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Abstract: This paper considers the use of a machine learning system for the reconstruction and
recognition of distorted or damaged patterns, in particular, images of faces partially covered with
masks. The most up-to-date image reconstruction structures are based on constrained optimiza-
tion algorithms and suitable regularizers. In contrast with the above-mentioned image processing
methods, the machine learning system presented in this paper employs the superposition of system
vectors setting up asymptotic centers of attraction. The structure of the system is implemented using
Hopfield-type neural network-based biorthogonal transformations. The reconstruction property
gives rise to a superposition processor and reversible computations. Moreover, this paper’s distorted
image reconstruction sets up associative memories where images stored in memory are retrieved by
distorted/inpainted key images.

Keywords: artificial intelligence; machine learning; image reconstruction and recognition

1. Introduction

Machine learning, a sub-field of artificial intelligence, deals with algorithms that build
mathematical models to automatically make decisions or predictions based on sample data
called training sets. The concept of learning is the key to understanding intelligence in
both biological brain structures and machines. The aim of machine learning is to create
mappings y = F(x), y ∈ Rm, x ∈ Rn, generated by training sets S = {xi, yi}

N
i=1, the vectors

of which are approximation nodes. Hence, the training points include:

yi = F(xi), i = 1 , . . . , N (1)

The machine learning model described in a previous paper [1] was derived from an
extended Hopfield neural network and is based on spectral analysis that uses biorthogonal
and orthogonal transformations. It should be emphasized that this system has a universal
character that enables the implementation of basic functions of learning systems, such as
pattern association, pattern recognition, and inverse modeling. One of the aforementioned
properties of this model is the recognition and reconstruction of image patterns. In [1], we
presented an example where the object of the reconstruction was an incomplete, inpainted
image of a subject named Lena. Such examples of reconstruction allow for the development
of a system based on the above-mentioned model of machine learning that can recognize
people wearing masks. It is worth noting that the above-mentioned model of machine
learning represents an alternative to classical image reconstruction/restoration systems,
which make use of such processing tools as inverse modelling, deconvolution, Wiener
filters, and PCA (Principal Component Analysis) [2–5].

Classical image reconstruction systems are currently being intensively supplemented
and replaced by those using neural, neuro-fuzzy architecture, and algorithms, especially in
medical applications [6–10]. A comprehensive review of recent advances in image recon-
struction can be found in [11]. Current research is focused on sparsity, low-rankness, and

Sensors 2022, 22, 813. https://doi.org/10.3390/s22030813 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22030813
https://doi.org/10.3390/s22030813
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3517-4046
https://doi.org/10.3390/s22030813
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22030813?type=check_update&version=2


Sensors 2022, 22, 813 2 of 16

machine learning [12,13]. It is worth noting that the most up-to-date image reconstruction
structures are based on constrained optimization algorithms and adequate regularizers [14].

Recently, deep learning algorithms are driving a renaissance of interest in neural
network research and applications (e.g., image processing). Most of the known deep
learning algorithms are implemented in the form of ANN (DLNN) learned from training
set data by minimizing loss functions. Thus, deep learning approach can be seen as a
special topic in optimization theory. Standard types of deep learning neural networks
include the multilayer perceptrons (MLP), convolutional neural networks (CNN), recurrent
neural networks (RNN), and generative adversarial networks (GAN) [15–18]. However,
optimal networks topology and implementation technology have not yet been selected
(the generalizability of networks is not well understood, and there is a lack of explanation
for the relationship between the network topology and performance [19]. Nevertheless,
we claim that ANN should constitute both a universal algorithmic and physical models
used in computational intelligence. It is clear that Hopfield-type neural networks are both
physical and algorithmic models suitable for neural computations. Hence, we considered
an extended Hopfield-type model of the neural network defined by the following equations:

.
x = (ηW− w01 + εWs)θ(x) + Id (2)

where
W—skew-symmetric orthogonal matrix;
Ws—real symmetric matrix;
1—identity matrix;
θ(x)—vector of activation functions;
Id—input vector; and
ε, w0, η—parameters.

