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Abstract: This paper discusses the minimization of the total annual operative cost for a planning
period of 20 years composed by the annualized costs of the energy purchasing at the substation
bus summed with the annualized investment costs in photovoltaic (PV) sources, including their
maintenance costs in distribution networks based on their optimal siting and sizing. This problem
is presented using a mixed-integer nonlinear programming model, which is resolved by applying
a master–slave methodology. The master stage, consisting of a discrete-continuous version of the
Vortex Search Algorithm (DCVSA), is responsible for providing the optimal locations and sizes for the
PV sources—whereas the slave stage employs the Matricial Backward/Forward Power Flow Method,
which is used to determine the fitness function value for each individual provided by the master
stage. Numerical results in the IEEE 33- and 69-node systems with AC and DC topologies illustrate
the efficiency of the proposed approach when compared to the discrete-continuous version of the
Chu and Beasley genetic algorithm with the optimal location of three PV sources. All the numerical
validations were carried out in the MATLAB programming environment.

Keywords: annual operative cost; discrete-continuous vortex search algorithm; location and sizing
of PV systems; AC and DC distribution systems

1. Introduction

With the growth of the world population, there has been a hasty increase in the de-
mand for power to be able to meet basic human needs [1–3]. This has led to the exploitation
of electrical energy based on fossil fuels, which are non-renewable, and directly impact the
environment, generating pollutants which are emitted into the atmosphere and contribute
to global warming [4–6]. It is for this reason that renewable energy sources were chosen
to attempt to supply energy demands; photovoltaic (PV), wind, and hydroelectric genera-
tion are three sources widely used in electrical systems due to their clean and unlimited
energy [4,7,8]. Similarly, due to the importance that they have acquired in recent years, the
use of this type of energy has undergone rapid technological development, ensuring its
accessibility around the world at reasonable prices [4]. Note that, in tropical countries, PV
systems are the most promising renewable generation technologies, as in Colombia [9].
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In recent years, the Ministry of Mines and Energy in Colombia has developed various
strategies to promote the use of renewable energy [10]. One of these proposals resulted in
Law 1715 of 2014, which aims to promote the development and integration of distributed
generation in the electricity system in urban and rural areas [11]. However, since rural
areas are difficult to access and the integration of these areas to the National Interconnected
System produce exorbitant costs, diesel-dependent sources were decided upon to generate
energy [12]. The recent report (September 2021) of the Institute for Planning and Promotion
of Energy Solutions for Non-Interconnected Zones (IPSE) presents that diesel generation
has a capacity of 267,911 kW, benefiting around 201,412 users all over the Colombian
territory [12]. Even if this type of non-renewable resource is frequently used due to its
high efficiency and easy attainment in the market, it produces greenhouse gases and other
pollutants directly impacting the atmosphere [12]. To combat this issue, solar generation
has gained strength in rural areas in Colombia, owing to the rich abundance of solar
resources [12]. Currently in the country, 21,710 kW of PV generation has been installed,
supplying electricity to about 34,500 users [12]; however, this amounts to only 8.10% of the
population who utilize PV generation in rural areas when compared to diesel generation.

The IPSE report reveals that the Caribbean and Pacific regions are the areas with the
greatest abundance of solar resources [12]. These areas increase the possibility of integrating
PV generation sources in a country like Colombia, which permits the proposal of solutions
that are energetically sustainable to meet the demand of even more users, while simultane-
ously limiting the use of diesel-based generation. Based on the aforementioned opportunity
of promoting renewable generation solutions in tropical countries, efficient optimization
techniques are required to identify the location and sizing of these systems in distribution
networks [13]. To address this problem, this research document proposes an objective
function that simultaneously minimizes generation costs and investment, operation, and
maintenance costs of PV sources for a planning horizon of 20 years [14]. To confront the
aforementioned concern, a master–slave optimization methodology is suggested to solve
the mixed-integer nonlinear programming model (MINLP) that represents this problem.
Therefore, a continuous-discrete version of the vortex search algorithm, recently proposed
by [13], is used to locate and size PV units in electrical distribution grids considering the
annualized investment and operating costs along with the studying period.

In the specialized literature, it is possible to find different optimization options that
rectify the problem of the location and dimension of the distributed generation in dis-
tribution networks. Some of these include Genetic Algorithms [15,16], Particle Swarm
Optimization [17], Teaching Learning Based Optimization [18], Population-Based Incre-
mental Learning [19], Vortex Search Algorithm [13], Discrete Sine Cosine Algorithm [20],
Technique of Smalling Area [21], Improved Harris Hawks Optimizer [22], mathemati-
cal based-approaches in GAMS (i.e., General Algebraic Modeling System) [23,24], and
Newton-Based metaheuristic optimizers [14], among others. The main characteristic of the
optimization methodologies described above is that they use the master–slave optimiza-
tion scheme to solve the problem of both location and optimal sizing of the distributed
generation through the minimization of power losses for a given demand condition, which
does not replicate what happens in reality given that the system loads and generation of
renewable energy exhibit dynamic behavior throughout a day of operation [14].

Similar to the metaheuristic optimization methods described above, in this work, a
master–slave methodology is considered to solve the problem of PV sources’ location and
dimension. The algorithm used in the master stage is the discrete-continuous version of
the algorithm of vortex search originally planted in [13] to determine the location and
sizes of the PV sources, in conjunction with the backward/forward matrix power flow
method in the slave stage to determine the total annual operating costs. However, the
main difference with the classical literature approaches is that this research considered
the daily expected generation and demand curves, demand expected growth rate, as well
as the expected return rate of the investments by part of the utility, among other aspects.
It is worth mentioning that, in the specialized literature, there are some documents that
have addressed the multi-period problem in distribution networks with renewable en-
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ergies, some of which include the optimal location and dimension of PV sources in DC
systems to minimize greenhouse gas emissions where they solve the MINLP mathematical
model using GAMS [25]. The optimal sizing and location of the distributed generation
will minimize the energy losses from using a hybrid metaheuristic algorithm [26]. The
wind turbines’ location and sizing are considered keeping in mind the possibility of in-
jecting reactive power to minimize energy losses using GAMS and its MINLP tools to
solve the mathematical model [27]. The optimal location, sizing, and power factor of the
distributed generation sources seek to minimize energy losses using a differential evolution
algorithm [28]. While the PV sources’ location and sizing aim to minimize energy losses
where they solve the mixed-integer convex model using MATLAB CVX [29]. The optimal
placement and sizing of PV sources take into consideration the uncertainties and stochas-
tic nature of the PV generation [30,31]. Authors in [14] presented the application of the
recently developed Newton Metaheuristic Algorithm to solve the problem of the optimal
placement of PV sources allowing for their investment and operative costs; and authors
of [16] proposed the application of the discrete-continuous version of the Chu and Beasley
genetic algorithm to solve the same problem. Both of these have been taken as references
as they are the only two approaches analyzing the mentioned aspects for the distribution
networks in the last few years.

Based on the previous revision of the state of the art regarding dispersed genera-
tion inclusion in distribution networks, the main contributions of this research work are
listed below:

• The generalization of the proposed master–slave optimization algorithm to accurately
locate and size the PV sources in electrical distribution networks with AC or DC
operating technologies, which were not previously reported in the current literature.

• The improvement of the current literature reports for the IEEE 33- and 69-bus systems
with the classical Chu and Beasley genetic algorithm.

The rest of this document is arranged as follows: Section 2 presents the mathematical
representation of the problem of the location and optimal sizing of PV generation units in
distribution systems considering the minimization of total annual operating costs in a given
planning period; Section 3 showcases the DCVSA incorporating the backward/forward
matrix power flow method, while Section 4 describes the main characteristics of the IEEE 33-
and 69-bus systems; Section 5 reveals the results obtained for the location and dimension of
the PV units in addition to the total annual operating costs of the test systems in both their
AC and DC versions. Finally, Section 6 exposes the conclusions and future works extracted
from the development of this research article.

