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Abstract: Experiments have proved that an electrical signal appears in the ultrasonic cavitation field;
its properties are influenced by the ultrasound frequency, the liquid type, and liquid characteristics
such as density, viscosity, and surface tension. Still, the features of the signals are not entirely
known. Therefore, we present the results on modeling the voltage collected in seawater, in ultrasound
cavitation produced by a 20 kHz frequency generator, working at 80 W. Comparisons of the Box–
Jenkins approaches, with artificial intelligence methods (GRNN) and hybrid (Wavelet-ARIMA and
Wavelet-ANN) are provided, using different goodness of fit indicators. It is shown that the last
approach gave the best model.

Keywords: cavitation; voltage; Generalized Regression Neural Network (GRNN); autoregressive
integrated moving average (ARIMA); Wavelet-ARIMA; wavelet-artificial neural network (ANN)

1. Introduction

Cavitation is the process of apparition, augmentation, and collapse of the bubbles
created around tiny particles in special pressure conditions in a liquid [1]. The discontinuity
of the liquids’ state characterizes this phenomenon when the pressure experiences a sudden
local drop [2]. The cavitation that appears at the ultrasound propagation in fluids is named
ultrasound cavitation [3–5].

Effects as corrosion–erosion [6–8], the apparition of vibration and noise [9–11], sono-
luminescence [12], and solid materials’ unpassivation are associated with the ultrasonic
cavitation. Ultrasonic cavitation is employed for bleaching, soldering, emulsification,
cleaning, extraction, nanoparticles synthesis, and separation [3,9].

Different researchers have analyzed acoustic cavitation and the phenomena associated
with sound propagation in liquids for the last twenty years. Still, the physical processes
related to the formation and the bubbles’ collapse are not entirely explained. They result
from the interaction of the bubbles whose increasing-collapse cycles are not simultaneous,
giving birth to the multiple interactions [13,14].

Industrial processes (among which ultrasonic cleaning and sonochemical processing)
depend on the acoustic cavitation, which at its turn, is influenced by the conditions of the
ultrasonic process [15]. Last period, increasing interest in understanding the ultrasound
cavitation mechanism and explaining its effects was noticed [11,12,16–18].

Scientists presented applications of acoustic cavitation. They are based on the analysis
of the signal spectrum that appeared in the cavitation field [19]. It has been proved that
the signal generated by exciting the transducer by a high frequency (in this case, 20 kHz)
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depends on the liquid nature and the power regime. The electrical signal is alternative as a
result of the cyclical augmentation–explosion process suffered by the bubbles [11,16,17,20].

Other researchers focused on eliminating the noise produced in acoustic cavitation [17]
and explained the apparition of the electrical signal in cavitating liquids using the the-
ory of double layer from the physics of plasma [16,20]. Differential equations, ARIMA,
and artificial neural networks were proposed for characterizing the signal in the time
domain [3,19,21,22].

Despite the good performances of the Box–Jenkins approaches on modeling such
signals, they cannot capture the nonlinear behavior of the time series. Artificial intelligence
(AI) methods have come to fill a gap in this direction. Generalized Regression Neural
Networks (GRNN) proved their capabilities in modeling in domains such as medicine,
IoT, agriculture, meteorology, and finances [23–28]. Although it requires a longer time to
provide the results by comparison to other algorithms, GRNN [29] have some capabilities
leading many to recommend their use: they learn quickly, do not use backpropagation, are
not sensitive to the noise, and can be modified to permit a multidimensional output [29,30].

Many scientists, among which Anjoy and Paul [31], Fard and Akbari-Zadehb [32],
Khandelwal et al. [33], Lopes et al. [34], Wang et al. [35] showed that the hybrid approaches
often provide better models that the Box–Jenkins or AI models, separately, capturing both
the linear and nonlinear behavior.

In the above context, the main contributions to the knowledge in the field are the
following. (1) Building an experimental installation for the study of ultrasound cavitation
in different liquids. (2) Collecting the electrical signals induced by cavitation in seawa-
ter. (3) Studying the statistical properties of these signals. (4) Proposing four alternative
approaches—ARIMA, Generalized Regression Neural Network (GRNN), Wavelet-ARIMA,
and Wavelet-ANN (the last two being hybrid)—for modeling the collected signals in seawa-
ter. (5) Using the built models for forecasting the series. (6) Comparing the performances of
these approaches based on the forecast quality.