(ηW− >w01 + εWs)θ(x) + Id = 0 (3)

An equilibrium equation of neural networks (2), i.e., gives rise to the universal models
of machine learning based on biorthogonal transformations, enabling the realization of
common learning systems functions. One of these functions is the implementation of
associative memories. Thus, this paper’s inpainted image reconstruction system sets up
associative memories where images stored in memory are retrieved by distorted/inpainted
key images. To summarize, we propose a machine learning model that uses biorthogonal
transformations based on spectral processing as alternative solutions to deep learning
based on optimization procedures.

The rest of this paper is structured as follows: Section 2 provides details on the
proposed learning algorithm and presents a structure of the machine learning systems
for image processing. Section 2 contains also some results of computational verifications
using MATLAB software. Section 3 includes some results of image processing as an inverse
problem. Some unique properties of this machine learning system are discussed in Section 4.
The conclusions underline the main features of the machine learning system presented in
the article.

2. Materials and Methods
2.1. Machine Learning System for Image Processing

We consider a set of N black and white images represented by m rows and n columns,
i.e., a set of (m·n) pixels with different shades of grayness. For vector analysis, each image is
transformed by concatenating m rows to form the column vector xi (m·n× 1), i = 1, . . . , N.
Thus, the set of N images is represented by the following matrix:

X = [x1, x2, . . . , xN ], dimxi = m·n = 2k, k = 3, 4, . . . , (4)
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where
N <

1
2
(n·m). (5)

The set of distorted images is given by the matrix:

X(s) =
[
x(s)1 , x(s)2 , . . . , x(s)N

]
. (6)

It is straightforward to observe that the training set is as follows:

S =
{

xi, x(s)i

}N

i=1
. (7)

S creates a mapping F(·) defined by the following properties:

xi = F(xi) (8)

and
x(s)i

F→ xi, i = 1, 2, . . . , N. (9)

Thus, the mapping F is implemented as a machine learning system for image reconstruction.
The structure implementing the mapping F(·) defined by Equations (8) and (9) can

be obtained as the solutions of the equilibrium Equation (3). Thus, for w0 = 2, ε = 1 in
Equation (3), one gets:

(W2k − 2·1 + Ws)mi + x(s)i = 0 (10)

where W2
2k = −1, skew-symmetric, orthogonal matrix

Hence, the N-solutions are as follows:

mi = (2·1−Ws −W2k )
−1x(s)i , i = 1, . . . , N (11)

where
Ws = M

(
MTM

)−1
MT (12)

and
M = {m1, m2, . . . , mN} (13)

is a spectrum matrix of given vectors xi, i.e.,

mi =
1
2
(W2k + 1)xi (14)

and
xi = (−W2k + 1)mi, i = 1, . . . , N. (15)

Equation (11) can be seen as a determination of biothogonal transformation Ts(·) :

mi = T
(

x(s)i

)
(16)

and Equation (14) can be seen as an orthogonal transformation:

mi = T(xi), xi = T−1(mi). (17)

The transformations Ts(·) and T−1(·), arranged as a realization of the mapping F(·),
have the block structure, as shown in Figure 1 [1]. The orthogonal transformation T(·),
which makes use of the Hurwitz-Radon matrix family [20], allows for determining the
Haar–Fourier spectra of the system vectors xi.
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Figure 1. Structure of the machine learning model for image processing.

The structure from Figure 1 serves as the estimator of the spectrum {m̂i}:

m̂i = Ts

(
x(s)i

)
, i = 1, . . . , N. (18)

In the system, due to the iterative nature of the feedback loop, the following conver-
gence of vectors is obtained:

m̂i → mi (19)

ŷi → xi, i = 1, . . . , N. (20)

The convergence determined by Equation (20) is performed in K iterations (K depends
on the reconstruction problem, note the example shown below). Moreover, it should be
noted that for input image z 6= xi, i = 1, . . . , N, the output of the system is given by the
superposition of system vectors:

F(z) = ∑N
i=1 αixi, αi ∈ R. (21)