2. Mathematical Formulation

The problem of the location and optimal sizing of PV systems in distribution networks
can be represented by an MINLP model. The binary variables, which are the decision
variables of the problem, are related to the location of the PV units. On the other hand,
their continuous part is provided by the solution to the power flow formulation, which
corresponds to a nonlinear problem given the nature of its equations [32,33]. The complete
optimization model will be formulated in the complex domain to simplify the mathematical
power flow solution associated with the slave stage [13].

2.1. Formulation of the Objective Function

Generally, when there is a dynamic power flow (inclusion of time dependence) together
with the integration of PV units to the distribution system, the interest is focused on
minimizing the total costs of the purchase of energy in the substation node that connects to
the distribution system with the transmission/sub-transmission network [34]. Therefore,
the objective function is composed of the annualized costs of purchasing energy at the
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substation node added with the PV units’ annualized investment and maintenance costs.
Each component of the objective function is presented from (1) to (3):

min Acost = f1 + f2, (1)

f1 = CkWhT
(

ta

1− (1 + ta)−Nt

)
real

(
∑

h∈H
∑

k∈N
scg

k,h∆h

)(
∑
t∈T

(
1 + te

1 + ta

)t
)

, (2)

f2 = Cpv

(
ta

1− (1 + ta)−Nt

)
real

(
∑

k∈N
spv

k

)
+ CO&MT real

(
∑

h∈H
∑

k∈N
spv

k,h∆h

)
, (3)

where Acost represents the total annual operative costs in the distribution network; f1 is the
component of the objective function that models the annualized energy purchasing cost
in the substation terminals. f2 is the component of the objective function regarding the
annualized investment and operating costs in PV sources. CkWh refers to the average energy
purchasing costs of the energy in the spot market, while T corresponds to the number
of days in an ordinary year (i.e., 365 days). ta is the internal rate of return expected for
the investments made by the distribution company during the duration of the project. Nt
is the number of periods considered in the planning horizon. scg

k,h indicates the complex
power generation in the terminals of the conventional source connected at node k during
the period h. ∆h is the duration in which the electrical variables are assumed to be constant.
te is the expected percentage of the increase in the cost of purchasing energy during the
planning horizon, whereas Cpv represents the average cost of installing one kW of PV
generation. spv

k relates the size of a PV source connected at node k, and CO&M represents
the maintenance and operating costs of a PV generation unit. spv

k,h corresponds to the
complex power generation provided by each PV source connected at node k in the period
h. Observe that N , H, and T are the sets that contain all the nodes of the distribution
network, time periods in a daily operation scenario, and number of years of the planning
horizon, respectively.

2.2. Set of Constraints

The issue of the optimal location and sizing of PV systems in distribution networks
has a set of restrictions corresponding to the different operational limitations found in
distribution systems, such as voltage regulation limits, power equilibrium at each node,
and the devices’ capabilities, among others. The complete list of constraints for the studied
problem are listed from (4) to (12):

scg
k,h + spv

k,h − Sd
k,h = vk,h

(
∑

j∈N
Ykjvj,h

)∗
,
{
∀k ∈ N , ∀h ∈ H

}
, (4)

spv
k,h = spv

k Gpv
h ,
{
∀k ∈ N , ∀h ∈ H

}
, (5)

imag(spv
k,h) = 0,

{
∀k ∈ N , ∀h ∈ H

}
, (6)

scg,min
k ≤ scg

k,h ≤ scg,max
k ,

{
∀k ∈ N , ∀h ∈ H

}
, (7)

ykspv,min
k ≤ spv

k ≤ ykspv,max
k ,

{
∀k ∈ N

}
, (8)

vmin
k ≤ |vk,h| ≤ vmax

k ,
{
∀k ∈ N , ∀h ∈ H

}
, (9)

|ikj,h| ≤ imax
kj ,

{
∀k ∈ N , ∀h ∈ H

}
, (10)

∑
k∈N

yk ≤ Nava
pv , (11)

yk ∈ {0, 1},
{
∀k ∈ N

}
, (12)
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where Sd
k,h is the complex power demanded at node k in the period h. vk,h and vj,h represent

the complex voltages at nodes k and j during the period h, respectively, while Ykj is the
complex admittance that associates nodes k and j. Gpv

h is the expected PV generation curve

in the zone of influence of the distribution network. scg,min
k and scg,max

k are the complex

power bounds regarding the conventional generation connected at node k. spv,min
k and

spv,max
k are the complex power bounds related with the PV generation unit connected at

node k. ikj,h is the complex current flow through the line that connects nodes k and j during
the period h. yk is the binary variable regarding the location of PVs in the distribution
network at node k, indicating that yk = 1 if the PV source is installed or yk = 0 if not. vmin

k
and vmax

k are the admissible voltage regulation bound limits for the whole nodes on the set
N . Finally, Nava

pv is a constant parameter associated with the maximum number of PV units
available for installation throughout the distribution system.

2.3. Model Interpretation

The optimization model (1)–(12) is interpreted as the following: Equation (1) de-
fines the objective function of the problem which is the sum between the annual costs
of purchasing energy in conventional generators (i.e., substation nodes as defined in
Equation (2)), with the annual investment costs of the PV units including their maintenance
and operation costs as proposed in Equation (3). The Equality Equation (4) represents the
complex power balance in each node of the system for each period of time; it is the most
complex restriction that occurs in the examined problem, and since it is nonlinear and not
convex, numerical methods must be used to solve it properly. Equation (5) represents the
complex power generated in each PV generation unit for each time period. The Equality
Equation (6) establishes that only active power injection by the PV generation units will be
considered [7]. The inequality constraint (7) deals with the lower and upper bounds of
the power outputs in the conventional sources. It (8) is also a box-type constraint that
defines the minimum and maximum complex power generation limits in the PV generation
units that will be installed along with the distribution network. The inequality box-type
constraint (9) defines the lower and upper voltage regulating bounds for all nodes and
periods of time of the planning project. Additionally, it (10) defines the maximum allowed
current that can flow for each branch of the network at any period of time. It also (11)
defines the maximum PV generation units available for installation in the distribution
network. Finally, in (12), the binary nature of the decision variable yk is revealed.

Note that one main complication of the MINLP model defined from (1) to (12) corre-
sponds to the combination of binary and continuous variables with nonlinear non-convex
constraints, specifically in the case of the complex balances at each node of the network for
each period of time [14]. To solve this type of model, the specialized literature recommends
the use of the master–slave optimization methods that simplify the problem presented
by separating the location and dimension of the PV generation units from the power bal-
ance in the distribution network [35]. Consequently, in the next section, we will present a
master–slave optimization approach to solve the MINLP model defined from (1) to (12) by
combining a DCVSA in the master stage with the backward/forward power flow method
in the slave stage.

3. Methodology Proposed

To solve the problem of PV sources’ optimal location and sizing in distribution grids
with the aim of minimizing the total annualized operative costs regrading energy pur-
chasing at substation terminals along with the investment and operating costs of PV
generation units, we propose the application of the discrete-continuous vortex-search algo-
rithm (DCVSA) in the master stage as initially proposed in [13]. To rectify the slave problem,
we use the complex version of the backward/forward power flow method utilizing the
information regarding the locations and sizes of the PV generation units provided by the
master stage [36], for which we will first describe both the master and slave stages in detail.
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3.1. Slave Stage: Matricial Backward/Forward Power Flow Method

The matricial backward/forward power flow method is a generalization of the classical
iterative sweep method for distribution networks which employs a node–branch incidence
matrix to represent the system topology [37,38]. In the formulation of this power flow
methodology, it is important to note that the node–branch incidence matrix, i.e., A ∈ Rn×b

is generally a rectangular matrix with n rows and b columns, n being the number of nodes,
and b the number of branches of the network [39,40]. Additionally, for this matrix, it is
assumed that the current flows are arbitrarily selected for all the network’s branches. The
node–branch matrix (A) can be built as follows:

• Akl = 1, if the current through the line l leaves the node k;
• Akl = −1, if the current through the line l arrives the node k;
• Akl = 0, if the line l is not connected to the node k.

