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Abstract: Neurodevelopmental disorders (NDD) are impairments of the growth and development of
the brain and/or central nervous system. In the light of clinical findings on early diagnosis of NDD
and prompted by recent advances in hardware and software technologies, several researchers tried to
introduce automatic systems to analyse the baby’s movement, even in cribs. Traditional technologies
for automatic baby motion analysis leverage contact sensors. Alternatively, remotely acquired video
data (e.g., RGB or depth) can be used, with or without active/passive markers positioned on the
body. Markerless approaches are easier to set up and maintain (without any human intervention) and
they work well on non-collaborative users, making them the most suitable technologies for clinical
applications involving children. On the other hand, they require complex computational strategies
for extracting knowledge from data, and then, they strongly depend on advances in computer vision
and machine learning, which are among the most expanding areas of research. As a consequence,
also markerless video-based analysis of movements in children for NDD has been rapidly expanding
but, to the best of our knowledge, there is not yet a survey paper providing a broad overview of how
recent scientific developments impacted it. This paper tries to fill this gap and it lists specifically
designed data acquisition tools and publicly available datasets as well. Besides, it gives a glimpse of
the most promising techniques in computer vision, machine learning and pattern recognition which
could be profitably exploited for children motion analysis in videos.

Keywords: baby motion analysis; early diagnosis; neurodevelopmental disorders; machine learning;
deep learning

1. Introduction

Neurodevelopmental disorders (NDD) are impairments of the growth and develop-
ment of the brain and/or central nervous system. They encompass several conditions,
including intellectual developmental disorders, communication disorders, Autism Spec-
trum Disorder (ASD), Attention Deficit Hyperactivity Disorder (ADHD), specific learning
disorders, and motor disorders. The prevalence has been increasing during the last two
decades and it has been recently proven that preterm infants have an increased risk of
neurodevelopmental disorders [1]. The human brain takes about forty years to reach
its full-blown adult configuration, and then, assessments need to be age-specific, that is,
the assessment techniques and assessment criteria should be adapted to the age-specific
properties of the infant brain [2]. Anyway, there is a growing appreciation that the ori-
gins of these disorders are at the earliest stages of brain development, even prenatally [3].
The early origin of the neurodevelopmental disorders would potentially allow their early
detection, and hence, an early onset of intervention, that is, intervention in a time window
characterized by high neural plasticity. Gold standard methods exist in clinical practice for
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early diagnosis of NDD and they have been very well described in a recent survey paper [2].
Concerning motor assessments, three methods are commonly used to predict outcome: gen-
eral movement assessment (GMA) [4], the Test of Infant Motor Performance (TIMP) [5] and
the Infant Motor Profile (IMP) [6]. The GMA method provides an assessment of the sponta-
neous movements, called General movements (GMs), that are present from early fetal life
onwards until the end of the first half a year of life. GMs are complex, occur frequently, and
last long enough to be observed properly but, if the nervous system is impaired, GMs lose
their complex and variable character and become monotonous and poor. Normally, they are
the predominant movement patterns in an awake infant at 3 to 5 months [7]. IMP method
evaluates motor abilities, movement variability, ability to select motor strategies, movement
symmetry, and fluency. The IMP consists of 80 items and is applicable to children from
3 to 18 months. The TIMP method assesses the posture and selective control of movement
needed by infants under four months of age for functional performance in daily life. Many
studies demonstrated that cerebral palsy (CP) or autistic (ASD) children show disturbances
of movement that could be detected clearly at the age of 4–6 months, and sometimes even
at birth [8]. Attention Deficit Hyperactivity Disorder (ADHD) was found to be predicted in
the first years of life by delays in gross motor milestones, abnormal GMs and less motor
maturity [9–11]. Nearly half of the pediatric chronic pain patients suffer from comorbid
mental health disorders, including mood and anxiety disorders, autism and ADHD. As a
consequence, also monitoring pain in infants can help to predict NDD [12]. An overview of
early behavioural markers for neurodevelopmental disorders in the first three years of life
can be found in [13].

In the light of the aforementioned clinical findings and prompted by recent advances
in hardware and software technologies, several researchers tried to introduce automatic
systems (which should overcome differences in movements assessments of raters with
various levels of experience [14]) to analyse the baby’s movements, even in cribs.