2. Materials and Methods
2.1. Experiment

The installation used for this experiment was built for the study in stationary and
circulating liquids. It has the following main components (in the brackets, we refer to the
numbers from Figure 1) [20]:

• The tank where the studied liquid (seawater, here) is introduced (1).
• The generator of high frequency (HAMEG HM8130, Germany), that worked at 20 kHz

in this case (8).
• A ceramic transducer (7), excited by the generator.
• A pair of electrodes made of copper (13), used to collect the electrical signal produced

when the generator works. They can be placed at various distances (from 6 to 61 cm)
from the transducer. In the experiment presented here, the distance transducer-
electrodes was 30 cm.

• An acquisition board (14), connected to a computer (15) for recording the signal.
• A cooling fan (11), utilized for preserving a constant temperature of the liquid (in

this case 20 ◦C) during the experiment (given that the ultrasound cavitation is an
exogenous phenomenon).

• The command block (12), used for selecting different powers for the generator regime
(80 W, 120 W, or 180 W). Here, 80 W was selected.

When the experiment is performed in stationary liquid, the other components of the
experimental setup are not involved. Details on the setup functioning are given in [20,22].

The studied signal is represented in Figure 2.
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2.2. Methodology

The signal, studied in the time domain, was subject to statistical tests performed at the
significance level of 5%. The null hypotheses, the alternatives, and the tests performed are
as follows:

• Normality, against non-normality—the Shapiro–Wilk test [36].
• Homoskedasticity, against heteroskedasticity—the Levene test [37].
• Randomness, against non-randomness—the runs test [38].
• Stationarity against non-stationarity—KPSS test [39].

The statistical analysis and mathematical modeling were performed in Minitab17,
DTREG, and R software (version 4.0.5).

2.2.1. ARMA Models

A discrete-time process is a sequence of real random variables, (Xt; t∈Z).
A time process (Xt; t) is called stationary if it satisfies the following conditions:

• ∀t ∈ Z, M
(
X2

t
)
< +∞,

• ∀t ∈ Z, M(Xt) < +∞ and is invariant in time (M denotes the expectation),
• ∀t, h ∈ Z, Cov(Xt, Xt+h) = γ(h) (i.e., the covariance of Xt and Xt+h depends only on

the lag h).
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An ARMA(p,q) is a model whose equation is

Xt = c + εt +
p

∑
i=1

ϕiXt−i +
q

∑
j=1

θjεt−j, ϕp 6= 0, θq 6= 0, (1)

where (εt; t ∈ Z) {\displaystyle \varepsilon _{t}} are Gaussian, independent random vari-
ables with the same variance and the mean equal to zero.

The first p terms are autoregressive, and the last q—moving-average.
Given a data series, the model selection depends on the series stationarity or non-

stationarity. If a series is not stationary, its stationarity can be reached by taking a difference
of the d-th order of the series terms (d ∈ N∗).

ARMA(p,q) is a particular type of autoregressive integrated moving average processes,
ARIMA(p,d,q) [40]. The degree of differentiation, d, in ARIMA(p,d,q) processes is chosen for
reaching the series stationarity. If the series is stationary, then d = 0, and the model is of
ARIMA(p,0,d) = ARMA(p,q) type [40].

The chart of the series autocorrelation function provides information on selecting an
ARMA(p,q). If p > q, the values of the autocorrelation function belong to a curve formed by
a mixture of exponential decreasing and damped sinusoid functions.

The model validation is done by applying the t-test to the model’s coefficients and test-
ing the hypotheses on (εt; t ∈ Z) {\displaystyle \varepsilon _{t}} (that should form a white
noise). The selection of the best model among the ARMA competitors that fulfill the statisti-
cal tests on the coefficients and residual (εt; t ∈ Z) {\displaystyle \varepsilon _{t}} is made
based on the Akaike (AIC) or Schwarz (SCH) criteria {\displaystyle \varepsilon _{t}} [40].
The lowest the AIC (SCH) is, the better the model is {\displaystyle \varepsilon _{t}}.

2.2.2. Generalized Regression Neural Networks

Generalized Regression Neural Network belongs to the group probabilistic neural
networks. The GRNN architecture is presented in Figure 3. It contains four layers—Input,
Hidden, Summation, and Output [29]. Given its ability to capture nonlinearities, learning
without backpropagation, and the use of nonparametric regression, GRNN was widely
utilized for solving classification, regression, and forecast problems that involve continuous
variables [29,30].
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Figure 3. GRNN diagram.

