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Abstract: The problem surrounding convolutional neural network robustness and noise immunity is
currently of great interest. In this paper, we propose a technique that involves robustness estimation
and stability improvement. We also examined the noise immunity of convolutional neural networks
and estimated the influence of uncertainty in the training and testing datasets on recognition proba-
bility. For this purpose, we estimated the recognition accuracies of multiple datasets with different
uncertainties; we analyzed these data and provided the dependence of recognition accuracy on the
training dataset uncertainty. We hypothesized and proved the existence of an optimal (in terms
of recognition accuracy) amount of uncertainty in the training data for neural networks working
with undefined uncertainty data. We have shown that the determination of this optimum can be
performed using statistical modeling. Adding an optimal amount of uncertainty (noise of some kind)
to the training dataset can be used to improve the overall recognition quality and noise immunity of
convolutional neural networks.

Keywords: neural networks; pattern recognition; noise in imaging systems; robustness; training
dataset; noise immunity

1. Introduction

Deep learning and big data analytics are, nowadays, important fields in computational
science. Various organizations face the necessity of bringing these areas into their work
processes to keep up with current trends. Deep learning neural networks can identify
the most complex patterns in the data quickly and efficiently at high levels of abstraction,
while those patterns are not observed in the first approximation. Information from machine
learning applications can deepen the understanding of many hidden processes, as well
as solve problems of prediction and automation in many areas of life, such as speech
recognition [1], computer vision [2,3], and data visualization [4].

Automatic pattern and image recognition technologies have the widest applications
in image processing. The use of convolutional neural networks (CNNs) increases its
success for image processing, character and handwritten text recognition [5], license plate
recognition [6], human, plant, and animal pathology detection [7,8], face and emotion
recognition [9,10], distinguishing objects of interest in a video stream [11], etc.

Most publications deal with new datasets from various problem domains [7,8,12].
Many publications are concerned with neural network topology and learning technique
improvements [13]. However, there are many unsolved problems in image recognition
tasks. First, the recognition accuracy is sometimes poor or insufficient. False diagnoses made by
a neural network, while not being a big problem nowadays (since the data obtained from
the network are verified by the operator), can be a barrier toward expanding the impact
of automatic recognition algorithms in the future. The same might be said for automatic
driving systems, such as automobile autopilots.

Second, the results of neural networks are affected by data distortions, such as adver-
sarial attacks [14,15]. Figure 1 shows an example of this kind of attack: an image of a dog
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with added (invisible to the human eye) noise is recognized by the network as an image of
a submarine with a large coefficient of confidence. Thus, images with different amounts of
distortions are recognized with different accuracies.
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Recent publication analyses showed that robustness studies are performed only in 
terms of precision–recall curve plotting [16]. Some publications deal with the estimation 
of adversarial attack success rates rather than with increasing noise immunity of the neu-
ral networks [17]. Recent works concerning uncertainty quantifications in neural net-
works have not provided solutions for increasing neural network noise immunity [18]. A 
noise immunity study of a neural network is still “out of consideration”. However, such 
an investigation seems to be the key to solve adversarial attack problems and to improve 
the robustness and correctness of recognition of various data by neural networks. 

The most important aspect in the neural network application is training, and its suc-
cess mainly depends on the correct training data representation. Complex and large neu-
ral networks trained on poorly represented data, in addition to their high resource con-
sumptions, turn out to be much poorer than simple networks that are trained on correct 
and well-organized data [19,20]. As a result, feature construction—the correct feature gen-
eration process (for the training data)—is the most important part of machine learning. 

Correct and deep feature construction involves the potential of the CNN’s generali-
zation ability, which can (and should) be utilized to withstand noise added to the recog-
nized data and even adversarial attacks. Noise-immune CNN should gather the infor-
mation from its layers, where the noise influence on the detectable features is quite low. 
For example, to fight high-frequency noise, the CNN should utilize the features obtained 
in its deep convolutional layers, where input data are averaged throughout large regions 
of the original image. We suppose that training CNNs using noisy data can help to im-
prove their generalization abilities and capabilities of withstanding adversarial attacks. 