Most of the existing technologies for baby’s motion analysis are based on contact phys-
ical sensors [15]. They include force sensors, accelerometers, gyroscopes, extensometers,
inclinometers, goniometers, electromyography [16]. Physical sensors assure high temporal
resolution and very high accuracy but their use is discouraged by the sparsity of spatial
data, difficulties to get consistent positioning and possible modifications of the behaviours
to be observed. Alternatively, active/passive visual markers can be positioned on the
children and acquired by optical devices. Their use is discouraged by the difficulties to get
consistent positioning and then by long set-up times [17]. In fact, wearable physical sensors
may alter baby movement productions. Under this perspective, markerless video-based ap-
proaches, which leverage data contents acquired from RGB cameras or Depth devices (e.g.,
Microsoft Kinect/Intel RealSense, etc.) in an ecological way (i.e., without any additional
elements in the scene), become much more attractive for a reliable assessment of move-
ments in children [18]. On the other hand, they require much more computational efforts
and this brought researchers to initially concentrate on specific or easily detectable move-
ments (i.e., exhibiting periodicity), for example, for spotting in real-time the occurrences
of anomalies and providing prompt warnings to parents or healthcare staff [19]. Typical
examples are systems that detect the presence or absence, respectively, of periodic move-
ments of parts of the body—e.g., the limbs in case of clonic seizures and the chest/abdomen
in case of apneas [20]. Other examples refer to tools for Neonatal Intensive Care Units
(NICU) for detecting discomfort moments [21] and to estimate respiratory rate [22–24].
Most recently, methodological and technological progress in computer vision, machine
learning and pattern recognition introduced disrupting improvements in automatic human
activity recognition in videos (even relying on data acquired by handheld devices, such
as smartphones [25]) and enabled the development of various automated applications in
different fields, such as security and surveillance, healthcare, sports, home automation and
recommender systems [26,27]. The baby’s motion analysis in videos for the early diagnosis
of NDD benefited from this scientific fervor as well. Some of the related works dealing with
GMA issues have been recently summarized in three systematic searches of papers [28–30]
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whereas those addressing the specific clinical task of detecting ASD features have been
reviewed in [31]. The aforementioned survey papers are very interesting but they gave a
task-specific (e.g., GMA or ASD assessment) view of the exploited computer vision and
machine learning methods. This makes it difficult to understand how proposed approaches
can be transferred to other tasks, involving different disorders and ages. A more global
and structured vision of the problem would certainly be desirable to incentive research and
its applicative effects but, unfortunately, to the best of our knowledge, the literature lacks
a manuscript giving a broader overview of the video-based analysis of children motion
for assessment of NDD. This paper fills this gap by providing a survey on advanced com-
putational methods for early NDD diagnosis starting from temporal sequences of 2D/3D
data. Besides, available software tools and public datasets are also considered. It gives
also a glimpse of the most promising techniques in computer vision, machine learning
and pattern recognition which could be exploited for children motion analysis in videos.
The rest of the paper is organized as follows: Section 2 introduces a taxonomy to classify
existing approaches in the scientific literature for movement assessment in children for early
NDD diagnosis. Then, Section 3.2 introduces existing tools for data acquisition, collection
and labelling whereas Section 4 discusses approaches for assessment of movements in
newborns, infants and toddlers. The subsequent Section 5 provides a glimpse of the very
latest methodologies for movement analysis which could be transferred in the considered
domain of the early detection of NDD in children. Finally, Section 6 concludes the paper.

2. Taxonomy

Different categorisations of works dealing with the analysis of movements of infants
for early NDD diagnosis can be carried out. The most straightforward one is based on
the technology used to acquire input video data: RGB cameras, depth sensors or both.
Acquisition devices can be handheld such as smartphones or fixed such as surveillance
cameras. Another categorisation option relies on the acquisition conditions. Some works
consider setups in which the children are in a hospital or an NICU. In these cases, children
are in cribs, generally in the supine position, and then, acquisition devices and algorithms
are designed to work properly according to this. Self-occlusions and other issues should be
addressed to properly acquire the whole-body shape (for example, due to wearing diapers
or sensors for monitoring vital parameters). Sometimes additional constraints are required
to improve their robustness such as bedsheets of uniform colour and so on. Other works
deal with children monitoring in more unconstrained environments such as homes and
treatment centres. Acquisitions were carried out while adults are close to the child who can
interact with the objects in the scene (e.g., puppets, tablets, etc.). Occlusions often happen
and also lighting conditions change, sometimes even during the same acquisition session.
Children can assume any possible posture (seating, standing, lying, etc.).

Alternative taxonomies can be pivoted either on the computer-vision/machine learn-
ing tasks actually addressed (data collection and labelling, static pose estimation, spatiotem-
poral modelling of motion, action recognition) or on the high-level clinical tasks pursued
(ASD, CP or ADHD detection, pain quantification, monitoring rehabilitation/training
sessions, etc.). All the aforementioned categorisations are certainly valid but, since the
assessment techniques and criteria have to be adapted to the age-specific properties of
the infant’s brain, in this paper, the categorisation will be carried out considering the age
of involved children. It is the main element that pilots the architectural and algorithmic
choices: acquisition setups depend on the acquired ability to walk; motion patterns are
related to the age (according to previously mentioned assessment theories) and as conse-
quence algorithms have to capture age-specific motion features. In the light of the above,
in this paper, three different age ranges are considered to categorise related works in the
literature: newborns (up to 2 months old), infants (2 months to 1-year-old) and toddlers
(from 1 to 4 years old).