The Input layer is formed of the vector of the recorded values X = (x1, . . . , xn) (Figure 3),
in this study, the signal’s values.

The neurons in the hidden layer apply a kernel function to the distances between
the training data and the prediction point. The σ values are used for estimating the
influence radius. The best σ should be determined when training the network to control the
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distributions of the kernel function [29]. The most used approach for finding the optimum
σ is minimizing the mean square error (MSE). This study employed the conjugate gradient
algorithm to estimate the best σ for the entire model.

The RBF and reciprocal kernels have been utilized in this research. As no significant
improvement was noticed in the second case, we report the results obtained using the
RBF kernel.

After training, the number of neurons in the hidden layer is the same as the number
of training samples involved in the modeling [29]. The hidden layer also stores all the
variables’ values.

The summation layer consists of the D- and S-summation neurons that collect the
information from all the neurons from the previous layer. Both neurons sum the values
from the hidden layer. The sum is weighted (with the sum of weights equal to 1) in the
D-summation neuron [29].

The output layer contains the results of dividing the values stored in each neuron from
the previous layer, providing the most probable value for the dependent variable, Y.

An optimization process may also be performed to remove unnecessary neurons. In
this case, the optimization criterion was error minimization.

To perform the modeling, the series was divided into a ratio training: test = 80:20 and
70:30. As the best results have been obtained using the first partition, we present this result.
The number of iterations was fixed to 5000 (maximum) and 1000 (without improvement).
The values of σ were searched in the interval 0.0001–10.

2.2.3. Wavelet-ARIMA Model

A discrete wavelet transform (DWT) is a used to decompose a signal into several sets;
each of them is a time series of coefficients that describes the evolution of the signal in time
in the corresponding frequency band [41].

The discrete wavelet transform, usually utilized for modeling purposes, is not invari-
ant to translation. To surpass this drawback, the non-decimated wavelet transform (NDWT)
may be employed [42].

Considering the signal X = (X1, . . . , XN), its decomposition by the à trous wavelet
transform results in

Xt = cJ,t +
J

∑
j=1

wj,t (2)

where the first term represents a smooth version of the initial signal, and the term under
the sum is the signal’s ‘detail’ at the scale 2−j [43,44].

In this article, we used the Wavelet-ARIMA algorithm proposed in [43] and developed
by Aminghafari and Poggi [45].

The non-decimated Haar algorithm employs the filter h = (1/2, 1/2), leading to the
following equation for the reconstruction of the value XN+1 is

XN+1 = cJ,N+1 +
J

∑
j=1

wj,N+1 (3)

where cJ,N+1 and wj,N+1 are the approximation and detail coefficients in the NDWT.
Thus, for predicting XN+1, it is necessary to estimate the non-decimated (NDW) cJ,N+1

and wj,N+1, using the equations [45]

ŵj,N+1 =

rj

∑
k=1

aj,kwj,2j(k−1), ĉj,N+1 =
rJ+1

∑
k=1

aJ+1,kcJ,N−2J(k−1). (4)

Therefore, the prediction equation will be written as

X̂N+1 = DT
Nα (5)
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where

• T signifies the transposition,
• DN is formed by the dyadic lagged coefficients contained in the vectors w and cT,
• α is the vector of the unknown parameters, determined as

α̂N = arg min
α

rJ+1

∑
k=1

(Xk − DT
k−1α)

2
, (6)

and M is a fixed integer.

Two other vectors are involved in finding the solution of (5):

• c, which contains the coefficients cJ,N+1,
• w, which contains the weights in the linear combination of the actual versus the

previous variables’ values.
• Therefore, the procedure has the following stages [45].
• Perform the NDTW using Haar wavelets.
• For a sequence from a time series (X1, ..., XN) at a level J, the output will be formed of

(J + 1) vectors of size N.
• Build the Equation (5).
• For this aim, at all the decomposition levels, the maximum number of lagged predictor

variables is set. Denote them by (r(1)j , . . . , r(1)J ). r(1)j (j = 1, . . . , J) is defined to be “the
order of the AR process fitted on the dyadically downsampled version of Wj (or CJ)
starting from the last coefficient”.