In our study, we strived to use an easy-to-understand example to investigate the neu-
ral network behavior without loss of generality. The first example was chosen for its clar-
ity: the amount of noise (here represented as point location uncertainty) can be estimated 
visually. Images with low point density (Figure 2) are convenient to distinguish distor-
tions from the object shape. 
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Third, there is no universal approach to estimate the optimality and robustness of a trained
neural network. It cannot be predicted in advance how the trained neural network will
behave when new data are obtained, and we cannot be unequivocally sure that the network
will correctly recognize new data, especially if statistical characteristics of new data differ
from those of the data used for training.

Recent publication analyses showed that robustness studies are performed only in
terms of precision–recall curve plotting [16]. Some publications deal with the estimation of
adversarial attack success rates rather than with increasing noise immunity of the neural
networks [17]. Recent works concerning uncertainty quantifications in neural networks
have not provided solutions for increasing neural network noise immunity [18]. A noise
immunity study of a neural network is still “out of consideration”. However, such an
investigation seems to be the key to solve adversarial attack problems and to improve the
robustness and correctness of recognition of various data by neural networks.

The most important aspect in the neural network application is training, and its
success mainly depends on the correct training data representation. Complex and large
neural networks trained on poorly represented data, in addition to their high resource
consumptions, turn out to be much poorer than simple networks that are trained on correct
and well-organized data [19,20]. As a result, feature construction—the correct feature
generation process (for the training data)—is the most important part of machine learning.

Correct and deep feature construction involves the potential of the CNN’s generaliza-
tion ability, which can (and should) be utilized to withstand noise added to the recognized
data and even adversarial attacks. Noise-immune CNN should gather the information
from its layers, where the noise influence on the detectable features is quite low. For
example, to fight high-frequency noise, the CNN should utilize the features obtained in its
deep convolutional layers, where input data are averaged throughout large regions of the
original image. We suppose that training CNNs using noisy data can help to improve their
generalization abilities and capabilities of withstanding adversarial attacks.

In our study, we strived to use an easy-to-understand example to investigate the neural
network behavior without loss of generality. The first example was chosen for its clarity: the
amount of noise (here represented as point location uncertainty) can be estimated visually.
Images with low point density (Figure 2) are convenient to distinguish distortions from the
object shape.
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The noise influence on low-density image recognition was also researched in [22]. In both 
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results was not investigated. The parameter defining the uncertainty measure can be de-
scribed as U = d/a, where d—variance and a—linear size of the figure (Figure 2). Further, 
we consider the training dataset uncertainty as UTR and the testing dataset uncertainty as 
UTS. In other tasks, such as noisy image recognition shown in Figure 1, U can be described 
as 
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where Inoise is the average intensity of noise and Iinfo is the average intensity (size) of the 
meaningful part of the recognized image [17]. In both cases, uncertainty U describes the 
ratio of the noisy component of the image to the informative component of the image. The 
addition of noise of any matter and level can drastically decrease the performance of 
recognition for a neural network trained on an ideal dataset, so the robustness study 
should be conducted to avoid this effect by altering the training dataset properties. 

The low point density image recognition tasks have already been researched by the 
authors in a series of papers dedicated to the estimation and prediction of behavior of 
mobile communication network subscriber groups and complex clusters by analyzing tel-
etraffic and geolocation data [23–25]. The locations of subscribers in groups can be con-
sidered as sparsely located points on images. Convolutional neural networks have shown 
their effectiveness in solving this task [26], but the analysis and justification of the applied 
method’s stability on the initial data uncertainty have not been conducted so far. In [23], 
the mathematical model describing the subscribers’ cluster shapes was implemented, and 
it was shown that typical cluster shapes, representing images with low point density, can 
also be automatically classified by convolutional neural networks. 

The exhaustive characteristics of the proposed method stability have not been ob-
tained so far, but there is a good basis to suppose that different uncertainties in datasets 
can significantly distort the forms, representing subscriber groups, and complicate the 

Figure 2. An example of the low-density image.