Figure 1 summarizes the possible categorisation options (the chosen one is circled
in red).
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Figure 1. Introduced taxonomy.

3. Data Acquisition, Collection and Labelling

The first steps towards the design of any video-based framework, for automatic
motion analysis, are the setup of the acquisition devices, the secure collection and the
privacy-preserving storage of data and, eventually, their annotation by experts in order
to feed supervised machine learning algorithms. Under these premises, in the following
subsections, existing acquisition tools and the most relevant annotated benchmark datasets
specifically designed for baby motion analysis are described.

3.1. Acquisition/Recording Tools

It is quite difficult to find tools properly designed and set up for video-based analysis
of children’s motor performance. In particular, two systems are described in the following.
In chronological order, the first one is the AVIM system [32], a monitoring system developed
in C# language using the OpenCV image processing library and specifically designed for
an objective analysis of infants from 10 days to the 24th week of age. It acquires and records
images and signals from a webcam and a microphone but also allows users to perform
both audio and video editing. Very useful functionalities are the possibility of adding
notes during the recording and to play/cut/copy and assess on-the-fly the sequences of
interest. Besides, it extracts from the image the 2D position of the body segments to help
the study of the movements according to amplitude, average speed and acceleration. The
body analysis can concentrate either on the lower body, based on three points only, or on
the full body by taking into account 8 points (right shoulder, left shoulder, left hand/wrist,
base of the sternum, pubis/genitals, tight foot/ankle, left foot/ankle). It is worth noting
that in both modalities (lower body or full body), all the points are manually placed and
then tracked over time in order to extract some motion parameters according to the clinical
literature are automatically extracted [33]. Some acoustic parameters (and related statistics)
are automatically estimated as well (fundamental frequency, first two resonance frequencies
of the vocal tract, kurtosis, skewness and time duration of each cry unit).

The second device deserving a mention is MOVIDEA [34] which has been designed for
semi-automatic video-based analysis of infants’ motor performance. It includes a camera
placed 50 cm above the child, at chest height, and software designed to extract kinematic
features of limbs of a newborn (up to 24 weeks old) at home while lying on a bed, upon a
green blanket. A Graphical User Interface completes the system and it allows the software
operator to interact with the system. At first, the operator has to identify the limb by
selecting the central point of the region of interest (i.e., hand, foot). The system then tracks
the selected point frame by frame using the Kanade–Lucas–Tomasi algorithm [35] and
movement features of extracted trajectories are compared with the reference ones for the
identification of pathological motion patterns [36].
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3.2. Publicly Available Datasets

In general, there is a lack of publicly available benchmark databases specifically built
for children movement analysis. This is mainly due to privacy and security considerations
that pose restrictions on ethics approval making this way very difficult to train robust
models from scratch. Anyway, some exceptions exist. For the purpose of this survey, three
different types of publicly available databases can be mentioned depending if they are
oriented to build up models aiming at:

• Estimating the child pose;
• Comparing normative behaviours to those of monitored children in order to suggest

further investigations;
• Recognizing atypical behaviours in order to directly get an NDD diagnosis.

Concerning pose estimation in newborns, the babyPose dataset [37] contains data
relevant to preterm children’s movement acquired in NICUs. The data consist of 16 depth
videos recorded during the actual clinical practice. Each video consists of 1000 frames (i.e.,
100 s). The dataset was acquired at the NICU of the Salesi Hospital, Ancona (Italy). Each
frame was annotated with the limb-joint location. Twelve joints were annotated, i.e., left
and right shoulder, elbow, wrist, hip, knee and ankle.The database is freely accessible at
http://doi.org/10.5281/zenodo.3891404 (accessed on 10 December 2021).

A benchmark dataset for a standardized evaluation of systems for pose estimation
in infants has been made available for research purposes at http://s.fhg.de/mini-rgbd
(accessed on 10 December 2021), namely the Moving INfants In RGB-D (MINI-RGBD
dataset) [38] data set. It contains images of infants up to the age of 7 months lying in supine
position, facing the camera. It has been created using the Skinned Multi-Infant Linear body
model (SMIL) [39], a system able to build realistic infant body sequences (with both RGB
and depth images) and to provide also a precise ground truth 2D and 3D joint positions.
The dataset was bolstered by a recent study in [40] proving that movement assessment from
videos of computed 3D infant body models is equally effective compared to the rating on
conventional RGB videos. In particular, the MINI-RGBD dataset consists of 12 sequences of
continuous motions (640 × 480 resolution at 25 FPS), each 1000 frames long. The sequences
are divided into different levels of difficulty: lying on back, moving arms and legs, mostly
besides the body, without crossing, (ii) medium: slight turning, limbs interact and are
moved in front of the body, legs cross, and (iii) difficult: turning to sides, grabbing legs,
touching the face, directing all limbs towards camera simultaneously.