By means of the incidence matrix, it is possible to define the voltage drop in the
network sections of the system, i.e., E ∈ Rb×1, as a function of the nodal voltages, i.e.,
V ∈ Rn×1, as defined in Equation (13):

E = ATV (13)

Now, rewriting (13) in terms of the voltage in the conventional sources and the voltage
in the demand nodes, the following result is reached:

E = AT
s Vs + AT

dVd (14)

where As ∈ R1×b is the first row of the incidence matrix which corresponds to the com-
ponent associated with the node slack. Vs ∈ R1×1 is the vector that defines the voltage
output in the slack node which is assumed to be constant and well-known in power flow
studies [36]. Ad ∈ R(n−1)×b contains the rest of the rows of the incidence matrix and is the
component that associates the demand nodes with each other. Finally, Vd ∈ R(n−1)×1 is the
vector containing the variables of interest, i.e., the demanded voltage profiles.

On the other hand, applying Kirchhoff’s first Law for each node of the system, assum-
ing that the demanded currents, i.e., Id ∈ R(n−1)×1, leave from each node (negative sign), it
is possible to define the relation between the nodal and branch currents (i.e., J ∈ Rb×1) as
defined in Equation (15): [

Is
Id

]
=

[
As
Ad

]
J (15)

where Is ∈ R1×1 is the vector that contains the net injected current in the slack node.
Additionally, it is possible to relate the voltage drop in the network sections with the

current flowing through them by applying Ohm’s Law, as shown in (16):

J = YpE (16)

where Yp ∈ Rb×b is the primitive admittance matrix that contains the inverse of the
impedance of each line in its diagonal. Note that, if we replace (14) in (16), and it is also
considered the second row of (15), then, the result defined in Equation (17) is reached:

Id = AdYpAT
s Vs + AdYpAT

dVd (17)

Now, if the Tellegen’s theorem is applied [41], then, it is possible to obtain the relation-
ship between the nodal voltage and net current injected into the nodes of the distribution
system, i.e., I ∈ Rn×1, as depicted in (18):

S = diag(V)I∗ ⇔ S∗ = diag(V∗)I (18)
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where S ∈ Rn×1 is the vector with all the complex power generation at each node of the
system. Observe that, if rewritten (18) in terms of the generation and demand, the result in
Equation (19) is reached:[

S∗s
−S∗d

]
=

[
diag(V∗s ) 0

0 diag(V∗d)

][
Is
Id

]
(19)

where S∗s ∈ R1×1 y S∗d ∈ R(n−1)×1 are the complex power generation at the slack node and
complex power consumption in the demand nodes, respectively. Now, if we replace (19) in
(17) and its obtained and expression for Vd, the result in Equation (20) yields the following:

Vd = −Zdd[diag−1(V∗d)S
∗
d + YdsVs] (20)

where Zdd was defined as [AdYpAT
d ]
−1, and Yds is also defined as [AdYpAT

s ].
To solve Equation (20), we must add t to an iterative counter to determine the final

values of the demanded voltages from an initial point. The starting point is usually chosen
as the voltage output in the slack node, i.e., Vt

d = 1dVs. Thus, the power flow Equation (20)
is resolved recursively as defined in (21):

Vt+1
d = −Zdd[diag−1(Vt,∗

d )S∗d + YdsVs] (21)

The iterative process to solve (21) ends when the convergence criterion is met, as
shown in (22):

max
{
||Vt+1

d | − |V
t
d||
}
≤ ε (22)

where ε is the maximum admissible error between two consecutive voltage iterations. Here,
as recommended in [27], we take a value of 1× 10−10 for the parameter ε.

Remark 1. The convergence of the backward/forward matrix method has been demonstrated using
the characteristics of the incidence matrix by applying Banach’s fixed point theorem [36].

Now, we are interested in extending the approach made to the backward/forward
matrix power flow method to solve the complex power balance raised in (4), and, thus, we
arrive at the recursive formula presented in (23):

Vt+1
d,h = −Zdd[diag−1(Vt,∗

d,h)(S
∗
d,h − S∗pv,h) + YdsVs,h] (23)

where S∗pv,h ∈ R(n−1)×1 is the vector that contains all the complex power generation
outputs in the PV generation units at each period h. Here, it is worth mentioning that
the master stage is entrusted with providing the values of the S∗pv, contained at each
individual of the candidate solutions in the population to the power flow formulation in
order to determine energy losses’ value. Similarly, the solution of (23) is obtained when the
convergence criterion established in (22) is fulfilled by extending it to the temporal domain,
i.e., max

{
||Vt+1

d,h | − |V
t
d,h||

}
≤ ε.

An additional important calculation obtained after solving the multiperiod power
flow problem corresponds to the component of the objective function related with the total
energy purchasing costs at the substation bus. To calculate this, it is necessary to know the
value of the complex power output on this node for each period of time, i.e., Scg,h ∈ R1×1.
To do so, if we replace the demanded voltages obtained in the power flow solution in (16)
while also considering the first row of (15), then, the following result yields:

Is,h = AsYpAT
s Vs,h + AsYpAT

dVd,h (24)
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which also, when combined with (19), produced the result defined in (25).

S∗cg,h = diag(V∗s,h)[AsYpAT
s Vs,h + AsYpAT

dVd,h] (25)

Once the power flow in the complex domain has been solved for each time period, as
shown in (23), and the complex power generated by the slack node for each time period
has been determined, as shown in (25), the fitness function (an adaptation of the objective
function common in metaheuristics [42,43]) is then calculated for each individual from
the set of candidate solutions resulting in the master stage. The main advantage of using
a fitness function instead of the original objective function is that it aids the proposed
optimizer in exploring unfeasible regions in search of global optimal solutions in the
promissory and unexplored feasible areas of the solution space [44,45]. Furthermore, when
the solution space is feasible, then, the fitness function and original objective function take
the same numerical value. The proposed fitness function is defined in Equation (26).

Ff =Acost + α1 max
h

{
0, |Vd,h| − vmax}− α2 min

h

{
0, |Vd,h| − vmin

}
− α3 min

h

{
0, real(Scg,h − smin

cg )
}
+ α4 max

h

{
0, |Jb,h| − imax} (26)

where α1 and α2 are penalization factors associated with the violation of the voltage regula-
tion bounds; α3 is a penalty factor related with the possible negative power generations
in the slack source; and α4 indicates the penalization factor regarding the violation of the
thermal bounds in all the network branches.

It is worth clarifying that the maximum and minimum limits of the PV generation
units’ complex power generation are always followed by the coding proposed by the
DCVSA [14]. Conversely, the complex power upper limit on node slack is not taken into
account as it is assumed to have enough capacity to support all demands, even if no PV
sources are installed.

Algorithm 1 illustrates the implementation of the backward/forward power flow
problem to evaluate the fitness function value.

3.2. Master Stage: DCVSA

To address the optimal siting and sizing issue of the PV generation units in distribution
networks, the DCVSA is employed in this research. The main advantage of a discrete-
continuous codification is that the location and sizing problems are solved with a unified
representation, which allows the exploration and exploitation of the solution space in
an efficient manner by reducing a slave stage, which is the typically known optimal
power flow solution in the problems of the optimal placement and sizing of dispersed
generation [46].

The structure of the codification to represent the configuration of an m individual at
the iteration t is presented below:

Pt
m =

[
2, c, ..., n | ppv

2 , ppv
c , ..., ppv

n
]
; m = 1, 2, ..., Ni, (27)

where Pt
m represents the configuration of the m individual in the set of candidate solutions

at the iteration t the dimension of which is 1× 2Nava
pv , c being a random integer number that

corresponds to a node of the network. Ni is the number of individuals in the population.
As seen in Equation (27), a solution individual m is divided in two components, where the
first Nava

pv is associated with all the nodes where the PV generation units will be installed
(integer part of the codification), whereas the second part of the codification vector defines
the optimal sizes of the PV sources, i.e., this part is the continuous one in the codification.