Figure 2 shows an example of the low-density image. The ideal figure is an ellipse; one
can see the deviations of point placements from the perfect ellipse. These deviations are
considered as noise or uncertainty. In this paper, we analyze the low-point density image
recognition accuracy as a function of the amount of point location uncertainty (further:
uncertainty) in the training and test datasets. We also define a way to determine the optimal
training parameters.

The research method consists in generating a dataset with pseudo-random low-density
point images with different uncertainties and then analyzing the recognition accuracy of
these datasets by a trained convolutional neural network, as well as determining the
optimal dataset parameters for convolutional neural network training to obtain the best
recognition accuracy results.

Robustness estimation of low-density image recognition was investigated in [21]. The
robustness study was performed in application to signature verification and resulted in
obtaining the miss probability vs. false alarm probability charts with fixed uncertainty.
The noise influence on low-density image recognition was also researched in [22]. In both
papers, the influence of the training and testing dataset uncertainty on the recognition
results was not investigated. The parameter defining the uncertainty measure can be
described as U = d/a, where d—variance and a—linear size of the figure (Figure 2). Further,
we consider the training dataset uncertainty as UTR and the testing dataset uncertainty
as UTS. In other tasks, such as noisy image recognition shown in Figure 1, U can be
described as

U = Inoise/Iinfo, (1)

where Inoise is the average intensity of noise and Iinfo is the average intensity (size) of the
meaningful part of the recognized image [17]. In both cases, uncertainty U describes the
ratio of the noisy component of the image to the informative component of the image.
The addition of noise of any matter and level can drastically decrease the performance
of recognition for a neural network trained on an ideal dataset, so the robustness study
should be conducted to avoid this effect by altering the training dataset properties.

The low point density image recognition tasks have already been researched by the
authors in a series of papers dedicated to the estimation and prediction of behavior of
mobile communication network subscriber groups and complex clusters by analyzing
teletraffic and geolocation data [23–25]. The locations of subscribers in groups can be
considered as sparsely located points on images. Convolutional neural networks have
shown their effectiveness in solving this task [26], but the analysis and justification of
the applied method’s stability on the initial data uncertainty have not been conducted
so far. In [23], the mathematical model describing the subscribers’ cluster shapes was
implemented, and it was shown that typical cluster shapes, representing images with low
point density, can also be automatically classified by convolutional neural networks.

The exhaustive characteristics of the proposed method stability have not been ob-
tained so far, but there is a good basis to suppose that different uncertainties in datasets can
significantly distort the forms, representing subscriber groups, and complicate the recog-
nition of these forms. Thus, the evaluation and optimization of the convolutional neural
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network robustness in solving the recognition tasks require specific statistical modeling.
This task presents a great theoretical interest, since the results of this paper can be applied
to all fields of machine learning—the work describes a largely simplified model, thereby
summarizing its conclusions for most cases solved by neural networks and other machine
learning models.

2. Research Plan

In a convolutional neural network, the overall supervised learning and inference
system structure is as shown in Figure 3.
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Figure 3. Common structure of supervised learning and inference system.

As stated before, the optimization of the neural network itself, without taking the
training dataset influence into account, will generally not provide an exhaustive result
and will only allow improving the behavior of the system in some cases. Although the
deepening of a neural network (generally, but not applicable in this work because of the
simplicity of images, which will be shown further) leads to a better ability of this network
to detect and generalize the hidden features [26–28], but also creates many problems, such
as network resource consumption increase, vanishing gradients problem, etc. Optimization
must be performed, taking the properties of all “training dataset-processing module-testing
dataset” system components into account.

A widespread traditional approach involves obtaining the fixed test dataset recognition
accuracy by a network trained on a fixed training dataset with a given uncertainty U0.
This accuracy can be described as a single number, a scalar P0. Accuracy P0 is described
as follows:

P0 =
Mcorrect

Mtotal
, (2)

where Mcorrect is the number of correctly recognized items in the testing dataset and Mtotal
is a total number of items in the testing dataset.

