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Abstract: A fully integrated sensor array assisted by pattern recognition algorithm has been a primary
candidate for the assessment of complex vapor mixtures based on their chemical fingerprints. Diverse
prototypes of electronic nose systems consisting of a multisensory device and a post processing
engine have been developed. However, their precision and validity in recognizing chemical vapors
are often limited by the collected database and applied classifiers. Here, we present a novel way
of preparing the database and distinguishing chemical vapor mixtures with small data acquisition
for chemical vapors and their mixtures of interest. The database for individual vapor analytes is
expanded and the one for their mixtures is prepared in the first-order approximation. Recognition of
individual target vapors of NO2, HCHO, and NH3 and their mixtures was evaluated by applying the
support vector machine (SVM) classifier in different conditions of temperature and humidity. The
suggested method demonstrated the recognition accuracy of 95.24%. The suggested method can pave
a way to analyze gas mixtures in a variety of industrial and safety applications.

Keywords: chemiresistive sensor array; identification of gas mixture; machine learning; support
vector machine (SVM); principal component analysis (PCA)

1. Introduction

Rapid and reliable detection of chemical vapors is in high demand for applications
including environmental monitoring, industrial safety, and national security [1–8]. Since air
pollutants are known to cause serious issues in public health and the environment, many ef-
forts in monitoring and analyzing air pollution have been made [9,10]. Accordingly, research
has been conducted on the development of various types of sensors, such as a novel X-ray
radiation sensor, opto-electronic noses, and electronic noses based on semiconducting metal
oxides to detect various gases in real environments [11–16]. Among them, an electronic nose
equipped with different chemical sensor elements has become the most promising candidate
due to high sensitivity, possible integration with high density, and excellent compatibility
with conventional electronics [17–25]. Despite ongoing research, discrimination of chemical
vapors in mixture remains a chronic challenge in the environmental field. The usual diffi-
culties originate from the very nature of various sensing mechanisms in different materials.
However, semiconductor-based sensors are not selective to certain target analytes [26,27].
Any sensor material may participate in reactions with a variety of different gas species,
allowing for unavoidable cross-sensitivity. Some reactions are also irreversible and poison
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the sensor, causing it to degrade in terms of sensitivity and reliability. The merit of its high
sensitivity is also compromised by the fact that the sensor reactions strongly depend on
the environmental conditions such as temperature and relative humidity [28–30], rendering
measurement reproducibility and analysis consistency inferior.

On the other hand, computing ability has become powerful enough to enable the
promise of artificial intelligence. Recent rise of interest in artificial intelligence led to
processing responses of various sensor devices to improve their fundamental deficiency in
selectivity [31–34]. Machine-learning algorithms based on support vector machine (SVM)
and artificial neural network (ANN) have been applied for making decisions or predictions
in a wide variety of applications [35–38]. Omatu et al. reported on an electronic nose system
using a neural network algorithm to identify nine different flavors of coffee and tea [39].
Mohareb et al. reported on ensemble-based SVM classifiers using an electronic nose for
quality assessment of beef fillets [40]. However, operation with a typical machine learning
algorithm requires an enormous amount of data to train the algorithm and achieve high
classification accuracy. In other words, different analytes and their mixtures in different
combinations and proportions should be tested a priori in all the possible environmental
conditions in terms of temperature and relative humidity [41–43]. This becomes a major
hurdle to realize the original idea and makes practical application almost impossible. Here,
we suggest a novel method to distinguish individual chemical vapors and even their
mixtures and demonstrate it with a fully integrated chemiresistive sensor array (ICSA). The
suggested protocol is composed of principal component analysis (PCA), artificial database
construction, and classification (SVM). Recognition of individual target vapors of NO2,
HCHO, and NH3 and their mixtures is evaluated by applying the SVM classifier in different
conditions of temperature and humidity. The suggested method demonstrates a recognition
accuracy of 95.24%. Furthermore, this method significantly reduces the required amount of
training data by using an artificially extended database for the identification of chemical
vapor mixtures with high accuracy.