A hybrid synthetic and real infant pose is the so-called SyRIP dataset [41]. The dataset
includes a diverse set of real and synthetic infant images, which benefits from (1) appearance
and poses of real infants in images from the web (from YouTube and Google Images), and
(2) the augmented variations in viewpoints, poses, backgrounds, and appearances by
synthesizing infant avatars. The dataset is available at https://github.com/ostadabbas/
Infant-Pose-Estimation (accessed on 10 December 2021).

Concerning ‘normative’ reference datasets, the MIA dataset (https://vrai.dii.univpm.
it/mia-dataset (accessed on 10 December 2021)) consists in the state vector (“in movement”
or “not in movement" for each of the 4 limbs), along with the corresponding timestamp,
derived from depth measurements collected by an RGB-D sensor placed perpendicularly
above the child (a male hospitalized in an NICU) lying in a supine position on the crib, at a
distance of 70 cm normally directed to the subject. Unfortunately, no video was provided
for privacy reasons but, anyway, the provided state vector could be used for training
models to be subsequently tested on data extracted from videos.

Recently, a ‘normative’ reference database of infant movements has been created using
85 videos found online [42]. Two physical therapists estimated the age of the infants. Esti-
mated mean age was 9.67 weeks and standard deviation 6.26 weeks. Using this normative
database, OpenPose tool [43] and a Gaussian estimator, the authors calculated how much
19 high-risk children deviate from the typical movements of healthy infants. Code and
data referenced in the manuscript are provided at https://github.com/cchamber/Infant_
movement_assessment/ (accessed on 10 December 2021).

http://doi.org/10.5281/zenodo.3891404
http://s.fhg.de/mini-rgbd
https://github.com/ostadabbas/Infant-Pose-Estimation
https://github.com/ostadabbas/Infant-Pose-Estimation
https://vrai.dii.univpm.it/mia-dataset
https://vrai.dii.univpm.it/mia-dataset
https://github.com/cchamber/Infant_movement_assessment/
https://github.com/cchamber/Infant_movement_assessment/


Sensors 2022, 22, 866 6 of 23

The most used publicly available dataset of videos for Autism Diagnosis is named
Self-Stimulatory Behaviours (SSBD dataset) [44]. It consists of videos of children exhibiting
self-stimulatory (‘stimming’) behaviours commonly used in autism diagnosis. These videos,
posted by parents/caregivers on public domain websites, are collected and annotated for
the stimming behaviours. These videos are extremely challenging for automatic behaviour
analysis as they are recorded in uncontrolled natural settings. The dataset contains 75 videos
with an average duration of 90 s per video, grouped under three categories of stimming
behaviours: arm flapping, head banging, and spinning. The dataset, the terms of use
and the Matlab script file to generate baseline results (making use of a combination of
STIP, HIG/HOF and Bag-of-Words, plus SVM for classification) are available at https:
//rolandgoecke.net/research/datasets/ssbd/ (accessed on 10 December 2021).

The Multimodal Dyadic Behaviour (MMDB) dataset [45] is a unique collection of
multimodal (video, audio, and physiological) recordings of the social and communicative
behaviour of toddlers (aged 15–30 months). The dataset contains 160 sessions of 5-minute
interaction from 121 children. All multimodal signals are synchronized, including 2 frontal
view Basler cameras (1920 × 1080 at 60 FPS), an overhead view Kinect (RGB-D) camera,
8 side view and 3 overhead view AXIS cameras (640 × 480 at 30 FPS), an omnidirec-
tional and a cardioid microphone, 2 wireless lapel microphones, 4 Affectiva Q-sensors for
electrodermal activity and accelerometry, worn by both the adult and the child.

Another dataset commonly used to train and test machine learning algorithms to
classify ASD-related behaviours is the one introduced by Tariq et al. [46]. This dataset was
collected through a mobile web portal built up by some researchers at Stanford University
and it contains 116 short home videos of children (age range 2–4 years old) with autism
and 46 videos of typically developing children.The de-identified data have been made
available at the following GitHub repository and include the primary dataset and the
validation dataset: https://github.com/qandeelt/video_phenotyping_autism_plos/tree/
master/datasets (accessed on 10 December 2021).

Recently, the DREAM Dataset [47] has been also made publicly available at https://
snd.gu.se/sv/catalogue/study/snd1156/1/1# (accessed on 10 December 2021). It consists
of behavioural data recorded from 61 toddlers diagnosed with autism spectrum disorder
collected during a large-scale evaluation of Robot Enhanced Therapy (RET). The public
release of the dataset comprises body motion, head position and orientation, and eye gaze
variables, all specified as 3D data in a joint frame of reference. In addition, metadata
including participant age, gender, and autism diagnosis (ADOS) variables are included.