This scalar approach only allows estimating the local properties of the learning-
recognition system, but it does not allow estimating the behavior of this system at different
data uncertainties. We propose a deeper vector and matrix approach to evaluate the
network stability and robustness, which includes the following two sequential steps:

(1) Obtaining an array of test dataset recognition accuracies P at various test dataset
uncertainties UTS with a fixed training dataset uncertainty UTR—vector P(UTS).

(2) Obtaining a two-dimensional array of testing dataset recognition accuracies P,
depending on their uncertainties and on training dataset uncertainties UTR at the same
time—matrix P(UTR; UTS).

Thus, there is an increase in the informativity concerning learning-recognition system
robustness and optimality estimation at each following step. With known P(UTR; UTS), we
can obtain P(UTS) and P0:

P(UTS) =
1

NTR
· ∑

UTR

P(UTR; UTS); (3)

P0 =
1

NTS
· ∑

UTS

P(UTS), (4)

where NTR is the amount of various learning dataset uncertainties UTR, NTS is the amount
of various testing dataset uncertainties UTS.
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A convenient image experiment model was chosen to evaluate the external specifica-
tions of the learning and inference system. The mathematical model described in paper [23]
allows us to automatically generate the datasets used for convolutional neural network
training and testing, and it also allows us to set various uncertainty parameters (for exam-
ple, the point position offset relative to the shape vector model (Figure 4). This fact allows
evaluating the convolutional neural network stability to the changing dataset uncertainty
parameters and to evaluate the neural network characteristics in the conditions of the
factors, increasing the input data distortions. This fact allows evaluating the convolutional
neural network stability to the changing dataset uncertainty parameters and evaluating the
neural network characteristics in the conditions of the presence of the factors, increasing
the input data distortions.
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To evaluate the trained neural network noise immunity characteristics in paper [23],
we generated 200 datasets with different uncertainties (Figure 5).
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Figure 5. Examples of generated images with various distortions (uncertainties).

As one can see in Figure 5, the uncertainty of the coordinates of individual points
distorts the image, but the common shapes retain their characteristic features.

3. Image Generation and Distortion Model

Figure 6 shows our way of offset implementation—as the uncertainty increases, the
images are distorted more strongly. Figure 4 shows the result of image generation. The
result of the modeling is a set of images with a resolution of 256 × 256 pixels. This
image generation model is based on its interpretation ease; research results in the future
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can be generalized toward a wider class of tasks. The chosen resolution is sufficient to
provide necessary accuracy in the representation of distorted images without affecting
the convolutional neural network speed and complexity and the array size. The resulting
image generation and distortion model can be described as follows (Figure 6):

1. Creating a shape vector model with uniformly distributed points (the number of
points is random and distributed uniformly in some range).

2. Adding (to every point) the individual position offset described with a Gaussian
random distribution (the variance of the distribution sets the amount of uncertainty).
The Gaussian random distribution is well-suited to describe the uncertainty that
occurs due to a set of different reasons. The uncertainty is measured relative to the
shape vector model size. For example, an uncertainty value of 0.1 relative units says
that the position of points may vary within 0.1 of the maximum linear size of the
figure.

3. The resulting figure is rotated at a random angle.
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4. Structure of Neural Network

This architecture is one of the simplest and popular [29]. The convolutional network
consists of alternating convolutional and subsampling layers (Figure 7), and the training
process consists of repeatedly presenting a training dataset to the network (each iteration is
called an epoch) and correcting the synaptic weights of the network at each iteration. When
the synaptic weights stabilize, the mean error on the whole training set is minimized, the
network can be considered trained. Images obtained from the image generation module
merged to create the training dataset.