2. Experimental
2.1. Chemiresistive Sensor Array

Development of an integrated chemiresistive sensor array (ICSA) has been extensively
exploited towards high performance gas sensors [44,45]. Along this line of thought, an
ICSA with 16 sensor elements was fabricated out of four metal-oxide films (In2O3, SnO2,
WO3, and TiO2) combined with three catalysts of Au, Pd, and Pt [46], as seen in Figure 1a.
To minimize the variability in device performance, sequential semiconductor fabrication
processes were applied. The Pt-interdigitated electrode (IDEs) patterns were fabricated
using photolithography and dry etching. In detail, organic or inorganic contaminations on a
Pt (200 nm)/SiO2/Si wafer are usually removed by wet chemical treatment. The photoresist-
coated Pt wafer is then prebaked to drive off excess photoresist solvent, typically at 100 ◦C
for 60 s on a hotplate. After prebaking, the photoresist is exposed to a pattern of intense light
for 25 s. Positive photoresist of the part exposed to light becomes soluble in the developer.
In etching, a plasma (dry) chemical agent removes the uppermost Pt layer of the substrate
in the areas that are not protected by the photoresist. The gap distance between electrodes
in the fabricated Pt IDEs was 5 µm. The width and thickness of the Pt layer were 40 µm
and 200 nm (Figure 1a). The metal oxide thin films (100-nm thick) of WO3, SnO2, TiO2,
and In2O3 were deposited onto predefined regions (1 mm × 1 mm) by using sequential
processes of photolithography and in situ electron-beam evaporation. After the deposition
of 3-nm-thick functionalizing layers with novel metals (Au, Pt, and Pd), the chemiresistive
sensor array (CSA) with 16 sensor elements was realized. Base pressure and applied power
for deposition were 2 × 10−6 mTorr and 50–70 kW, respectively. The deposition rate was
1.5–3.3 Å/s. After annealing at 500 ◦C for 2 h, the WO3, SnO2, TiO2, and In2O3 films
were crystallized and a 3 nm-thick metal film was agglomerated into nanoparticles (NPs),
resulting in thin films decorated with NPs on the surface. After annealing, the diameter of
self-agglomerated metal NPs on the surfaces of In2O3 and SnO2 films were about 10 nm,
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while it was about 50 nm on TiO2 and WO3. Such variation in size is attributed to the
surface energy difference between metal NPs and metal oxides, where smaller NPs have
higher surface energies. These thin films were characterized by X-ray diffraction (XRD),
revealing that the as-deposited amorphous films were crystallized to cassiterite crystal
phase with tetragonal rutile structure of SnO2, a polycrystalline anatase phase of TiO2,
monoclinic phase of WO3, and cubic bixbyite structure of In2O3. Furthermore, ICSAs were
operating at different temperatures of 150 and 200 ◦C. With this, we obtained 32 different
sensing elements because of the temperature dependence of the chemical vapor sensing
as well as the enhanced selectivity with noble metals [46–48]. The collection of sensor
responses lead to a response pattern for a specific analyte, and these patterns provide
fingerprints for different gas mixtures (Supplementary Materials Figure S1). A micro-heater
unit was placed under the substrate to thermally activate the sensors. The CSA module has
plug-and-play capability in which all the sensor elements in the CSA module underwent
an aging process (150 ◦C or 200 ◦C) for 72 h to make the sensing materials thermally stable
(Figure 1b).

Figure 1. (a) Schematic illustration of the configuration of the chemiresistive sensor array (CSA).
(b) Photographs of the upper and lower circuit boards in the CSA module with plug-and-play
capability.