The system vectors xi set up the attraction centers.
The structure in Figure 1 can also be represented as the lumped memory model in

Figure 2. It is worth noting that this structure gives rise to the realization of an AI analog
processor. However, this topic is beyond the scope of this paper. The synthesis algorithm
of the system given in Figure 1 can be found in Appendix A

Figure 2. Block diagram of the approximator with lumped memory.
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2.2. Computational Verification of the Learning Algorithm—Examples of Face Image
Reconstruction and Person Recognition

A. The machine image processing system described in the previous section was
used to reconstruct and classify a set of images. The system task was to reconstruct a
complete face image based on a masked photo (mask applied by software) and to assign
the reconstructed image to a specific person. In the system, photos of 9 faces (N = 9)
were stored in memory in the form of a 64 × 64 matrix defining the degree of grayness
of individual image pixels. The saved face images are presented in Figure 3. For vector
analysis, each image was transformed by concatenating 64 lines into the form of a column
vector xi (64·64× 1), i = 1, . . . , 9. After transformation, the set of 9 images was represented
by the matrix X (4096× 9) : X = [x1, x2, . . . , x9 ], dimxi = 64·64 = 4096 = 2k, k = 12.

Figure 3. Face images saved (source: https://pixabay.com/pl, accessed on 17 February 2021).

In the experiments, the identification numbers 1, 2, . . . , 9 were assigned to the images.

The system vectors ui =

[
xi
i

]
, i = 1, 2, . . . , 9 were used to construct the machine

learning system according to the procedure described in the previous section. Examples of
the reconstruction of photos of people wearing masks are shown in Figure 4.

Figure 4. Reconstruction of face images of people wearing masks.

https://pixabay.com/pl
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Table 1 shows the nominal values of the Recognition Index, i.e., the assigned numbers
and their associated values after 100 iterations. The results presented in Table 1 show that
in most cases, the value of the index rounded to the nearest integer corresponds to the
nominal value. Thus, the system correctly identifies each person with the exception of
Photo Number 3, where the person is incorrectly recognized. Increasing the number of
iterations did not change the index, as the process quickly converges to the final value.

Table 1. Values of the Recognition Index of each person.

Photo Number Index Nominal Value Index Value after 100 Iterations

1 1.0 0.8622
2 2.0 1.6240
3 3.0 2.3660
4 4.0 3.9983
5 5.0 5.1259
6 6.0 5.8842
7 7.0 6.7262
8 8.0 8.0466
9 9.0 8.9576

The convergence of the iterative process is illustrated in Table 2, which presents the
index values obtained after successive iterations. The experiment was carried out for Photo
Number 2 with the nominal value of the coefficient of 2.0.

Table 2. Convergence of the iterative process for Photo Number 2.

Number of Iterations Index Value Number of Iterations Index Value

1 −0.0813 7 1.4607
2 0.1758 8 1.5394
3 0.5332 9 1.5843
4 0.8703 10 1.6078
5 1.1394 12 1.6233
6 1.3327 100 1.6240

A significant result that confirms the principle of the proposed system was obtained by
substituting in a photo that was not saved in the system. The response shown in Figure 5 is
a superposition of the photos stored in memory in the system (Equation (21)).

Figure 5. Attempt to recognize an unsaved photo.

The mean squared error (MSE) values calculation for the previously performed image
reconstructions are presented in Table 3. The second column of the table shows the MSE
describing the difference between the original and masked photos, whereas the third
column shows the error describing the difference between the original photo and the photo
after reconstruction. Each time an image saved in the system was analyzed, the mean
squared error decreased. For the reconstruction attempt shown in Figure 5, which uses an
image not saved in the system, the MSE error is 2950.90.
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Table 3. Values of the Recognition Index of each person.

Photo Number MSE (Original Photo—Ask Photo) MSE (Original
Photo—Reconstructed Photo)

1 366.49 105.06
2 595.96 176.38
3 1573.00 570.95
4 398.00 37.58
5 552.04 114.55
6 675.67 112.13
7 828.53 221.09
8 171.52 26.05
9 327.06 40.75

The fractional value of the index in Table 1 reflects the system operation mechanism,
which is a weighted combination of numbers 1, . . . , 9.