Sensors 2022, 22, 1241 6 of 16 
 

 

3. Image Generation and Distortion Model 
Figure 6 shows our way of offset implementation—as the uncertainty increases, the 

images are distorted more strongly. Figure 4 shows the result of image generation. The 
result of the modeling is a set of images with a resolution of 256 × 256 pixels. This image 
generation model is based on its interpretation ease; research results in the future can be 
generalized toward a wider class of tasks. The chosen resolution is sufficient to provide 
necessary accuracy in the representation of distorted images without affecting the convo-
lutional neural network speed and complexity and the array size. The resulting image 
generation and distortion model can be described as follows (Figure 6): 
1. Creating a shape vector model with uniformly distributed points (the number of 

points is random and distributed uniformly in some range). 
2. Adding (to every point) the individual position offset described with a Gaussian ran-

dom distribution (the variance of the distribution sets the amount of uncertainty). 
The Gaussian random distribution is well-suited to describe the uncertainty that oc-
curs due to a set of different reasons. The uncertainty is measured relative to the 
shape vector model size. For example, an uncertainty value of 0.1 relative units says 
that the position of points may vary within 0.1 of the maximum linear size of the 
figure. 

3. The resulting figure is rotated at a random angle. 

 
Figure 6. Image generation. 

4. Structure of Neural Network 
This architecture is one of the simplest and popular [29]. The convolutional network 

consists of alternating convolutional and subsampling layers (Figure 7), and the training 
process consists of repeatedly presenting a training dataset to the network (each iteration 
is called an epoch) and correcting the synaptic weights of the network at each iteration. 
When the synaptic weights stabilize, the mean error on the whole training set is mini-
mized, the network can be considered trained. Images obtained from the image genera-
tion module merged to create the training dataset. 

 
Figure 7. Structure of CNN. 

5. Estimation of the Recognition Quality Dependence on the Amount of Uncertainty 
First, we used a neural network to recognize each testing dataset with its amount of 

uncertainty UTS, which allowed us to determine the dependence of the recognition accu-
racy on uncertainty in the testing dataset P(UTS). 

Figure 7. Structure of CNN.

5. Estimation of the Recognition Quality Dependence on the Amount of Uncertainty

First, we used a neural network to recognize each testing dataset with its amount
of uncertainty UTS, which allowed us to determine the dependence of the recognition
accuracy on uncertainty in the testing dataset P(UTS).

To obtain more information, we trained two independent CNNs with identical struc-
tures on two training datasets, with two different amounts of uncertainty: UTR = 0 and
UTR = [0 . . . 0.025]. The hyperparameters remained unchanged. Separate datasets with
image sequence randomizations were created for each experiment. The rule for dataset
generation is described in [23]. Initial weights of CNNs were randomized as run-to-run.
Trained CNNs were used for the recognition of separately generated datasets containing
images with various uncertainties UTS. All recognition probabilities P obtained in these
series of simulations were averaged over all series of experiments with fixed UTS.
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As a result, two arrays of recognition accuracies, as functions of testing dataset uncer-
tainty P(UTS), were obtained. The results of this experiment are summarized in the graph
shown in Figure 8.
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obtained by a network trained with uncertainty UTR = 0 and UTR = (0..0.025).

The comparison of two graphs allowed us to draw three main conclusions:

1. At UTR = 0 the accuracy curve is monotonous. It confirms the consistency and
robustness of the chosen model.

2. At UTR = (0 . . . 0.025) the accuracy curve is “no more” monotonous; it shows a
small drop of accuracy below UTS = 0.01. This phenomenon shows that changing
the uncertainty proportions in the training dataset may affect the recognition of
ideal images.

3. The maximum accuracy is achieved at UTR = 0 and UTS = 0, but the integral (overall)
accuracy at all considered values of UTS is achieved at UTR = (0 . . . 0.025). This
phenomenon can be explained by the limited ability of the neural network, trained
only on perfect images without uncertainty, to generalize the features presented in
the distorted examples with uncertainty.