2.2. Experiment Conditions

The fabricated ICSA was examined in dry air (5% or less humidity) using a chamber
with the volume of 12,800 cm3 (16 cm (W) × 16 cm (H) × 50 cm (L)). The measurement sys-
tem has an injection path where the analyte gas flow is controlled by an auto-functionalized
mass flow controller (MFC) and monitored by digital humidity and temperature sensors
(SMART SENSOR, AR837). With vapor flow changes from ambient air to target chemical
vapors and their mixtures at different concentrations, resistance variations of sensor ele-
ments in the ICSA were recorded. The vapor flow rate was controlled in high precision by
an automatic mass flow control (MFC) with a mixing chamber installed. The total flow rate
for base air and target vapors was 2000 sccm (cm3/min) [46]. A micro-heater was mounted
on the back of a printed circuit board (PCB) of ICSA, and the power consumption was
250 mW. The operation power of our CSA was about 0.87 mW/mm2 (=250 mW/(13 mm ×
22 mm)) at 200 ◦C and 0.77 mW/mm2 (=220 mW/(13 mm × 22 mm)) at 150 ◦C.

2.3. Artificial Database

We suggest a data processing protocol and demonstrate it by using the responses
obtained from the ICSA. The flow chart of this protocol is shown in Figure 2. Response
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patterns for target analytes of NO2, NH3, and HCHO vapors are prepared in the form of a
matrix. The response of the ICSA (VR) is normalized by the following equation:

VR =
VM − V0

V0
× 100 (1)

where VM is the maximum voltage and V0 is the baseline voltage [49]. The maximum
response (Vnormal) is normalized as

Vnormal =
maxVR − minVR

minVR
(2)

Figure 2. Data flow chart for identification of chemical vapor mixtures.

The normalized response and the increase or decrease in resistance provide the am-
plitude and polarity of the input matrices for PCA. The database was then expanded
assuming Gaussian distribution of the resistance in the sensing layer. One hundred data
samples were randomly generated for a single analyte vapor at a certain concentration
in the range of −2σ to +2σ (σ: standard deviation). The time to reach 90% variation in
resistance upon exposure to an analyte vapor is defined as the 90% response time. We
indicated the maximum response of sensor at a point of 90% response time. In addition, the
matrix was not automatically scaled. We performed a normalization step to scale the signal
of ICSA. The Min-Max Normalization method was used in this study (Equation (2)). Three
individual gases and four mixture gases were identified using 32 sensors. To achieve this,
the normalization process was done on the dataset, including all the responses at different
concentrations in different combinations of analyte vapors.
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In this study, the linear SVM was applied to identify individual and mixture vapors.
This classifier represented high identification accuracy for classification of vapors. However,
our suggested method is not suitable for applying to nonlinear responses. This is because
applied assumptions do not consider reactions between different chemical vapors and take
linear translations of the target responses in the principal component space. We also used
the linear SVM to identify individual and mixture vapors, which do not require any kind
of kernels. We thought the linear SVM was more robust than other classifiers, and the
obtained identification accuracy was high (~95.24%) enough for the operation. The artificial
database for gas mixtures was constructed by using the expanded database for individual
target vapors. Figure 3 shows schematics of the artificial database construction with the
expanded database for NO2, HCHO, and NH3 vapors. Finally, the artificial database for
four different vapor mixtures (NO2 + NH3, NH3 + HCHO, HCHO + NO2, and NO2 + NH3
+ HCHO) was generated by using the linear combination of the matrices for individual
target vapors. For instance, the database for the mixture of NO2 and NH3 vapors was
generated by combining the normalized maximum responses of NO2 and NH3 vapors
according to the following relation:

VNO2/NH3 = K1 · Vnormal NO2 + K2 · Vnormal NH3 (3)

where K1 and K2 are weighting factors [50]. To determine the weighting factors, the follow-
ing assumptions were made: (1) the individual vapors in mixture react independently, and
(2) the response matrices for the vapor mixtures can be described as the linear combination
of the ones for individual analytes in the first-order approximation. With these, the weight-
ing factors were determined in such a way that the linear combination of the medians of the
expanded database for individual vapor responses was translated to the obtained response
to the vapor mixtures. The obtained analytical matrix had a 300 by 32 structure for each
vapor. The artificial database was used as the training dataset for the SVM classifier.
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Figure 3. Schematics of artificial database construction for identification of chemical vapor mixtures.
(a) Measurement of sensor responses to different analyte vapors. (b) Expansion layer construction
by applying Gaussian distribution. (c) Feature definition of mixture gas by a convolution process.
(d) Minor database construction for mixture gas by a convolutional layer.