• Estimate Equation (5) utilizing the stepwise regression that links Xt and Dt−1.
• Compute the prediction using Equation (5).

2.2.4. Wavelet-ANN Model

A wavelet-artificial neural network (WANN) is obtained by combining a feed-forward
neural network with the wavelet model. Given that WANNs permit an efficient selection
of the network input, can capture the nonlinearities, and converge to the global mini-
mum objective function, they have been successfully utilized in various applications from
atmospheric sciences, hydrology, and economics for short and long term forecast [46–52].

In this study, a WANN with the following layers has been utilized (Figure 4) [31].
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• Input layer, where the regressors’ values (lagged variables) are introduced.
• Hidden layer, formed by wavelons, instead of neurons. The variables coming from

the previous layer are firstly transformed and decomposed in this layer. Then, the
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network processes separately each part, utilizing as activation functions (logistic, in
this case) elements of an orthonormal wavelet basis.

• In this study, the maximal overlap discrete wavelet transform (MODWT) and the
Morlet function have been utilized. For details, the reader may see in [31].

• Output, which estimates the recorded (target) values.

The number of parameters in the WANN from Figure 4 is the pq + 2q + 1, where p = the
lag, and q = the number of nodes in the hidden layer.

For running the algorithm, the maximum decomposition level was determined to be 6.
The number of lags was varied from 1 to 12. The best result, reported here, was obtained
with lag = 5.

3. Results

The Shapiro–Wilk and the runs test rejected the normality and randomness hypotheses,
respectively. The KPSS and Levene tests did not reject the stationarity and homoskedas-
ticity hypotheses. The autocorrelation function (ACF) chart from Figure 5 confirms the
signal’s autocorrelation.
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As the stationarity hypothesis cannot be rejected, and ACF has a decreasing damped
sinusoid form, one may search for an ARMA(p,q) model with p > q. The best model found by
applying Box–Jenkins methodology was of ARMA(3,1) type, with the coefficients (standard
errors, respectively):

ϕ1 = 2.115 (0.075), ϕ2 = −1.754 (0.103), ϕ3 = 0.581 (0.047), and θ1 = −0.648 (0.084),

AIC = 2951.47 and SCH = 2974.82.

Therefore, the models’ equation is

Xt = εt + 2.115 Xt−1 − 1.754Xt−2 + 0.581Xt−3 − 0.648εt−1 (7)

After applying the Student t-test, it was found that the coefficients are significant at
0.001. The Box–Ljung test led to the rejection of the residuals’ autocorrelation. The Shapiro–
Wilk and Levene test failed to reject the null hypotheses of normality and homoskedasticity,
respectively, for the residual series. Thus, model (7) is correct from a statistical viewpoint.

The model was used to predict 48 values. These values are plotted in Figure 6 (blue),
after the recorded ones (black), accompanied by the confidence intervals at 0.95 and 0.99
(in grey in Figure 6). The patterns of the signal and forecast are not similar, so the model
should be improved. Therefore, the GRNN was built as described in Section 2.2.2.

Figure 7 contains the plot of the values computed by the algorithm vs. those recorded.
Remark the display of the points cloud along the green line representing the ideal situation
of the superposition of the recorded and computed values, indicating a good fit.
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Figure 7. Predicted values (computed by the algorithm) vs. the recorded ones (voltage-V) (obtained
using the DTREG software).

Using the trained network, the forecast of 48 values (unknown) of the data series is
done. The pattern of subseries built by these new values is similar to that of the initial
signal (Figure 8, the red curve), confirming the model performances (discussed in the
next section).

The charts of the recorded and computed values of the signal by using the hybrid
algorithms are presented in Figure 9. Comparing Figure 9a,b, one may remark that the
Wavelet-ARIMA model generally underestimates the maximum recorded values. The
Wavelet-ANN model does not fit the first ten series values well but better fits the rest of the
data series.

Figure 10 emphasizes the best forecast quality of the Wavelet-ANN model. It contains
the chart of the computed values plotted against the recorded values. The points that have
the coordinates (actual, predicted) are situated along the first bisectrice of the coordinates
axes in both Figure 10a,b. Still, they are more dissipated in Figure 10a, corresponding to
the Wavelet-ARIMA model, than in Figure 10b, corresponding to the Wavelet-ANN model.
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The charts of the signal and forecast of the next 48 values obtained using the Wavelet-
ARIMA and Wavelet-ANN are presented in Figure 11.
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Figure 11. The signal (blue) and the forecast (red) in (a) the Wavelet-ARIMA and (b) Wavelet-ANN
model (red).