The optimization algorithm used in this research document should be able to define
the best set of candidate solutions maintaining the structure displayed in (27) by gener-
ating individuals around the best current solution using a Gaussian Distribution in each
iteration [47].
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Algorithm 1: Solution of the multiperiod power flow problem using the matricial backward/forward power
flow formulation to determine the fitness function of the studied optimization problem

1 Define the test feeder characteristics;
2 Obtain the per-unit equivalent of the network;
3 Calculate the incidence node–branch matrix A;
4 Extract the components As y Ad;
5 Calculate the primitive admittance matrix Yp;
6 Obtain Zbb and Yds;
7 Define the maximum number of iterations tmax;
8 Select the convergence error ε;
9 Define the maximum periods of analysis hmax;

10 Make h = 1;
11 for h ≤ hmax do
12 Define the voltage output in the slack source at Vs,h = 1∠0;
13 Set the complex power demand Sd,h based on the demand information of the network;
14 Set the complex power generation in the PV sources Spv,h based on the information provided by the master

stage;
15 Make t = 0;
16 Define the initial voltages in the demand nodes as V0

d,h = 1dVs,h;
17 for t ≤ tmax do
18 Compute the new voltages Vt+1

d,h using Equation (23);

19 if max
{
||Vt+1

d,h | − |V
t
d,h||

}
≤ ε then

20 Report the voltage solution as Vh =
[
Vs,h, Vd,h

]T ;
21 Compute the voltage drops at each line using Equation (14);
22 Calculate the current flow in all the branches using Equation (16);
23 Determine the complex power generation in the slack source (25);
24 break
25 else
26 Make Vt

d,h = Vt+1
d,h ;

27 Determine the value of the fitness function defined in Equation (26)

3.2.1. Initial Solution

The vortex search algorithm explores and exploits the solution space with concentric
hyper-ellipses [47], where the largest hyper-ellipse radius defines the size of the whole
solution space; and its center defines the best current solution. Considering the structure of
a solution individual presented in (27), the initial center of the hyper-ellipse is calculated as
presented in (28):

µ0 =

(
xmax

1 + xmin
1

2
,

xmax
2 + xmin

2
2

)
(28)

where xmin
1 ∈ RNava

pv ×1 and xmax
1 ∈ RNava

pv ×1 are the lower and upper bounds of the decision
variables in its discrete components (set of demand nodes where the PV generation units
will be installed); xmin

2 ∈ RNava
pv ×1 and xmax

2 ∈ RNava
pv ×1 are the lower and upper limits of the

decision variables regarding the sizes of the PV generation units.

3.2.2. Candidate Solutions

Each individual solution Pt
m in the set of candidate solution defined as Pt is generated

with a randomly controlled process through a normal Gaussian distribution around the
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center of the hyper-ellipse, i.e., µ [48]. The generation of this set of candidate solutions is
presented in Equation (29):

Pt
m = p(x|µ, Σ) =

1√
(2π)2Nava

pv |Σ|)
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
, (29)

where x ∈ R2Nava
pv ×1 is a vector of random variables, and Σ ∈ R2Nava

pv ×2Nava
pv is known as the

co-variance matrix. Note that, if Σ has in its diagonal equal values (i.e., the same variance),
and if the non-diagonal components are zero, then, the Gaussian distribution will generate
hyper-spheres around the solution space. Taking into account these characteristics on the
co-variance matrix, it is possible to easily calculate it as presented below [47]:

Σ = σ2I, (30)

where σ is the Gaussian distribution variance, and I ∈ R2Nava
pv ×2Nava

pv is an identity matrix
with proper dimensions. With (31), the initial standard deviation of the Gaussian Distribu-
tion is calculated, and complying in the same way with the coding proposed in (27), we
arrive at the following:

σ0 =
max

{
xmax

1 , xmax
2
}
−min

{
xmin

1 , xmin
2
}

2
, (31)

where σ0 is also known as the initial d-dimensional radius r0 of the hyper-ellipse [47].

3.2.3. Updating of the Current Solution

For the solutions to be feasible, it must be guaranteed that the individuals generated
and contained in the set of candidate solutions Pt are within the limits of the solution space,
previously defined for the calculation of the initial center µ0 of the hyper-ellipse. In this
sense, the lower and upper limits of the discrete and continuous parts of each individual
are verified separately, as depicted in (32) and (33), respectively:

Pt
dis,m =

{
Pt

dis,m xmin
1 ≤ Pt

dis,m ≤ xmax
1

xmin
1 + rand · (xmax

1 − xmin
1 ) otherwise

(32)

Pt
con,m =

{
Pt

con,m xmin
2 ≤ Pt

con,m ≤ xmax
2

xmin
2 + rand · (xmax

2 − xmin
2 ) otherwise

(33)

where rand provides random numbers with normal distribution between 0 and 1. Once
the lower and upper limits of the discrete and continuous parts of the individuals have
been verified, and the ones who were not feasible have been adjusted, the fitness function
exhibited in (26) is evaluated for each one. The individual in the set of candidate solutions
Pt with the best current solutions (Pbest) will be selected as the new center of the hyper-
ellipse if, and only if, its fitness function value is better than the previous center µt. This
evolution step is defined through Equation (34):

µt+1 =

{
Pbest Si Ff (Pbest) < Ff (µ

t)
µt otherwise

(34)

3.2.4. Radius Reduction

Quite possibly the most important process of the vortex search algorithm is the adap-
tive adjustment of the radius of the hyper-ellipse; it decreases to zero as the algorithm
progresses, which implies that, at the end of the process, the final center of this hyper-ellipse
corresponds to the optimal solution of the studied optimization problem. As recommended
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in [47], an efficient way to reduce the radius of the hyper-ellipse is by using the incomplete
inverse Gamma function, which is defined in (35):

rt = σ0γ−1(w, at) (35)

The incomplete inverse Gamma function can be easily calculated in MATLAB using
the command gammaincinv(w, at) as presented in Equation (36):

rt = σ0 1
w

gammaincinv(w, at), (36)

where at is a parameter defined as at = 1− t
tmax

. Additionally, w is defined as 1
10 following

the recommendation in [47].
Finally, a new set of candidate solutions Pt+1 is generated around the new center

considering the new radius defined in Equation (35).
The diagram presented in Figure 1 generally summarizes the logic of the DCVSA pro-

posed to define the location and optimal sizing of PV generation units in distribution systems.

Start: DCVSA
executionTest feeder data Load and PV curves

Calculate the center
of the hyper-ellipse

Generate the initial
population using a

Gaussian distribution

Verify feasibility

Evaluate the individu-
als in the slave stage

Select the best
individual and

replace the center

Reduce the radius
of the hyper-ellipse

t ≥ tmax?

End: Report Pbest
and Ff (Pbest)

Generate the de-
scendant population

no

yes

Figure 1. General implementation of DCVSA to solve optimization problems in distribution systems.

4. Test Systems

In this section, we present the main characteristics of the test feeder used to validate
the proposed master–slave optimizer to locate and size PV generation units in distribution
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networks. The test feeders considered are composed of 33 and 69 buses, both with radial
structure [23].

4.1. IEEE 33-Node Test Feeder

This test feeder, composed of 32 distribution lines and 33 buses and located at bus 1
in the substation, is operated with 12.66 kV of nominal voltage. It has a total power con-
sumption of (3715 + j2300) kVA during the peak load scenario. Its electrical configuration
is depicted in Figure 2, while its parametric configuration is specified in [49].

4.2. IEEE 69-Node Test Feeder

The IEEE 69-bus system is a radial distribution network operated in the substation
bus at node 1 with 12.66 kV with 69 nodes and 68 distribution lines (Figure 2 presents
the electrical connection among nodes in this distribution grid). During the peek load
condition, the total power consumption of this system is (3890.7 + j2693.6) kVA. The
complete information regarding lines and powers at each node can be found in [49].

slack

(a)

1 2

3 4 5

6

7 8 9 10 11 12 13 14 15 16 17 1819
20
21
22

23
24
25

26 27 28 29 30 31 32 33

slack

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

51
52

66
67

68
69

47 48 49 50

36 37 38 39 40 41 42 43 44 45 46

28 29 30 31 32 33 34 35

53 54 55 56 57 58 59 60 61 62 63 64 65

Figure 2. Electrical configuration of the test feeders: (a) IEEE 33-node system and (b) IEEE 69-bus system.

