #1.1,
the operation of services is enabled during all phases of the node life cycle, after the
node-to-device communication pathway and sensor initialization. Figure 7 illustrates the
peak elimination and noise elimination scenarios during the functional-life phase of node
operation. Input data sequence for peak elimination service represents a time series of
raw CO measurements obtained directly from the connected CO sensor, while the input
sequence for noise elimination service is the output of the peak elimination service.
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elimination service (right) performed on the CO sensor measurements.

As one could notice from the left-side graph, although peaks occur rarely, their values
are several times higher (red marked dots) than the surrounding measured values (blue
line). Therefore, their influence on data-driven processing can affect the service operation
and potentially lead to an erroneous conclusion. Because of this, a peak elimination service
is selected as an important first step in the sequential processing of sensor data. The graph
at the right-hand side of Figure 6 presents just a part of the original sequence given on the
left side. It is obvious that, as expected, the moving average filtering smoothed the input
data sequence (blue line) by successfully removing higher frequency information from the
CO measurement data. It is also noticeable that the size of the filter length is appropriately
selected because the over-smoothing and under-smoothing could not be observed from the
output data sequence given by the red line.

The second scenario covers the analysis of Node #1.1 operation during the Com-
mission phase and succeeding node transition to the Provision phase, as presented in
Figure 8. The graph includes the co-location interval of 50 h, where the reference sensor
measurements and data sequence at the output of the noise elimination service are gathered.
Reference sensor measurements are obtained from reference area Node #2.1, based on the
reference AQM station located in the target area. Upon the configured co-location interval
has elapsed (calibration interval from Figure 8), the parameters of the linear regression
model were calculated, and the calibration service was configured and enabled.

As one could notice from Figure 8, before the calibration service is enabled, there is a
significant difference between the reference CO measurements and the filtered measure-
ment obtained as an output of the noise elimination service before the calibration period.
This elevates the necessity for sensor calibration because the difference between these two
signals is significantly reduced after the node commission is completed and the calibration
service is enabled at the time instance of 150 h.

Scenario three, presented in Figure 9, covers the analysis of Node #1.1 and Node #2.1
operation during Node #1.1 operation in pre-life and functional-life phase. The scenario
includes the detection of Node #1.1 faulty operation and its successful recovery after the
reconfiguration of the correction service.

During the functional-life phase of Node #1.1 Operation, correction services on Node
#1.1 as well as correlation services on Node #2.1 are active. Similarly, the output of the
CAQI services, presented in Figure 9, is contained within the dataset transferred from
Node #1.1 to Node #2.1. The correlation analysis implies monitoring of the two selected
statistical parameters R2 and RMSE, based on the estimated reference data and the gathered
measurements included in the dataset received from Node #1.1. One should have in mind
that the parameters are calculated based on the time sequence with n = 200 samples as
given in Table 1.
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As illustrated in Figure 9, at the time instance close to the 316 h, the R2 reaches its
lower limit at 0.5 (marked with a red dot), triggering the transition of Node #1.1 to its
recovery phase. During the Recovery phase, based on the novel set of gathered reference
and direct sensor measurements, a new ML model is trained. The recovery interval can
be shortened if the reference measurements and the direct sensor measurements from the
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preceding training interval are buffered. A new model, with its parameters, is used for the
reconfiguration of the particular Node #1.1 correction service. As given in Figure 9, after the
reconfiguration of the correction service, at the beginning of the 516-h mark, recalculated
R2 and RMSE values are both in the allowed range, imposing the continued Node #1.1
operation in the operating phase.

5. Conclusions

The proposed fog computing approach and tiered architectural style provide an effec-
tive and flexible framework for building scalable solutions for air quality monitoring in
urban areas based on low-cost sensors while at the same time enabling successful orches-
tration, manageability, and control of overall system resources. In addition, microservice
architecture offers an adequate foundation for seamless integration of underlying methods
used for sensor side data processing at the edge tier, as well as for delivering related func-
tionalities under regular and adverse operating conditions. Collaboration of microservices
during different phases of the edge-tier node life cycle are successfully tested, and its
operation has been verified in the presented use case scenarios. Besides the edge-tier node
commission and provision, the use case scenarios also cover the operation of higher-tier
cross-correlation services for detecting erroneous sensor measurements and operational
faults. The operation of such services is found not only to contribute to the improvement of
overall system reliability but also in providing a basis for automated recovery services as a
part of automated management capabilities, especially valuable in large scale deployment
scenarios. Because the proposed architectural approach offers universal, flexible and scal-
able system solutions, it could be easily used for different large-scale deployment scenarios
found in various smart city applications. The analysis of effective system operation per-
formance in large-scale deployment scenarios, as well as the design of the methodology
for creating high-density urban air pollution maps based on the collaboration between the
group of services at the metropolitan area, is planned as a part of future work. Additionally,
other available pollutant sensors’ (SO2, O3, NO, CO2, PM) performances with appropriate
metrics (R2, RMSE) will be evaluated, alongside the analysis of the influence of wind speed
and direction.
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