Finally, depth videos templates of autistic repetitive behaviours (e.g., hands on the
face, hands back, tapping ears, hands stimming, hand moving front of the face, toe walking,
walking in circles, etc.) were collected in the dataset 3D-Autism Dataset (3d-AD) [48]. Each
action has been repeated at least 10 times with non-autistic people. The depth maps have
been captured at a rate of 33 frames per second with a Kinect-v2 camera.

Table 1 shows the main properties of the aforementioned publicly available datasets.

Table 1. Main properties of publicly available datasets. N stands for Newborns, I for Infants and T
for Toddlers, Misc for Miscellaneous, NA for Not Applicable, U for Unknown.

Database Contents
Frame
Size

Age
Range Info Frames Labels

BabyPose [37] 16 Videos 640 × 480 N
Depth

8 bit/16 bit 16,000
12 Body

Landmarks

MINI-RGBD [38] 12 Videos 640 × 480 I RGB/D 12,000
25 Body

Landmarks

SyRIP [41] Images Misc I RGB 2000
17 Body

Landmarks

Dataset [42]
85 Youtube
Video URLs Misc I RGB NA

18 Body
Landmarks

https://rolandgoecke.net/research/datasets/ssbd/
https://rolandgoecke.net/research/datasets/ssbd/
https://github.com/qandeelt/video_phenotyping_autism_plos/tree/master/datasets
https://github.com/qandeelt/video_phenotyping_autism_plos/tree/master/datasets
https://snd.gu.se/sv/catalogue/study/snd1156/1/1#
https://snd.gu.se/sv/catalogue/study/snd1156/1/1#
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Table 1. Cont.

Database Contents
Frame
Size

Age
Range Info Frames Labels

SSBD [44]
75 Youtube
Video URLs Misc NA RGB U Behaviors

MMDB [45] 160 Videos Misc T Multimodal U ASD Diagnosis

Tariq [46] 162 Videos Misc T RGB U Behaviors

DREAM [47] 3121 Videos NA T Depth NA 3D Skeleton Gaze
ADOS scores

3d-AD [48] 100 Videos 512 × 424 T Depth U Behaviors

4. Methods and Systems for Movement Assessment

Searching for the considered topic, 20 works were found in the literature, quite equally
distributed in the three age ranges (7 for newborns, 7 for infants and 6 for toddlers). It is
worth noting that most of the works dealing with newborns leverage traditional computer
vision methods (5 of 7). Concerning movements analysis in infants, this trend persists but
only 3 of 7 works did not use deep learning-based approaches. Finally, when involving
toddlers, the majority of the works made use of deep learning strategies (only 2 of 6
did not). In Figure 2, a pie chart representing the impact of deep learning in each age
range is reported. It is possible to observe that when dealing with newborns, most of the
solutions made use of ’traditional approaches’, i.e., based on handcrafted features and/or
shallow classifiers. The percentage of deep-learning-based solutions increased when infants
were involved and became predominant while handling toddlers. This is not surprising
since most of the approaches made use of pre-trained models (on adults), and then, it is
straightforward to use them on walking children instead of on children in supine pose (in
a bed).

Figure 2. Percentages of published papers with respect to Age Range taxonomy.

Another preliminary consideration could be made about acquisition settings. In Figure 3,
the percentages of published papers with respect to setup taxonomy (home, hospital, etc.) is
reported. Methods dealing with newborns were mainly applied in hospital/NICU settings
with only one work handling just synthetic data. Home settings were partially used for
infants and in most of the experiments on toddlers. Once again, this is not surprising
since as children grow, it becomes necessary to assess them in environments where their
behaviour is not conditioned by the context.

Figure 3. Percentages of published papers with respect to setup taxonomy (home, hospital, etc.).

The following subsections will detail the related works found in the literature.
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4.1. Newborns

Newborn usually refers to a baby with an age from pre-term to approximately 9 weeks
post-term. According to [49], that is the so-called ‘writhing’ age. Movements in this writhing
age can be categorised as Writhing Movements (WM), Poor Repertoire (PR), Cramped Syn-
chronised (CS) or Chaotic Movements (CM). These categorisations represent various levels
of quality to the typical movements during this age period. The presence of persistently
cramped synchronized writhing movements, followed by the absence of fidgety move-
ments, is the strongest predictor for poor neurodevelopmental outcomes [4]. In particular,
it has been reported that observation of poor repertoire pattern seems to be associated with
minor neurological dysfunctions [50] and cramped-synchronized movements is highly
predictive of the development of cerebral palsy [51]. Current studies indicate that the GMA
is the most sensitive and specific test available to allow early detection of CP [52]. These
kinds of assessments are carried out especially in the NICUs, and they need to accurately
identify those infants most at risk. Early video-based works in this research area used
fast recognition of key points to find the 3D positions of body joints in single depth im-
ages [53,54]. The tuning of model parameters exploited poses that are not typical for infants
and their specific motions, but a series of synthetically generated baby-like poses was also
added in order to reduce that bias. Tests were carried out on babies at the age of 3 months
who were always filmed from above so that the main body axis is displayed vertically in
the camera image.