It is well known that the characteristics of the training dataset strongly affect the
neural network training quality and the accuracies of their future new dataset recognition
tasks [30]. To optimize the convolutional neural network training (to discover the optimal
training dataset parameters to improve the recognition quality of images with different
uncertainties) in this paper, we conducted experiments by training the convolutional neural
network using datasets with various amounts of uncertainty. From the graphs shown in
Figures 7 and 8, we cannot make unequivocal conclusions about training optimality. In
our research, we conducted more training experiments, thereby “unfolding” the results
in a new dimension (amount of uncertainty in the training dataset). Figure 9 shows the
dependencies of recognition accuracy on the amount of uncertainty UTS, obtained by the
networks trained on datasets with UTR, varying from 0 to 0.125 in increments of 0.025,
shown in one graph for clarity.
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Figure 9 shows that the maximum recognition accuracy is achieved at UTS ≤ UTR.
Moreover, an analysis of the graphs in Figure 9 shows that for UTR ≥ 0.025, the accuracy
graphs change their shapes from monotonic to non-monotonic, indicating that the training
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is not optimal and is non-robust. The dependence of P(UTS) should be monotonous,
dP/dUTS ≤ 0 due to the fall of the meaningful information quantity with rising uncertainty.
This rule may be used as the criterion for training correctness and robustness.

6. Evaluating the Dependence of Recognition Quality on Uncertainties in Testing (UTS)
and Training (UTR) Datasets

The results obtained at this stage (presented in the graphs in Figure 9) prompted us
to conduct comprehensive research on the network behaviors under changing training
dataset uncertainty UTR. For a more detailed analysis of the image recognition accuracy,
we generated a manifold of training datasets with different uncertainties UTR i = di/a.
Individual copies of the convolutional neural network shown in Figure 7 were trained, and
their weights were obtained for each training dataset. Then, each trained network was
made to recognize each test dataset with different uncertainties UTS j = dj/a. It allowed
us to obtain a two-dimensional array (matrix) of recognition accuracy, depending on the
training and testing dataset uncertainties P = P(UTR; UTS). The resulting recognition
accuracy matrix contains complete information about the external training-recognition
system specifications and can be used to assess the system consistency and robustness
(Figure 10).
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uncertainties UTR and UTS.

As one can see in Figure 10, the network better recognizes data with the same or a lower
uncertainty, which was used in the training dataset, which confirms the correctness of the
training because the network better recognizes data with similar statistical characteristics
than those used during training. The recognition accuracy achieved by the network trained
by the dataset with high UTR drops on data with low UTS; it is caused by changing
proportions of meaningful and noisy data proportions during training. The “ripple” that
can be seen in the graph is an effect of the limited dataset and should be considered a
statistical inaccuracy. Since each recognition system in real life has its minimum accuracy
requirements [31], it is necessary to analyze the recognition accuracy for different values of
the minimum recognition accuracy thresholds.

7. Cumulative Recognition Accuracy at Different Thresholds

In practical tasks solved by neural networks, it is often not necessary to recog-
nize data with extremely high distortions. Moreover, there are often minimal classifi-
cation/recognition accuracy requirements to the developed solutions that use neural net-
works. Often, in practice, there is a necessity to gain a high enough “certainty” of the
system. To obtain more valuable results, we selected areas that included the values of
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the testing dataset uncertainty with a recognition accuracy higher than Pthr, in which the
recognition accuracy was higher than the selected thresholds, which allowed estimating the
acceptable coordinate uncertainties to provide the necessary recognition accuracy. Figure 11
shows the area that included the values of the testing dataset uncertainty UTS that provided
recognition accuracy Pthr higher than 90%.
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The highlighted area in Figure 11 is calculated as

Q(Pthr) =
UTS=Umax

TS ,P≥Pthr

∑
UTS=Umin

TS ,P≥Pthr

P(UTS). (5)

The task of determining the optimal training dataset parameters to obtain the required
recognition accuracy above threshold Pthr arises. For each network trained on datasets with
different uncertainties, we obtained the integral recognition accuracy values Q at different
thresholds:

Q(UTR; Pthr) =
UTS=Umax

TS ,P≥Pthr

∑
UTS=Umin

TS ,P≥Pthr

P(UTR; UTS). (6)

In this case, Q is an integral value of the classification accuracy for all test datasets
(with all uncertainties), for which the recognition accuracy exceeded threshold P ≥ Pthr.
The obtained data are summarized in the graph shown in Figure 12 below.
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and training dataset uncertainty UTR.