B. In the case of another masking method, as illustrated in Figure 6, a set of distorted
images is given according to relationship (6) by the matrix:

X(s) =
[
x(s)1 , x(s)2 , . . . , x(s)N

]
(22)

where dimx(s)i = (k·n× 1), i = 1, . . . , N, k < m.

Figure 6. Masked image of the face in Photo Number 9 (Figure 3).

The model structure for the reconstruction of such distorted images is shown in
Figure 7.

Figure 7. Structure of the reconstruction system when a fragment of the image (k–lines) is kept as
the input.

The image reconstruction process in Figure 6 is illustrated in Figure 8, which shows the
results obtained after 1, 2, 5, 10, and 100 iterations. After 100 iterations, the reconstruction
MSE is 0, and the identification index is 9.0. It is worth comparing the above values with
the data for Photo Number 9 presented in Tables 1 and 3.
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Figure 8. Image reconstruction process in Figure 6 (after 1, 2, 5, 10, and 100 iterations).

It is worth noting that, as mentioned in the Introduction, the reconstruction of Lena’ s
photo was realized by using the structure presented in Figure 7 [1], as well. For example,
one of the distorted images of Lena and the reconstruction is shown in Figure 9.

Figure 9. Image reconstruction of Lena’s photo (reconstruction system in Figure 7).

The potential reconstruction of a distorted image using the structure in Figure 1 is
illustrated for Photo Number 9 (Figure 3) by superimposing a noise vector generated by
using the RAND function in MATLAB. The measure of this distortion is the signal/noise
ratio expressed in decibels. The results of such a reconstruction are presented in Table 4
and Figure 10.

Figure 10. Reconstruction of distorted images (Items 10 and 14 in Table 4).
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Table 4. Mean squared error of reconstruction.

S/N Ratio
[dB]

MSE (Original
Image—Noisy Image)

MSE (Original
Image—Reconstructed Image) Index Value

41.8 98.6 0.8 9.04
34.4 391.9 2.1 8.97
30.7 909.3 1.7 9.01
25.4 2523.1 15.6 8.79
22.6 4807.1 20.7 8.78
18.8 9698.9 55.6 9.39
14.7 20,942.0 42.9 8.54
12.0 32,932.0 40.4 9.06
10.9 41,500.0 155.2 9.14
9.5 61,752.0 164.5 8.66
7.2 91,527.0 266.6 9.53
5.8 122,950.0 563.4 8.13
4.2 16,0360.0 521.0 7.14
2.7 24,6230.0 754.2 10.45
−2.5 62,9540.0 4375.8 11.17

Based on Table 4, the machine learning system correctly and automatically identified
the distorted image at S/N > 10 dB. Yet, even at S/N = 2.7 dB in the reconstructed image,
significant similarity to the saved original photo is observed.

The numerical data in Table 4, set as a function, MSE vs. S/N, form the plots presented
in Figure 11.

Figure 11. The plots of a function: MSE vs. S/N.

3. Inpainted Image Recognition and Reconstruction as an Inverse Problem

The image reconstruction models presented in the previous sections are based on the
availability of training sets S in Equations (7) and (22) containing original and damaged
patterns. Alternatively, a common model of image reconstruction is given by the equation:

Ax = ỹ (23)

where

A—known processing operator, for example, A is a matrix;
x—original image; and
ỹ—observed degenerate image.
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According to Equation (23), the reconstruction of an image leads to solving the inverse
problem. Most of the solutions to Equation (23) in the literature use an optimization
solution [14,21], for example:

min
x
||ỹ−Ax||22, s. t. x ∈ K ormin

x
||ỹ−Ax||22 + βR(x) (24)

where

K—set of feasible solutions;
R(x)—regulizer;
β regularization parameter.