In [55], a deformable part-based model was exploited to detect the body parts (by
skeletonization) of children aged from 2 weeks to 6 months. Then, angles for joints are
computed and tracked temporally in a video sequence to describe movements. Although
the authors evaluated the accuracy in the estimation of joint positions and movements
encoding without a specific clinical application, they asserted that it was specifically
designed to evaluate the patient’s poses and movement during therapeutic procedures (e.g.,
Vojta techniques [56]) aimed at early diagnosis of cerebral palsy, spinal scoliosis, peripheral
paralysis of arms/legs, hip joint dysplasia and various myopathies.

Authors in [57] introduced a system relying on a multimodal recording setup consist-
ing of two HD cameras, two Kinect and sensors for pressure measurement. Attributes used
in audio/video analysis, such as optical flow, zero-crossings rate, harmonics-to-noise ratio
and jitter are computed for children in their first 4 months of life and compared with those
of children (of the same age) having a typical development and with diagnosed conditions
of interest. To this end, logistic regression from multidimensional data was exploited.

The study in [58] attempted to automatically detect writhing movements instead. The
study involved newborns on the second and third days of life. Different feature extraction
strategies and traditional machine learning algorithms were exploited for writhing move-
ment detection. Based on automatically detected writhing movement percentages in the
videos, infants are classified as having a good level of writhing movements or as having a
poor repertoire, i.e., a lower quality of movement in relation to the norm.

Even if the use of deep learning techniques in this application context is not easy, due
to the lack of annotated data, recently, some solutions based on convolutional neural net-
works (CNN) have nevertheless been proposed. An approach to preterm infants’ limb pose
estimation that features spatiotemporal information to detect and track limb joints from
depth videos with high reliability was proposed in [59]. The depth camera (model Astra
Mini S-Orbbec (https://orbbec3d.com/astra-mini-series/ (accessed on 10 December 2021)),
with a frame rate of 30 frames per second and image size of 640 × 480 pixels) is positioned
at 40 cm over the infant’s crib in order to not hinder health-operator movements.Limb-
pose estimation is performed using a deep-learning framework consisting of detection
and regression CNNs for rough and precise joint localization, respectively. The CNNs
are implemented to encode connectivity in the temporal direction through 3D convolu-
tion. Assessment of the framework was performed through a comprehensive study with
sixteen depth videos acquired in the actual clinical practice from sixteen preterm infants.

https://orbbec3d.com/astra-mini-series/
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The proposed solutions can be exploited for diagnostic support, e.g., to classify abnormal
limb movements.

Finally, authors in [60] proposed five deep-learning-based frameworks to classify
infant body movement based upon the pose-based features which consisted of histogram
representations describing different aspects of the extracted pose-based features. The final
aim was to automatically label observed movements as indicative of typically developing
infants (Normal) or that may be of concern to clinicians (Abnormal). Synthetic data from
the MINI-RGBD dataset were used and an accuracy of over 90% was achieved by using
histograms of joint displacement and orientation as features and 1D convolutional neural
network architectures exploited as reported in Figure 4.

Table 2 Summarizes works dealing with movements assessment in newborns.

Figure 4. 1D convolutional neural network architecture exploited in [60] for labelling observed
movements as indicative of typically developing infants (Normal) or that may be of concern to
clinicians (Abnormal).

Table 2. Summarization of works dealing with movements assessment in newborns.

Work Setup Input CV/Ml Task Clinical Scope

[53,54] Hospital Depth Pose estimation by
Keypoints recognition General

[59] NICU Depth Limb Pose by 2 CNN
2CNN (detection + regression) General

[55] Hospital RGB Deformable part models General

[57] Hospital Multimodal Optical Flow + audio features
Logistic regression Normal/Abnormal

[58] Hospital RGB Limb Motion Description
by SVM, RF, LDA WM vs. PR

[60] NA Synthetic Histograms + CNN Normal/Abnormal

4.2. Infants

After 9 weeks of age, in the proper development of the infant, writhing movements
are replaced by fidgety movements that are present continuously in an awake infant. They
involve the whole body and are circular movements of small amplitude and variable
acceleration and they disappear after 15–20 weeks, along with the appearance of voluntary
movements. As a consequence, four types of movements can then appear at this age:
writhing movements (WMs), fidgety movements (FMs), poor repertoire (PR) and cramped-
synchronized (CS). Studies using GMA suggest that the absence of fidgety movements
between 9 and 15 weeks is the best criterion for early identification of CP and other
developmental disorders [61].