This graph represents the integral (overall) average rate of correct recognition for data
giving the recognition probability greater than Pthr, depending on Pthr and training dataset
uncertainty UTR. New data recognized with accuracies lower than the required Pthr were
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not counted. The colors in the graph show areas with identical mean recognition accuracies
for all P > Pthr. There is always an optimal training dataset uncertainty UTR, depending
on the lower threshold of the required recognition accuracy.

Using Figure 12, one can determine the optimal training dataset uncertainty UTR
needed to achieve maximal integral recognition accuracy Q for all data with local recogni-
tion probability exceeding the threshold P ≥ Pthr. It can be illustrated in Figure 13.
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Figure 13. Dependence of the integral recognition accuracy Q on training dataset uncertainty UTR for
various Pthr and optimal values of training dataset uncertainty UTR for different recognition accuracy
thresholds Pthr.

Assuming that the optimal training dataset at the required threshold of the minimum
classification accuracy is the dataset that gives the highest value of integral classification
accuracy Q, the graph in Figure 13 is convenient for determining the optimal training
dataset uncertainty UTR. If we analyze the dependence of the integral recognition accuracy
Q on the training dataset uncertainty UTR at a fixed threshold Pthr, we obtain a graph with
a clear maximum, the position of which will indicate the optimal value of training dataset
uncertainty UTR (Figure 13, Qmax for various Pthr are shown with red dots). An analysis of
Figure 13 allows us to conclude that training the network with optimal UTR for fixed Pthr
significantly increases the integral recognition accuracy compared to training the network
with an ideal dataset with UTR = 0. For example, for Pthr = 0.9, Qmax exceeds Q0 by 94%
(Qmax = 0.62 is obtained at UTR = 0.068 and Q0 = 0.32 is obtained at UTR = 0).

8. Noisy Images Recognition

To generalize the results of this study, we conducted a simulation with different types
of images and noise using the same CNN structure and the same approach involving an
analysis of P(UTR; UTS) dependence. The examples of images are shown in Figure 14. We
added white Gaussian noise with mean µ = 0 and various standard deviations σ to the
images to generate separate datasets for training and recognition. The uncertainty U is
therefore defined via (1), where Inoise = σ.
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Figure 14. Examples of images with various amounts of noise added.

We used a convolutional neural network identical to the one described before to solve
the noisy image classification task. Five datasets for training were generated. The training
dataset parameters are described below:

(1) The first dataset had UTR = 0 for all images (no noise was added).
(2) The second dataset was divided into three parts containing equal numbers of im-

ages; the first part had UTR = 0, the second part had UTR = 0.04, the third part had
UTR = 0.08.

(3) The third dataset was divided into three parts containing equal numbers of images; the
first part had UTR = 0, the second part had UTR = 0.12, the third part had UTR = 0.16.

(4) The fourth dataset was divided into three parts containing equal numbers of images;
the first part had UTR = 0, the second part had UTR = 0.2, the third part had UTR = 0.4.

(5) The fifth dataset was divided into three parts containing equal numbers of images;
the first part had UTR = 0, the second part had UTR = 0.4, the third part had UTR = 0.8.

Thus, four of five datasets had various amounts of noise added to the original images.
Five independent CNNs with identical structures were trained using five datasets

described above. The hyperparameters remained unchanged. Separate datasets with image
sequence randomizations were created for each experiment. Initial weights of CNNs were
randomized run-to-run. Trained CNNs were used for recognition of separately generated
testing datasets containing images with various uncertainty values UTS. Testing datasets
had homogenous structures: all images in each dataset had the same amount of additional
noise, giving us fixed UTS for the whole dataset. All recognition probabilities P obtained in
these series of simulations were averaged over all series of experiments with fixed UTS.

The simulation results are shown in Figure 15.
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ent types of images and noise/distortions using the same CNN structure and the same 

Figure 15. Dependence of the recognition accuracy on the amount of testing dataset uncertainty UTS,
obtained by five CNNs trained with various uncertainties UTR shown in the image.