As mentioned above, different types of neural networks are currently used to solve
inverse problems in imaging, including image reconstruction. Many approaches to this
problem can be found in recent reviews [22,23] and the novel proposal in [24].

The use of the machine learning model shown in Figure 1 to solve Equation (23) leads
to the solution of the following problem:

F(x) : Ax = ỹ x = F−1(ỹ) (25)

where

A− (m× n) known real matrix, m 6= n;
ỹ− (m× 1) real matrix;
x− (n× 1) real matrix;
m + n = 2k, k = 3, 4, . . .

The case of m 6= n is still under consideration. The generation of the training set
S = {xi, yi}

N
i=1 for Equation (23) is given by:

Axi = yi, i = 1, 2, . . . , N (26)

where xi, i = 1, 2, . . . , N is the vector form of training images, for example, those shown
in Figure 3.

Assuming that the matrix A (m× n) in projection (25) is a random matrix, the images
yi of the training set become random vectors. For example, training image number 1 takes
the form shown in Figure 12.

Figure 12. Original image and its transformation (projection).

Thus, the vector form of the transformation of this image (No 1) is:

Ax1 = y1 (27)
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where A− (m× n), m > n.
Taking the system vectors ui of the form

ui =

[
yi
xi

]
, i = 1, . . . , N, (28)

the structure of the inverse mapping system (25), i.e.,:

xi = F−1(yi), i = 1, . . . , N (29)

is given in Figure 13a,b.

Figure 13. Structure of the system implementing inverse transformation. (a) yi—undegenerated
image projection; (b) ỹi—degenerated image projection.

It should be noted that the biorthogonal transformation Ts(·) and orthogonal transfor-
mation T(·) in Figure 13 are given by Equations (16) and (17), respectively:

Thus,

mi = Ts

([
yi
0

])
(30)

ui = T−1(mi) (31)

where ui—system vectors Equation (28).
In the system presented in Figure 13, the distorted projections of the images ỹi,

i = 1, . . . , N undergo reconstruction, in contrast with the system in Figure 7, where the
distorted images are reconstructed. To illustrate the properties of the reconstruction system
presented in Figure 13, a training set S was generated using Equation (26) consisting of
nine images xi, i = 1, . . . , 9, where xi were images from Figure 3, and their projections
yi, i = 1, . . . , 9 were obtained with the random matrix A. An exemplary transformation of
Image Number 9 from Figure 3 is shown in Figure 14.
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Figure 14. An exemplary reconstruction (F (·)—system from Figure 13b).

In the system shown in Figure 13b, we obtain:

||x9 − x̂9||22 = 0. (32)

To conclude, Figure 1, Figure 7, and Figure 11 show image reconstruction systems
that substantially implement an associative memory structure for recognizing damaged
key patterns. However, it is worth noting that on other hand, the system in Figure 13
implements inverse transformation and solves optimization tasks constrained by images
stored in memory. Moreover, this system enables the solving of linear Equation (23) by
using a random form of training vectors xi in Equation (26) [1] as well.

4. Discussion on Some Features of the Machine Learning System

A. This section focuses on some of the features that underlie the universality of the
machine learning system presented in Figures 1 and 7. First of all, it is clear that this
machine learning system can be categorized as an iterative scheme. On other hand, the
structure in Figure 1 can be treated as a feedforward block connection constituting a
multilayer, deep learning architecture (Figure 15).

Figure 15. Multilayer learning structure (K—number of steps; e.g., K = 100).

The structure in Figure 7 can be similarly treated as a feedforward scheme, as shown
in Figure 16.

The blocks Si(·), i = 1, . . . , K(L) are identical in multilayer structures
(Figures 15 and 16).

It is worth nothing that the multilayer structures in Figures 15 and 16 can be seen as
an implementation of deep learning using recurrent neural networks (RNN) [25]. However,
the topology of these structures is not a result of optimization algorithms typically used to
solve the inverse problems.
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B. An interesting property of the structure in Figure 1 can be set up by a computational
experiment illustrated in Figure 17; i.e., when this structure memorizes only one image (e.g.,
photo No 2 in Figure 3), then any image is mapped on this memorized image (a property
of global attractor).