The Wavelet-ARIMA forecast series (in red, Figure 10a) is sinusoid decreasing. The
Wavelet-ANN forecast series (in red, Figure 10b) and the signal have the same shape.
Comparison of the forecast obtained by GRNN and Wavelet-ARIMA models show the
same shapes and the highest amplitude for the last signal.

4. Discussion

To compare the models’ performances, we analyze the quality indicators.
For the ARIMA(3,1) model, the mean standard error (MSE) = 2.4278 and the mean

absolute error (MAE) = 0.7747. Mean absolute predicted error (MAPE) could not be
computed because there were some values equal to zero, so the formula did not permit the
division by zero.

The indicators of the GRNN model’s quality are listed in Table 1, together with
their values.

Table 1. Indicators of the GRNN model’s quality.

Indicator Training Set Test Set

R2 98.97% 85.44%
MSE 0.150 2.312
MAE 0.133 0.474

MAPE(%) 18.423 71.577
rap 0.995 0.925

On the training set, the variation explained by the (R2) and correlation between
actual and predicted errors (rap) are very high, the mean standard error (MSE) and mean
absolute error (MAE) are small, while the mean absolute predicted error (MAPE) is 18.43%,
indicating a good behavior of the algorithm on the training set. On the test set, the values of
R2 and rap are smaller than on the training set, and MAE and MSE remain low. A significant
increase in MAPE is noticed (to 71.577%).

After using the hybrid approaches, the values computed for the goodness of fit
indicators on the test sets are

• for the Wavelet-ARIMA: R2 = 82.4829%, MAE = 0.858, MSE = 2.656, MAPE (%) = 98.81,
rap = 0.907

• for the Wavelets-ANN: R2 = 96.74%, MAE = 0.300, MSE = 0.489, MAPE (%) = 42.76,
rap = 0.984.
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Comparing the performances of the artificial intelligence-based models on the test sets
(relevant for how well the model learns the data and can use it), the best model is WANN,
no matter what indicator is considered. This is confirmed by comparing Figures 8 and 11
that show the forecast for 48 µs.

ARIMA models have been widely used in real-life problems modeling given their
ability to capture the linear dynamics of the phenomena. Still, as many processes present
nonlinear patterns, the use of ARIMA is not always the best choice (given that it assumes
the existence of linear correlation in the data series) [31]. The main advantages of ANNs
are their flexibility in modeling nonlinear features of data series, and the absence of the
constrain on the a priori specifying the model form [52]. The methods relying on the on
wavelet transform can well describe the signal’s multiscale features [51]. Combining these
algorithms will benefit all their properties.

The results of this study are consistent with the findings of other researchers that empha-
sized that the use of hybrid approaches may improve the models’ performances [31,32,51–53].

5. Conclusions

The statistical analysis of the electrical signal induced by ultrasound cavitation in
seawater showed that the signal is not random, is stationary and homoskedastic. An
ARMA model has been proposed and validated from a statistical viewpoint based on these
characteristics. As the ARMA model did not provide a good forecast of the following
48 values, alternative models have been proposed and compared to find the best alternative.
The first one—the GRNN model—learned the data well, gave good results on the test set,
and was successfully employed for forecasting the next (unknown) 48 values of the series.
The last two models were of the hybrid type.

The Wavelet—ARIMA model improved the forecast by comparison with the ARMA
one; still, R2 = 82.4829%, and MAPE = 98.81% (high enough). Considering that the lowest
the MAPE is, the better the model is, the best model was the Wavelet-ANN one (with
R2 = 96.74%, and MAPE (%) = 42.76).

The study provided for the first time such modeling and comparison for the signal
collected in seawater, in the cavitation field, using the experimental setup built by our team
and built four alternative models, the hybrid ones being able to provide good forecasts.
Similar analyses will be performed to verify that the last approach is the best one for model-
ing the signals collected in the same or different liquids (diesel, tape water, and transformer
oil) to other powers of the ultrasound generator. These liquids were selected because our
research team has published some preliminary results and until now good models for some
of them were not obtained yet. The most important feature that recommends this hybrid
model is its flexibility to capture the series’ nonlinearities. This procedure has no limitation
related to the liquid type.
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