To this aim, the system proposed in [62] calculated magnitude, balance and rhythm of
movements by video analysis. Movements are detected by background subtractions and
frame differences, whereas their classification is performed, based on the clinical definition,
by using a feedforward-type neural network that includes Gaussian mixture models in
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a log-linearised form, enabling the estimation of the probabilistic distribution of a given
sample dataset. This way, the system automatically classified the input motion images
of infants during GMs into one of the four above mentioned types (WM, FM, PR or CS).
Nineteen infants, including some with LBW (Low Birth Weight), were recorded either at
home or hospital while standing in a crib. The movement of infants is measured using a
video camera fixed directly above and parallel to the crib surface, which is covered by a
unicolour fabric spread.

Automated detection and classification of presence vs. absence of FMs was the aim
in [63] instead. A dataset of 2800 five-second snippets was annotated by two well-trained
and experienced GMA assessors. Using OpenPose, the infant’s full pose was recovered
from the video stream in the form of a 25-points skeleton. This skeleton was used as an
input vector for a shallow multilayer neural network in order to discriminate fidgety from
non-fidgety movements.

The abovementioned works aimed at classifying movement types. However, higher-
level reasoning can be introduced to directly scoring the risk of a disorder in observed
infants. For example, in [64], a machine-learning model for early Cerebral Palsy (CP)
prediction based on infant video recordings in NICUs has been proposed. The model was
designed to assess in videos, acquired by a commercially available digital video camera,
the proportion (%) of CP risk-related movements. The first processing step in the model
consists of a time-frequency decomposition, by multivariate empirical mode decomposition
(MEMD) and Hilbert–Huang transformation [65], of the movement parameters extracted
for six body parts (arms, legs, head, and torso). Subsequently, each 5-second period in the
video was clustered into 5 composite scores which were used in a linear discriminative
analysis to classify movements typically found in children with or without CP. The model
was developed and tested on video recordings from a cohort of 377 high-risk infants
at 9–15 weeks corrected age to predict CP status and motor function (ambulatory vs.
non-ambulatory).

Instead of using handcrafted features and a decision tree, in [66], image features were
taken from Layer 8 of VGG19 [67], passed through a max-pooling layer and normalized
before being input to a Long short-term memory (LSTM) [68] layer for classification of the
image sequence. The classification outcomes label each sequence as containing normal
or abnormal movements. The model, constructed using a transfer learning approach, is
represented in Figure 5. Experimentally, on a dataset of videos taken from 80 CP and
135 normal subjects, it has been proved that it can classify normal videos with great
confidence but struggles with intermittent classes. Classification of these borderline classes
is also a difficult task for experts. How much video is required before an LSTM can identify
the presence of CP is a key research question. It is hypothesized that, as a minimum, the
videos should be no shorter than required for an ‘expert’ to make a positive identification.

Infants evaluated as at high-risk of CP, with an age of 12–24 weeks post-term, were
examined in [69]. Parents and families were asked to video-record their baby through
the In-Motion-App by a smartphone. Infants in videos were assessed by a motion tracker
algorithm that consists of a convolutional neural network trained on 7-body points on
about 15K video frames on high-risk infants. The final goal was to predict CP. This has
been the first automatic infant body point tracker tested on video recordings from hand-
held smartphones.

Some recent work addressed also the problem of making the proposed frameworks
fully interpretable, i.e., providing an automatically generated visualization capable of
relaying pertinent information to the assessor. To this aim, the framework in [70] takes
video as the input and analyses the movement of individual body parts to determine if FMs
are present or absent, subsequently identifying normal or abnormal general movements
from segments of the sequence. The 2D skeletal pose is detected on a per-frame basis
using OpenPose, hence, each pose is divided into different body parts and each body-part
sequence is processed by a specific branch to learn a part-specific spatiotemporal repre-
sentation (using LSTM). Finally, the outputs from all the individual body-part streams are
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concatenated and fed to the classifier. The label predicted by the classifier is then returned
to the user as text message printed on the original video by a specific visualization module.

Figure 5. Normal or abnormal movement classification by means of VGG for feature extraction and
LSTM for temporal modelling as proposed in [66].

Infants tend to shake their heads, extend their arms/legs, and splay their fingers
when they experience pain. Therefore, body movement is considered the main indicator in
several pediatric scales [71].

For example, in [72], infants having an average gestational age of 36 weeks were
recorded before, during and after an acute episodic painful procedure. It was then proved
that the amount of body motion presents a good indication of the infant’s emotional
state. The amount of motion in each video frame was computed by summing up the
motion’s image pixels and it was used as the main feature for classification by a threshold
(pain-related movement or no pain-related movement).

Table 3 Summarizes works dealing with movements assessment in infants.

Table 3. Summarization of works dealing with movements assessment in Infants.