The results shown in Figures 15 and 16 allow us to state that moderate training dataset
uncertainty UTR should be optimal for recognition of noisy images with high threshold
recognition probability Pthr. For the current example, the optimal training dataset is the
second one, having UTR = {0; 0.04; 0.08} for Pthr > 0.87. A further increase of UTR leads to
the fall of integral classification accuracy for high Pthr. This result allows us to generalize
the confirmation of existence of optimal training dataset uncertainty for these types of data.
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9. Additional Types of Distortion

To check the correctness of our findings, we conducted a series of experiments with
various types of image distortions. We conducted these series of simulations with different
types of images and noise/distortions using the same CNN structure and the same ap-
proach, involving analysis of P(UTR; UTS) dependence. The examples of images are shown
in Figure 17.
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The simulation results are shown in Figures 18–20. For salt and pepper noise, the
uncertainty was calculated using Formula (1), where Inoise is a number of “noise” pixels and
Iinfo is the total number of pixels in the image. For Gaussian and motion blur, uncertainty
was calculated as follows:

U = Skernel/Simage, (7)

where Skernel is the size of Gaussian and motion filter kernels and Simage is the size of
the image.
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obtained by three CNNs trained with various uncertainties UTR shown in the image. The uncertainty
is produced by adding motion blur and calculated using (7).

The analysis of Figures 18–20 shows one tendency: independently on noise/distortion
type during training; its amount influences the recognition accuracy in the same way. Using
images without additional uncertainty for training (UTR = 0, blue curves) leads to a fast
decrease of recognition accuracy with the rise of UTS. This fact tells us that a CNN trained
in such a manner would be vulnerable to adversarial attacks. The results also show that a
moderate training dataset uncertainty UTR (red curves) in case of salt and pepper noise, as
well as of Gaussian and motion blur, should be optimal for recognition of noisy/distorted
images without loss of accuracy for original image recognition. This result allows us to
generalize the confirmation of the existence of optimal training dataset uncertainty for
these types of data, noise, and distortion.

Thus, we conducted simulations under a variety of conditions, and all of them show
the same regularity: there exists an optimal amount of uncertainty of various physical
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natures that, when applied to the training dataset, lead to significant improvements of
trained CNN noise immunity and overall recognition quality. The excessive amount of
training dataset uncertainty (yellow curves in Figures 18–20) makes the training non-robust.
It can be seen as a non-monotonous character of the corresponding (yellow) noise immunity
curves (growth of recognition accuracy with increasing UTS).

10. Conclusions

This study shows that the amount of uncertainty in the training dataset UTR signifi-
cantly affects the recognition accuracy itself and the dependence of the recognition accuracy
on the uncertainty in the testing dataset UTS. We analyzed the recognition accuracies of
multiple datasets with different uncertainties and obtained the dependence of recognition
accuracy on the training dataset uncertainty. The existence of an optimal (in terms of
recognition accuracy) amount of uncertainty in the training dataset (for the neural net-
works working with undefined uncertainty data) was hypothesized and proven for various
types of images and noise. We have shown that the determination of this optimum can
be performed using statistical modeling. Training the network using the dataset with
optimal uncertainty UTR provides a significant increase of recognition accuracy compared
to training on the ideal dataset. The CNN learns not to use the noise/distortion as features
during training because noise/distortion does not help the CNN distinguish different
images. Therefore, it enhances the generalization ability of the CNN and its immunity to
adversarial attacks. At the same time, excessive noise/distortion ruins the training, leading
to recognition accuracy decrease. This finding can be used to improve recognition quality
just by adding some (optimal) amounts of noise to the training dataset.

The obtained results are applicable to convolutional neural networks with common
structures and different types of data uncertainty (Gaussian noise, distortion of point
locations, salt and pepper noise, Gaussian and motion blur, etc.). Future work will be
devoted toward expanding the results on different neural network structures and different
tasks (for example, object detection). We hope to find an analytical solution for optimal
training dataset uncertainty determination without massive statistical simulations.
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