2.4. Measurements

The analyte concentration was varied by controlling the ratio between the analyte gas
and dry air. All the measurements in the identical experimental condition were repeated
three times. Typical response curves of the ICSA under exposure to NO2, NH3, and their
mixtures at 150 ◦C are shown in Figure 4a–c. The applied concentrations of NO2 and
NH3 vapors were 2, 5, and 10 ppm. The ones in their mixtures were 2/10, 5/5, and
10/2 ppm (NO2/NH3). The response curves of other individual vapors and their mixtures
at different temperatures are given in Supplementary Materials Figures S2 and S3. As seen
in Figure 4a,b, the responses in terms of amplitude and polarity are significantly different
according to target vapors.
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Figure 4. Response curves of the ICSA for (a) NO2, (b) NH3, and (c) mixtures of NO2 and NH3 in the
concentration range of 2–10 ppm at 150 ◦C.

2.5. PCA

The PCA results using the obtained responses to individual vapors and their mixtures
are shown in Figure 5a,b, where the ones for vapor mixtures (NO2 + NH3, NH3 + HCHO,
HCHO + NO2, and NO2 + NH3 + HCHO) were projected onto the space defined by those
principal components for individual vapors (Figure 5b). The features were extracted after
the PCA. The percentages of variance by PC1 and PC2 were 92.3% and 0.8%, respectively.
We note that the three individual vapors and vapor mixtures were well clustered on the
PCA plot, as shown in Figure S4. The collected feature for PCA was the amplitudes in the
response to analytes. The maximum responses of 32 sensing elements to 9 different target
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analytes were obtained. The PCA result using the obtained responses to individual vapors
is shown in Figure 5a. We determined the number of main components by considering
the percentage of variance and identification accuracy. The data matrix has 32 columns
in structure, and accordingly, 32 PCs were obtained in PCA. The percentage of variance
indicating the loss of information in converting the data into the principal component
space was determined by the calculation of eigenvalues. From the calculation, it turned
out that PC1 and PC2 determines 93.1% of the response pattern. Therefore, we decided
to use PC1 and PC2 for the suggested protocol. When we confirmed the identification
accuracy using higher order PCs, the identification accuracy was not improved. The matrix
for each analyte vapor at a certain concentration has 100 by 32 elements in structure after
the data expansion process. Since we worked with the data at three different concentrations
and tried to differentiate 7 cases (3 individual analyte vapors and 4 different combinations
of them), this makes it a 2100 by 32 matrix structure. All the results for mixtures were
projected onto the same principal component space [18,46].

Figure 5. PCA plots for (a) individual vapors (NO2, NH3 and HCHO) and (b) their mixtures (NO2 +
HCHO, NO2 + NH3, HCHO + NH3, and HCHO + NO2 + NH3).
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3. Results and Discussion
3.1. Response of Vapor Mixtures

To evaluate the sensing capability of the ICSA, it was placed in a designed cham-
ber with the volume of 12,800 cm3. The relative humidity and temperature conditions
were consistently monitored through the entire measurements using a thermohydrom-
eter (Dwyer, Model RP2 Thermo-Hygrometer Probe). The total vapor flow was kept at
2000 sccm cm3/min by using a programmable MFC. The sensing capability of the ICSA was
evaluated under exposure to different chemical vapors, including 10 ppm NH3, 10 ppm
NO2, and NH3 + NO2 (1:1). The obtained responses were normalized as R = (Vgas −
V0)/V0 × 100 (%) for oxidizing gases and R = (V0 − Vgas)/V0 × 100 (%) for reducing gases,
where V0 and Vgas denote the initial voltage of the sensor in air and the obtained voltage
in response to the analyte. The ICSA exhibited outstanding sensitivity to NO2 vapor. The
theoretical detection limit for NO2 and NH3 + NO2 (except for Ch 1 and 2) were evaluated
to be in the range of 609–896 ppt and 30.4–109 ppb via linear extrapolation. The result is
that the response decreases due to mutual interference between oxidizing and reducing
vapor and is more dependent on NO2 vapor. This was attributed to the dominant presence
of an oxidizing agent (NO2

−) at a relatively low temperature [46].