Figure 16. Multilayer learning structure (L—number of steps; e.g., L = 100).

Figure 17. Illustration of global attractor properties.

C. Another interesting aspect of this machine learning system can be derived from the
so-called Q-inspired neural networks feature [1]. This feature can be determined by the
following statement:

Given a set of complex-valued training vectors {xi, yi}
N
i=1 where xi ∈ Cn, yi ∈ Cm,

n + m = 2k, k = 3, 4, . . ., a realization of mapping given by complex training vectors,
i.e., Cn → Cm can be implemented as complex-valued neural networks or as a complex-
valued machine learning system with the structure presented in Figure 2, where the memory
block is determined by the Hermitian matrix WH (Ws →WH in Equation (3)).

Such a machine learning system can be used as an image processor to reconstruct
complex-valued images. It is clear that the computational efficiency of this system is greater
than that of the real-valued approximator (due to the processing of two images by only one
system). Figure 18 provides an example of complex-valued image reconstruction.
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Figure 18. Complex-valued image reconstruction: z43 = x4 + jx3 , j2 = −1, x3, x4—vectorized form

of images No. 3 and No. 4 in Figure 3, x(s)3 , x(s)4 —distorted images.

D. This article focus on image processing by using the recursive machine learning
system in Figure 1. It should be clear that this image processing sets up only one aspect
of the potential system applicability in the field of signal processing. For example, the
same machine learning could be used for time-series analysis and forecasting. To gener-
alize, the essential function of the machine learning system described in this paper is the
implementation of mapping defined by a training set S = {xi, yi}

N
i=1; i = 1, . . . , N, where

dimxi = n, dimyi = m. The recurrence is convergent under the linear independence of in-
put vectors, and the number of vectors N fulfills (see Equation (5)) N < 0.5 (n + m),
n + m = 2k, k = 2, 4, . . .. Thus, a large capacity system (large N) needs a large even
dimension (n + m) system. It could be considered as a disadvantage of this machine
learning systems.

5. Conclusions

The aim of this article was to illustrate the potential for using the machine learning
system shown in Figure 1 to reconstruct and recognize distorted or damaged patterns,
in particular, images of people wearing masks. In contrast to the image reconstruction
methods based on using optimization algorithms, this system employs the superposition of
system vectors setting up asymptotic centers of attraction. Hence, this system is particularly
useful for the implementation of associative memories. Thus, this paper’s inpainted image
reconstruction sets up associative memories where images stored in memory are retrieved
by distorted/inpainted key images. To conclude, we formulated another image processing
tool augmenting the set of known image processing methods. Finally, all the image
reconstructions presented in this paper, were done using MATLAB (The Math Works, Inc.
MATLAB version 2021b).
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Appendix A

Algorithm A1. Summary of algorithm [1].

1 Declaration:

Input the set of training points:
S = {xi, yi}, i = 1, 2, . . . , N,
xi ∈ Rn, yi ∈ Rm, n + m = 2k, k = 3, 4, . . .

2. System design

Create system vectors ui :

ui =

[
xi
yi

]
, dim ui = n + m.

Calculate the spectrum mi of system vectors ui :
mi =

1
2 (W2k + 1)ui

Create spectrum matrix M :
M = [m1, m2, . . . , mN ]
Calculate Hermitian matrix WH :

WH = M
(
MTM

)−1MT

Calculate orthogonal transformation T(·):
T(·) ≡ T = 1

2 (W2k + 1)
Calculate biorthogonal transformation Ts(·):
Ts(·) ≡ Ts = (2·1−WH −W2k )

−1.

3. Recursive procedure:

for i = 1:N
x̃(0)i = 0
while ||x̃(l)i − x̃(l−1)

i || ≥ eps[
x̃i
yi

](l)
= T−1Ts

([
0
yi

]
+

[
x̃i
0

](l−1)
)

end
end
(l = 1, 2, . . . steps of recurrence)

Final results of recurrence : x̃i = xi.
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