4.3. Demand and Generation Curves

To evaluate the impact of the integration of PV generation units in the test systems
shown above, the typical Colombian generation and demand curves, shown in Figure 3,
are used. Data on the percentage variation in consumption and generation can be found
in [50]. According to Figure 3, the peak demand occurs in the hours 20 and 21, while the
PV generation units will be able to access the solar resource from 7 to 20 h.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
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Figure 3. Typical behavior of generation and demand curves for a period of study of 24 h.

To determine the value of the objective function defined in Equation (1), the parametric
information listed in Table 1 is considered. This information was constructed with the data
available in [51,52].
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Table 1. Parametric information regarding the objective function calculation.

Parameter Value Unit Parameter Value Unit

CkWh 0.1390 US$/kWh T 365 días
ta 10 % Nt 20 años
∆h 1 h te 2 %
Cpv 1036.49 US$/kWp C0&M 0.0019 US$/kWh
Nava

pv 3 - ∆V ±10 %

spv,min
k 0 kW spv,max

k 2400 kW
α1 100× 104 US$/V α2 100× 104 US$/V
α3 100× 104 US$/W α4 100× 104 US$/A

5. Numerical Results and Simulations

This section presents the numerical validation of the methodology developed to solve
the problem of location and optimal sizing of PV generation units in both test feeders
under analysis. As a comparative methodology has been employed, the classical Chu and
Beasley genetic algorithm using the same discrete-continuous codification is presented in
Equation (27). This algorithm was recently proposed in [16] and its acronym is DCCBGA.
Moreover, the exact optimization model is also solved using the GAMS optimization
package [14]. In the case of the proposed DCVSA, in all the numerical simulations, we use
10 individuals, 1000 iterations, and 100 consecutive evaluations.

In the numerical validations, the following simulation scenarios are proposed:

i. Application of the DCVSA developed and its comparisons with existing methodolo-
gies into the IEEE 33- and IEEE 69-node test systems with their AC versions.

ii. The minimization of the total annual operating cost using the proposed master–slave
methodology for the DC versions of the IEEE 33- and IEEE 69-bus systems.

The MINLP model of the studied problem defined from (1) to (12) has been im-
plemented and solved in the MATLAB software 2029b using our scripts on a personal
computer MD Ryzen 7 3700U (AMD, Santa Clara, CA, USA), 2.3 GHz, 16 GB RAM with
64-bits Windows 10 Home Single Language.

5.1. Case 1: Results in the AC IEEE 33-Bus System

Table 2 lists the numerical results obtained after applying the DCVSA to the IEEE 33-
bus system considering its AC version. The proposed method is compared with the GAMS
results which are gained from the BONMIN solver as well as with the DCCBGA [16].
The numerical results in this table specify the following: the solution provided by the
proposed approach finds a better near-optimal result with an additional improvement of
US$170.58 per year of operation when compared to the DCCBGA solution. The solution
provided by the DCVSA selects nodes 11, 14, and 31 to locate the PV generation units with
a global installed capacity of 3648.74 kWp. This generation capability is about 13.33 kWp
higher than the solution provided by the DCCBGA. Even if the additional size of the
PV sources reached with the DCVSA will increase the investment and operating cost in
these renewable energy resources by about US$/year 1682.31, these increments will be
compensated with the additional reduction of about US$1852.89 in the energy purchasing
costs in the substation bus with respect to the best solution reported by the DCCBGA.

Table 2. Numerical results in the AC version of the IEEE 33-bus system.

Method Site and Size (Node, MVAr) Acost (US$/year) f1 (US$/year) f2 (US$/year)

Bench. Case - 3,700,455.38 3,700,455.38 0
BONMIN {17(1.35393), 18(0.21051), 33(2.14515)} 2,701,824.14 2,233,247.50 468,576.64
DCCBGA {11(0.76046), 15(0.96897), 30(1.90598)} 2,699,932.29 2,240,724.98 459,207.31

DCVSA {11(0.76061), 14(1.08518), 31(1.80295)} 2,699,761.71 2,238,872.09 460,889.62
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In Figure 4, it is possible to observe the reduction of the total annual operating costs of
the IEEE 33-nodes system in percentage terms, methodologies used by [16], and master–
slave methodology proposed in this document, with respect to the case base. Note that
all the optimization methodologies studied allows an improvement higher than 26% with
respect to the benchmark case; nevertheless, the improvement of the DCVSA was about
27.04%, i.e., US$1,000,693.67 per year of operation, which corresponds to an improvement
of 0.004% with respect to the solution reported by the DCCBGA. Even if this improvement
corresponds to a small reduction regarding the total operating costs of the system, the
methodology proposed in this document finds a better optimal solution for the IEEE 33-
bus test system. Therefore, this new solution will serve as a reference point for future
approaches that may be proposed to solve the problem of PV units’ optimal location and
sizing in distribution systems.
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Figure 4. Percentage of reduction of the total grid operative costs in the IEEE 33-bus system in its
AC version.

To validate the effectiveness and robustness of DCVSA in solving the problem raised
in this research document, 100 consecutive evaluations of the master–slave methodol-
ogy were executed in the IEEE 33-node system, the results of which are exhibited in
Table 3. These results present that the DCVSA returns better outcomes when compared
with other methodologies that solve the problem of optimal location and dimension of PV
generation units in the IEEE 33-node test system. The best response of the DCVSA shows an
improvement of 0.006%, i.e., US$170.58 per year of operation when compared to DCCBGA
and 0.0764%, i.e., US$2062.43 per year of operation when compared to BONMIN. Similarly,
in terms of the average value and worst solutions, the DCVSA reveals an improvement of
about US$266.63 and US$517.23 per year of operation compared to the DCCBGA values.
This demonstrates the superiority of the proposed methodology to obtain the solution of
the aforementioned problem with respect to the best, average, and worst values of the
objective function when compared with the DCCBGA.

Table 3. Numerical performance comparison between the DCVSA and DCCBGA in the IEEE 33-bus
system after 100 consecutive evaluations.

Method Best (US$/year) Mean (US$/year) Worst (US$/year) SD (US$/year) Avg. Time (s)

BONMIN 2,701,824.14 2,701,824.14 2,701,824.14 0 3.64
DCCBGA 2,699,932.29 2,702,178.35 2,705,870.99 1221.67 5.30

DCVSA 2,699,761.71 2,701,911.72 2,705,353.76 1154.08 170.23

Regarding the standard deviation, the DCVSA gains a value of US$1154.08 per year
of operation, as presented in Table 3, which represents 0.0427% of the variation when
compared to the average value, depicting an improvement of approximately US$67.69
per year when compared to the standard deviation of the DCCBGA. This confirms the
repeatability properties of the DCVSA to solve the problem raised in this research document
because, if it is executed multiple times, for the IEEE 33-node system, it is likely that the
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proposed methodology will generate the best average response or an answer close to
this value.

To establish that the optimal solution provided by the DCVSA fulfills the electrical
constraints defined from (4) to (12), which were considered in the fitness function formu-
lation (see Equation (26)), Figure 5 displays a comparison between the power outputs in
the slack source for the benchmark case and proposed approach, as well as the contrast in
the maximum current of the network before and after installing the PV generation units
provided by the DCVSA.

As was expected, the power generation in the slack source tends to follow the behavior
of the total active power demand curve in the substation terminals for the benchmark
case, which takes place owing to the fact that the slack source is the unique power source
activated along with the grid which must support the total grid demand including the
electrical power losses. Nonetheless, in Figure 5, we observe that the behavior of the
slack active power generation is considerably reduced in the periods of time when the
PV generation installed increases their power outputs. Note that, in period 14, when the
generation of the PV sources is maximum, the slack generation is zero, thus confirming
that restrictions imposed on the slack generation regarding negative power outputs are
always fulfilled.
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Figure 5. Impact of the PV inclusion in the IEEE 33-bus system: (a) power injections in the slack
source, and (b) maximum current performance.