3.2. Identification of Vapor Mixtures

In this study, expanding the dataset was required to obtain sufficient resources to
enhance the accuracy of identification of analytes in the mixture. Each class had only
nine data points and we constructed three test datasets, three training datasets, and three
validation datasets by an extended dataset method. The expanded matrices for NO2, NH3,
and HCHO are plotted on the PCA plane shown in Figure 6, where the expanded database
(marked in hollow) is overlaid. The expanded database for the individual vapors is well
matched to the experimentally obtained values on the PCA plot. The artificial database for
vapor mixtures is constructed by the database expansion and their combinations assuming
Gaussian distribution of sensor responses and chemical reactions in the linear regime as the
first-order approximation. The constructed artificial database of vapor mixtures is marked
on the same principal component (PC) plane as shown in Figure 7.

Figure 6. PCA plot of the expanded database for individual vapors.
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Figure 7. PCA plot of experimentally obtained data and the artificial database for vapor mixtures.

Recognition of individual target vapors of NO2, HCHO, and NH3 and their mixtures
was evaluated by applying the SVM classifier which was trained by the previously obtained
artificial database [51]. The total accuracy was 95.24%. As demonstrated, the vapor mixture
of NO2, HCHO, and NH3 was recognized with good accuracy, although the response
patterns obtained in ICSA were quite similar (Supplementary Materials Figure S3). The
number of test sets and their identification accuracy under the suggested protocol is charted
in the Table S1. Individual vapors were identified with 100% accuracy, but mixture vapors
were 91.67%. Identification for mixture vapors involving HCHO vapor was lower accuracy
than others.

This high level of recognition ability is attributed to the artificially extended database
and the applied classifier for the given task. That is, the artificial database apparently
covers the cases which were not experimentally tested out, and the hyperplane defined
by the SVM improves the accuracy of the identification [51]. The suggested protocol was
also shown to be robust against the drift of the response baseline. Although the applied
assumptions were a bit primitive in the sense that they ignored the nonlinear nature of
chemical vapor reactions in mixture, the suggested protocol demonstrated the recognition
of individual vapors and their mixtures with a high level of accuracy. We believe that this
can be the first step towards identification of vapor analytes in mixture.

4. Conclusions

In summary, we designed a sensor array comprising a fabricated CSA with operat-
ing circuitry and demonstrated identification of vapor analytes in mixture. With its high
sensing ability, we suggested a machine-learning-assisted recognition of chemical vapor
mixtures. The obtained database for individual vapors was expanded by assuming Gaus-
sian distribution of chemical vapor responses. The artificial database was then constructed
for vapor mixtures in the first-order approximation. The SVM classifier was employed to
evaluate the recognition accuracy for chemical vapors using the artificial database (720 train
data, 180 validation data). The suggested protocol recognized target analytes and their
mixtures with an accuracy of 95.24%, demonstrating a novel strategy towards ultimate
sensing of gas mixtures.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22031169/s1, Table S1: Identification accuracy of individual
vapors and mixture vapors; Figure S1: Concept of data processing model to classify the mixture
vapors based on database of individual vapors using by pattern recognition; Figure S2: Experimental

https://www.mdpi.com/article/10.3390/s22031169/s1
https://www.mdpi.com/article/10.3390/s22031169/s1
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response curve of metal oxide sensor array for (a,b) NO2, (c,d) NH3, and (e,f) HCHO vapors in 150
and 200 ◦C; Figure S3: Experimental response curve of metal oxide sensor array for (a,b) NO2 + NH3,
(c,d) HCHO + NH3, (e,f) NO2 + HCHO and (g,h) HCHO + NO2 + NH3 vapors in 150 and 200 ◦C;
Figure S4: Two dimensional PCA results of mixture vapors (NO2 +HCHO, NO2 + NH3, HCHO +
NH3, and HCHO + NO2 + NH3), which are projected to PC plane of individual vapors. In the inset
area, all of vapors can be well classified.
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