Similarly, Figure 5 depicts the behavior of the maximum current in the IEEE 33-bus
system before and after installing the PV generation units. The maximum current for this
system always appears in the branch that connects nodes 1 and 2 (the first line from the
substation bus). As predicted in the benchmark case, this current follows the demand curve
and reaches its maximum value in the periods 20 and 21 (peak demand condition) with a
value of 365.2524 A. On the other hand, after the integration of the PV units supplied by
the DCVSA, the maximum current that circulates through the system is presented in the
network section 1–2 for all time periods; notwithstanding, the current does not follow the
same behavior as the power generated at the substation terminals in this case. This is due
to the fact that the power injection by the PV units only modifies the active power flow in
the AC version of the IEEE 33-bus system, reducing the current circulating through this
section of the network, but it does not reach the value of zero as the reactive power flow
is the same as in the base case. Likewise, from Figure 5, we see that, with the integration
of PV units, the maximum current flowing through the system is less than or equal to
the maximum current flowing through the system in the benchmark case, achieving the
maximum value of current at hours 20 and 21, with a value of 365.2524 A, which is equal to
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the current found for the base case because currently, the PV generation units do not have
solar resource availability.

Finally, Figure 6 reveals the maximum and minimum voltage behaviors in the IEEE
33-bus system when PV generation sources are integrated.
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Figure 6. Voltage behavior during the day for the IEEE 33-bus system: (a) maximum voltage
magnitude, and (b) minimum voltage magnitude.

From Figure 6, it is possible to perceive that the voltage for all time periods satisfies
the voltage regulation constraint being within±10%. Additionally, from hour 11 to hour 15,
when the PV units inject more than 70% of their capacity, the voltage at node 14 exceeds
the voltage at the slack node, reaching a maximum value of 1.0291 pu; while the minimum
voltage value, as expected, is found at node 18, at hours 20 and 21, with a value of 0.9038 pu
(no PV generation available).

5.2. Case 1: Results in the AC IEEE 69-Nodes System

Table 4 details the numerical results reached by the proposed and comparative meth-
ods in the IEEE 69-node test feeder, including the ones for the benchmark case. From this,
it is possible to note that the proposed DCVSA finds a better near-optimal solution with an
additional improvement of about US$/year 521.76 with regard to the best solution obtained
with the DCCBGA. The solution obtained by the DCVSA selects nodes 16, 61, and 63 to
locate three PV generation units with a total installed capacity of 3828.46 kWp. This result
implies that the DCVSA installs about 23.33 kWp of additional power when compared with
the DCCBGA solution. This additional power implies an increment of US$2946.13 per year
of operation in the total investment and operating costs in PV generation units; however,
this additional investment allows a reduction in the total grid energy purchasing cost
of about US$/year 3467.91 when compared to the DCCBGA, which clearly justifies the
additional investment in PV sources.

Table 4. Numerical results in the AC version of the IEEE 69-bus system.

Method Site and Size (Node, MVAr) Acost (US$/year) f1 (US$/year) f2 (US$/year)

Bench. Case - 3,878,199.93 3,878,199.93 0
DCCBGA {24(0.53255), 61(1.89542), 64(1.37716)} 2,825,783.32 2,345,138.38 480,644.95

DCVSA {16(0.26321), 61(2.27190), 63(1.29335)} 2,825,261.56 2,341,670.47 483,591.08

In contrast, Figure 7 outlines the total reduction of the grid operative costs reached by
both the proposed and comparative methods when compared to the benchmark case. Note
that the DCCBGA and DCVSA allows reductions of more than 27% of the total network costs;
nonetheless, the DCVSA solution allows a reduction of 27.15%, i.e., US$/year 1,052,938.37,
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which represents an additional 0.01345% of improvement to the solution obtained by
the DCCBGA.
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Figure 7. Percentage of reduction of the total grid operative costs in the IEEE 69-bus system in its
AC version.

To validate the effectiveness and robustness of the proposed optimization approach,
100 consecutive evaluations of the whole optimization strategy were made in the IEEE 69-bus
system. Numerical results obtained from these evaluations are reported in Table 5. The
results in this table proves that the DCVSA depicts a general improvement of the objective
function of 0.0185% (i.e., US$521.76 per year of operation when compared with the DC-
CBGA). Regarding the average and worst solutions, it demonstrates a general improvement
of US$/year 458.64 and US$/year 10,318.58 when compared with the same data of the
DCCBGA. This verifies the superiority of the proposed methodology to solve the problem
of location and optimal sizing of PV generation units in the IEEE 69-bus system, with
respect to the best, average, and worst values of the objective function of total annual
operation costs in comparison to the classical DCCBGA.

Table 5. Numerical performance comparison between the DCVSA and DCCBGA in the IEEE 69-bus
system after 100 consecutive evaluations.

Method Best (US$/year) Mean (US$/year) Worst (US$/year) SD (US$/year) Avg. Time (s)

DCCBGA 2,825,783.32 2,829,498.36 2,844,469.50 2827.18 22.36

DCVSA 2,825,261.56 2,829,039.72 2,834,150.92 2666.56 887.64

With regard to the standard deviation, the proposed DCVSA has a value of
US$/year 2666.56 (see Table 5), which corresponds to a variation of 0.0943% concerning the
average value; however, this standard deviation is at least US$/year 160.62 better than the
same value reached with the DCCBGA. This demonstrates the repeatability properties of
the DCVSA to solve the problem raised in this research document; if it is executed multiple
times for the IEEE 69-bus system, it is likely that the proposed methodology will generate
the best average response or an answer close to this value.

Figure 8 compares the active power generation in the slack source for the benchmark
case and the solution obtained with the proposed DCVSA, as well as places in contrast
to the maximum current of the system for the same cases of simulation. As expected,
the behavior of the active power generation in this source follows the same performance
reported by the IEEE 33-node test feeder. Regarding the current behavior, it is possible to
observe that the maximum value for this variable is equal in both simulation cases, since
the peak demand consumption appears in hours 20 and 21. The maximum current for this
system is in the branch that connects nodes 1 and 2 with a value of 393.0195 A.
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Figure 8. Impact of the PV inclusion in the IEEE 69-bus system: (a) power injections in the slack
source, and (b) maximum current performance.

Finally, Figure 9 reveals the maximum and minimum voltage behaviors in the IEEE
69-bus system when integrated with the PV generation sources.
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Figure 9. Voltage behavior during the day for the IEEE 69-bus system: (a) maximum voltage
magnitude and (b) minimum voltage magnitude.

From Figure 6, we note that the voltage for all time periods satisfies the voltage
regulation constraint as it is within ±10%. Furthermore, from hour 11 to 15, when the PV
units inject more than 70% of their capacity, the voltage at node 63 exceeds the voltage at
the slack node, reaching a maximum value of 1.0419 pu; while the minimum voltage value,
as foreseen, is found at node 65, at hours 20 and 21, with a value of 0.9092 pu when the PV
generation resource is not available.

5.3. Case 2: Results in the DC IEEE 33-Bus System

To demonstrate the versatility of the proposed DCVSA to solve the problem of the
optimal siting and sizing PV sources in electrical networks, here, we present the application
of this optimization method to the DC version of the IEEE 33-bus system reported in [53].
To obtain the DC version of this system, it is necessary to neglect all the reactive demand
powers and reactances of the distribution lines. Regarding the operative technology, the



Sensors 2022, 22, 851 19 of 26

electrical configuration of the DC equivalents is monopolar [54], i.e., where the voltage
difference between a positive pole and a neutral cable is the same that is assigned for the
AC grid.

Table 6 lists the comparison between the benchmark case and DCVSA solution. Nu-
merical results specify that the proposed optimization method finds an objective function
value of US$/year 2,662,425.32 by locating three PV generation units in nodes 9, 15, and 31.
These generators have a total power installed capability of 3587.26 kWp, which permits a
reduction of 26.94% with respect to the benchmark case, i.e., US$/year 981,617.69.

Table 6. Numerical results in the DC version of the IEEE 33-bus system.

Method Site and Size (Node, MVAr) Acost (US$/year) f1 (US$/year) f2 (US$/year)

Bench. Case - 3,644,043.01 3,644,043.01 0

DCVSA {9(0.58031), 15(1.29137), 31(1.71559)} 2,662,425.32 2,209,300.38 453,124.93

As per the simulation scenarios in the AC test feeders, to verify the effectiveness
and robustness of the proposed optimization method in DC grids, we evaluate the DCVSA
for the IEEE 33-bus system 100 consecutive times. The best response found was
US$/year 2,662,425.32, a mean value of US$/year 2,664,496.59, and the worst result was
US$2,667,733.661, with a standard deviation of US$/year 1652.82 (this represents a varia-
tion of 0.062% with respect to the average solution) and a processing time of 76.86 s. These
results render it possible to analyze the following: (i) the proposed methodology is likely
to generate the best average response or a response very close to this value in a radius of
less than the US$/year 1700; (ii) if the worst solution given by the DCVSA is implemented,
there will be a reduction of 26.79%, i.e., US$/year 973,547.57 when compared to the bench-
mark case; and (iii) the difference between the best and worst values is approximately
US$8070.12 per year of operation, which is less than 0.25% of the annual operating cost in
the benchmark case.

Figure 10 presents the behavior of the power generation in the slack bus before and
after the location of the PV generation sources; it also includes the current behavior of the
system in both simulating conditions.

As anticipated, the generation in the slack node for the benchmark case follows the
behavior of the demand curve measured in the substation terminals; however, when the PV
generators are installed, the power output in the slack source is reduced considerably as the
PV generation increases. Note that, in the period of time 14 when the renewable generation
is maximum, the slack generation reaches a value of zero. It is worth mentioning that
the slack generation curve in the DC version of the IEEE 33-bus system is about 75.74 kW
lower than the AC case during the peak load scenario. This can be attributed to reactive
power not flowing through the lines in the case of the DC grid, which implies that the
level of energy losses in the DC grid equivalent is considerably minor than the AC grid as
demonstrated in [55].

Figure 10 also presents the behavior of the maximum current flow in this test feeder.
In the benchmark case, the maximum current flow occurs at the line that connects the
nodes 1 and 2. This current exhibits the same performance of the power generation in the
substation bus since it corresponds to the division between the output power and output
voltage in this node; additionally, the maximum current value is found at periods 20 and 21
with a magnitude of 304.1278 A. However, after integrating the PV generation provided by
the DCVSA, the maximum current that circulates through the system occurs in the network
section 1–2 from hour 1 to 10 and from hour 16 to 24, since when the PV units supply more
than 70% of their power, i.e., from the periods 11 to 15, the maximum current circulating
through the system appears in the branch connecting the nodes 5 and 6. This occurs as
there is no reactive power flow, and subsequently, the current in the network section 1–2
tends to follow the same behavior as the power generated in the slack node. Similarly,
upon observing that the PV units are located in the two farthest branches of the system and
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considering the aforementioned situation, it seems reasonable that the greatest current is in
the branch that connects nodes 5 and 6 since they join both branches at node 6.
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Figure 10. Impact of the PV inclusion in the DC version of the IEEE 33-bus system: (a) power
injections in the slack source, and (b) maximum current performance.

On the other hand, Figure 11 details the minimum and maximum voltage values for
the IEEE 33-node system in its DC version when all the PV generation units provided by
the DCVSA are installed.
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Figure 11. Voltage behavior during the day for the IEEE 33-bus system in its DC version: (a) maximum
voltage magnitude and (b) minimum voltage magnitude.

From Figure 11, it is observed that all the nodal voltages in this test feeder are between
their minimum and maximum regulation bounds, i.e., ±10%. Additionally, from hours 11
to 15, when the PV units inject more than 70% of their capacity, the voltage at node 14
exceeds the voltage at slack node, reaching a maximum value of 1.0539 pu; while the
minimum voltage value, as expected, is found at node 18, at hours 20 and 21, with a value
of 0.9339 pu when the PV generation resource is not available.
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5.4. Case 2: Results in the DC IEEE 69-Node System

This simulation case applies the proposed DCVSA to the IEEE 69-bus system in its DC
version (details about the DC conversion of this test feeder are reported in [53]).

Table 7 showcases the optimal location and sizes of the PV generation units for this
test feeder. The nodes selected were 23, 62, and 63, with an installed total generation
capability of 3730.81 kWp. With these generation sources, the system’s objective function is
US$/year 2,785,538.58, which corresponds to a reduction of 27.03% in the total grid opera-
tive costs, i.e., US$1,031,881.8 per year of operation with respect to the benchmark case.

Table 7. Numerical results in the DC version of the IEEE 69-bus system.

Method Site and Size (Node, MVAr) Acost (US$/year) f1 (US$/year) f2 (US$/year)

Bench. Case - 3,817,420.38 3,817,420.38 0

DCVSA {23(0.77201), 62(2.34027), 63(0.61853)} 2,785,538.58 2,314,281.30 471,257.28

It is worth mentioning that, after evaluating the DCVSA in this test feeder 100 con-
secutive times, the following results are determined: the best response was US$/year
2,785,538.58, the average solution value was US$/year 2,789,785.22, and the worst solution
was US$/year 2,804,251.69, which has a standard deviation of US$/year 2710.94 and a
processing time of 269.22 s. These results allow the observation of the following: (i) the
proposed methodology is likely to generate the best average response or a response very
close to this value in a radius of less than the US$/year 2800; (ii) if the worst solution given
by DCVSA is implemented, there will be a reduction of 26.54%, i.e., US$/year 1,013,168.69
when compared to the benchmark case; and (iii) the difference between the best and worst
values is approximately US$ 18,713.11 per year of operation, which is less than 0.49% of the
annual operating cost in the benchmark case.

Figure 11 reveals the behavior of the active power generation in the slack bus for the
benchmark case as well as for the solution provided by our proposed DCVSA. Additionally,
this picture also presents the maximum current flow through the system for both simulation
cases. As predetermined, the behavior of these variables in the IEEE 69-node test feeder
is quite similar to the behavior analyzed in the IEEE 33-bus system. Note that the slack
generation arrives at a value of zero when the generation in the PV units reached the
maximum value (see hour 14); and the current in the branch that leaves the substation node
is also zero in the same period since it is directly proportional to the power generation in
the slack source. Moreover, the magnitude of the power generation in the slack source is
reduced about 81.53 kW during the peak demand condition as a result of the nonexistence
of the reactive power effects on the grid.

Additionally, Figure 12 presents the behavior of the maximum current in the IEEE
69-bus system in its DC version. Note that the maximum current expected in this system
is equal for the benchmark case as well as for the DCVSA solution. The peak current
occurs between the periods of time 20 and 21 when the demand power is maximum with
a magnitude of 318.6598 A. It is worth noting that the branch current is maximum at the
branch that connects nodes 1 and 2 from the hours of 1 to 9 and 17 to 24. However, due to
the high penetration of the PV generation in the remaining periods, the maximum current
appears in the branch connecting nodes 61 and 62; this is due to the location of the PV
sources in nodes 61 and 63, which imply that, when the renewable generation output
increases, the current in their area of influence will increase as well.
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Figure 12. Impact of the PV inclusion in the DC version of the IEEE 69-bus system: (a) power
injections in the slack source and (b) maximum current performance.

Figure 13 illustrates the upper and lower voltage magnitudes reached in the IEEE
69-bus system in its DC version when all the PV sources have been installed on this grid.
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Figure 13. Voltage behavior during the day for the IEEE 69-bus system in its DC version: (a) maximum
voltage magnitude, and (b) minimum voltage magnitude.

Note that, in the period of time 14, the voltage magnitude exceeds the voltage output
at the slack source with a magnitude of 1.0442 pu. This appears at node 63, which has
connected two PV generation units in its area of influence. Furthermore, as per the predicted
variables, the worst voltage profile is experienced at node 65 with for the peak load
condition (hours 20 and 21), where the PV generation availability is zero.

It is important to highlight that, for the DC versions of the test feeders studied,
numerical validations were not presented with the comparative methods based on GAMS
and DCCBGA implementations, since, as demonstrated in the AC simulation cases, the
proposed DCVSA was highly superior with regard to the final objective function value.
Moreover, in the current literature, there were no reports solving the analyzed problem in
DC grids, which renders the selection of a fair comparative methodology to compare our
proposed algorithm a difficult task.
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6. Conclusions and Future Works

This research article presented a master–slave methodology to solve the location and
dimensioning problem of PV systems in distribution networks through the application
of the discrete-continuous version of the vortex search algorithm. In the master stage,
the DCVSA was entrusted with defining the PV units’ optimal location and sizing, while
in the slave stage, the value of the fitness function was determined using the matricial
backward /forward power flow method. The objective function analyzed focuses on the
minimization of the total annual operating costs which was composed of the annualized
costs of purchasing energy at the substation node with the annualized investment costs
for the PV units, including their maintenance costs. The numerical results demonstrated
the applicability and efficiency of the optimization method developed for the studied test
systems. The main findings are listed below.

X The reduction from the base case reached by DCVSA was 27.04%, and 27.15% for the
test systems in their AC version; in their DC versions, the reductions were 26.94% and
27.03%, respectively.

X The proposed methodology obtained the lower standard deviation values when
solving the PV units’ location and sizing problem for the IEEE 33- and IEEE 69-node
test systems in their AC versions, with the values of US$/year 1154.08 and US$/year
2666.46, respectively. These values were considerably lower than the comparative
DCCBGA, which confirmed the effectiveness and robustness of the proposed DCVSA
to solve the studied problem ensuring that at each evaluation, the final objective
function value will produce a small variation. In the case of the DC grids, these values
were US$/year 1652.82 and US$/year 2710.94.

X Regarding the voltage profiles of both systems in their AC version, it was observed
that, during the period of maximum PV energy injection, i.e., hour 14, the voltage at
some nodes is above the voltage at the substation node, with the magnitudes 1.0291 pu
and 1.0419 pu, respectively, while the minimum voltage values found during the time
period of maximum power demand and minimum PV energy injection, i.e., in hours
20 and 21, had values of 0.9038 pu and 0.90919 pu, respectively. The same behavior
was experienced in the DC grid equivalents. The most significant characteristic of
these results is that it recorded evidence that the voltage regulation bounds assigned
in ±10% of the nominal voltage were always fulfilled by the solutions reached by
the DCVSA.

X The proposed solution methodology is independent of the number of nodes of the AC
or DC network under study; however, in the number of nodes of the grid increase,
the solution space size increases as well; this implies that the total processing times
required to identify the optimal solution will also increase; however, these increments
can be from a few minutes to hours, which is not a critical aspect in distribution system
planning projects where the solution quality assumes the greatest importance instead
of the total processing times.

For future works, it will be possible to examine and potentially solve the following:
(i) solve the studied problem with new metaheuristic methods with high numerical per-
formance as in the cases of the crow search algorithm, whale optimization algorithm, or
black-widow algorithm, among others; (ii) extend the problem of the optimal location and
sizing of PV generation units to bipolar DC grids with unbalanced operating characteristics;
and (iii) formulate the problem studied in this research to three-phase distribution networks
considering multiple constant power loads with ∆ and Y connections.
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26. Radosavljević, J.; Arsić, N.; Milovanović, M.; Ktena, A. Optimal placement and sizing of renewable distributed generation using
hybrid metaheuristic algorithm. J. Modern Power Syst. Clean Energy 2020, 8, 499–510. [CrossRef]

27. Gil-González, W.; Montoya, O.D.; Grisales-Noreña, L.F.; Perea-Moreno, A.J.; Hernandez-Escobedo, Q. Optimal placement and
sizing of wind generators in AC grids considering reactive power capability and wind speed curves. Sustainability 2020, 12, 2983.
[CrossRef]

28. Huy, P.D.; Ramachandaramurthy, V.K.; Yong, J.Y.; Tan, K.M.; Ekanayake, J.B. Optimal placement, sizing and power factor of
distributed generation: A comprehensive study spanning from the planning stage to the operation stage. Energy 2020, 195, 117011.
[CrossRef]

29. Gil-González, W.; Garces, A.; Montoya, O.D.; Hernández, J.C. A mixed-integer convex model for the optimal placement and
sizing of distributed generators in power distribution networks. Appl. Sci. 2021, 11, 627. [CrossRef]

30. Elkadeem, M.R.; Elaziz, M.A.; Ullah, Z.; Wang, S.; Sharshir, S.W. Optimal Planning of Renewable Energy-Integrated Distribution
System Considering Uncertainties. IEEE Access 2019, 7, 164887–164907. [CrossRef]

31. Ali, A.; Raisz, D.; Mahmoud, K.; Lehtonen, M. Optimal Placement and Sizing of Uncertain PVs Considering Stochastic Nature of
PEVs. IEEE Trans. Sustain. Energy 2020, 11, 1647–1656. [CrossRef]

32. Khoso, A.H.; Shaikh, M.M.; Hashmani, A.A. A New and Efficient Nonlinear Solver for Load Flow Problems. Eng. Technol. Appl.
Sci. Res. 2020, 10, 5851–5856. [CrossRef]

33. Kim, Y.; Kim, K. Accelerated Computation and Tracking of AC Optimal Power Flow Solutions using GPUs. arXiv 2021,
arXiv:2110.06879.

34. Montoya, O.D.; Gil-González, W. Dynamic active and reactive power compensation in distribution networks with batteries: A
day-ahead economic dispatch approach. Comput. Electr. Eng. 2020, 85, 106710. [CrossRef]

35. Chen, X.; Li, Z.; Wan, W.; Zhu, L.; Shao, Z. A master–slave solving method with adaptive model reformulation technique for
water network synthesis using MINLP. Sep. Purif. Technol. 2012, 98, 516–530. [CrossRef]

36. Montoya, O.D.; Gil-González, W.; Giral, D.A. On the Matricial Formulation of Iterative Sweep Power Flow for Radial and Meshed
Distribution Networks with Guarantee of Convergence. Appl. Sci. 2020, 10, 5802. [CrossRef]

37. Herrera-Briñez, M.C.; Montoya, O.D.; Alvarado-Barrios, L.; Chamorro, H.R. The Equivalence between Successive Approximations
and Matricial Load Flow Formulations. Appl. Sci. 2021, 11, 2905. [CrossRef]

38. Shen, T.; Li, Y.; Xiang, J. A graph-based power flow method for balanced distribution systems. Energies 2018, 11, 511. [CrossRef]
39. Lun, T.; Wei, T.; Chang, X.; Shumin, M.; Liang, W.; Xia, Y. Network connectivity identification method based on incidence matrix

and branch pointer vector. In Proceedings of the 2019 IEEE Innovative Smart Grid Technologies Asia (ISGT Asia), Chengdu,
China, 21–24 May 2019; pp. 429–433.

40. Zhang, S.; Yan, Y.; Bao, W.; Guo, S.; Jiang, J.; Ma, M. Network topology identification algorithm based on adjacency matrix.
In Proceedings of the 2017 IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia), Auckland, New Zealand, 4–7 December
2017; pp. 1–5.

41. Simpson-Porco, J.W.; Dörfler, F.; Bullo, F. On resistive networks of constant-power devices. IEEE Trans. Circuits Syst. II Express
Briefs 2015, 62, 811–815. [CrossRef]

42. Sahoo, R.R.; Ray, M. PSO based test case generation for critical path using improved combined fitness function. J. King Saud
Univ.-Comput. Inform. Sci. 2020, 32, 479–490. [CrossRef]

43. Zhang, X.; Beram, S.M.; Haq, M.A.; Wawale, S.G.; Buttar, A.M. Research on algorithms for control design of human–machine
interface system using ML. Int. J. Syst. Assur. Eng. Manag. 2021, 1–8. [CrossRef]

44. Roshan, R.; Porwal, R.; Sharma, C.M. Review of search based techniques in software testing. Int. J. Comput. Appl. 2012, 51, 42–45.
[CrossRef]

45. Harman, M.; Jia, Y.; Zhang, Y. Achievements, open problems and challenges for search based software testing. In Proceedings of
the 2015 IEEE 8th International Conference on Software Testing, Verification and Validation (ICST), Graz, Austria, 13–17 April
2015; pp. 1–12.

46. Anzola, D.; Castro, J.; Giral, D. Herramienta de simulación para el análisis de flujo óptimo clásico utilizando multiplicadores de
Lagrange. Trans. Energy Syst. Eng. Appl. 2021, 2, 1–16. [CrossRef]
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