Work Setup Input Method Classification Goal

[62] Home/Hospital RGB Motion Feature +
Gaussian mixture network

4 type of mov.
WMs/FMs/PR/CS

[64] Hospital RGB Motion + MEMD + HT +
Decision Tree CP risk

[63] Hospital RGB OpenPose+NN FMs

[72] Treatment Center RGB Amount of Motion Pain Level

[66] Home/Hospital RGB VGG9+LSTM FMs

[70] Home/Hospital RGB OpenPose+LSTM FMs

[69] Home Smartphone CIMA-Pose CP risk

4.3. Toddlers

The term toddlers refers to children who have recently learnt to walk, i.e., having
1–2 years of age. Differently from newborns and infants, when toddlers are involved,
acquisition conditions are more challenging since generally the child is acquired while
freely moving and adults (and even other agents such as robots) are present, with the child
being one of the smallest actors in the scene. On the other side, distinctive features of NDD
can be more evident and a computer-based diagnosis becomes more feasible and reliable.
In other words, for toddlers, the computer-aided clinical goal is to distinguish between
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children with and without NDD. Reliability and feasibility depend on the acquisition
environment that could be domestic or some rehabilitative centre.

The problem of analyzing actions performed in a pediatric rehabilitation environment
has been addressed in [73]. Automatically recognizing actions can help to assess infants’
mobility skills and to understand if and how adults and socially assistive robots can
promote their mobility. The paper proposes a multiview action classification system based
on Faster R-CNN and LSTM networks that fuses information from different views by using
learnable fusion coefficients derived from detection confidence scores. Pretrained deep
features and detection annotations for training were used. The system is view-independent,
learns features that are close to view-invariant, and can handle new or missing views at
test time. The approach was tested on a small dataset (2 subjects, 10–24 months old) and on
an extended dataset (6 subjects, 8–24 months old) for four action classes (crawl, sit, stand
and walk).

Some interesting works concentrated on the possibility to disambiguate typically
developing vs. autistic subjects using an ML approach operating on video sequences of
simple executing gestures.

In [74], a Random Forest classifier [75] was trained to distinguish between Typi-
cal/Atypical Development and Autism Spectrum Disorder/Speech and Language Condi-
tions. An interesting part of the study determined the impact of each video’s annotations
on the classifier’s predicted label for that video by a unified approach inherited by the
game theory.

Videos of a child’s daily activities at home were analysed in [76]. Common categories
of daily activities include “play alone”, “play with others”, “mealtime”, and “parents’
concerns”. At first, the authors re-trained a 2D Mask R-CNN network to make it more
robust in identifying children pose. A nonlinear state estimation technique was then
exploited to predict the locations of missing key points. Finally, behavioural features were
extracted from key points trajectories over a short time frame and they were exploited to
feed a binary classifier to distinguish between atypical vs. typical characteristics.

In [77], a computer vision classifier for detecting head banging in home videos has
been proposed. The solution uses the well-known scheme (see Figure 5) with a time-
distributed convolutional neural network (CNN) in which a single CNN extracts features
from each frame in the input sequence, and these extracted features are fed as input to a
long short-term memory (LSTM) network. The solution achieved a 90.77% F1-score on
video clips from the SSBD dataset.

The aforementioned scheme (CNN+LSTM) has been exploited in [78] for building a
baseline in recognising 4 repetitive actions (spinning, arms flapping, hand action, and head
banging actions) that are a potential indication of ASD disorder. Besides, the authors intro-
duced an innovative tool which follows a Bag-of-Visual-Words configuration as reported
in Figure 6. It firstly performs a person detection and tracking module by the YOLOv3
detector, feature extraction by Histogram of Optical Flow (HOF), and data clustering by
K-means. Then, each video input is coded in visual words that are finally classified by
MLP. Inputs are videos of 3-years old children and they are captured by parents in daily
living settings. The best algorithmic pipeline (among those tested in the paper) achieved
78% of accuracy. Anyway, the proposed pipeline had several drawbacks and it did not
provide satisfying outcomes in natural settings. A reason is that only 2D pose/appearance
descriptors and weak models for spatiotemporal information were involved. Besides, the
number of videos for tests was limited (i.e., 141) and, in most of them, there was the issue of
shaking camera held by the parents during the recordings. Finally, authors in [79] applied
machine learning methods (Logistic Regression with varying regularization penalties, SVM
Classifiers, attempting a wide range of kernels and hyperparameters and decision trees) on
ratings of different indicative features of autism from home videos.

Table 4 summarizes works dealing with movements assessment in toddlers.
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Figure 6. The innovative tool proposed in [78]. It follows a Bag-of-Visual-Words configuration for
recognising 4 repetitive actions that are a potential indication of ASD disorder.

Table 4. Summarization of works dealing with movements assessment in Toddlers.

Work Setup Input Method Goal

[74] domestic
(Tariq dataset) RGB Random Forests Typical/Atypical

[73] Rehabilitation
Environment Multiview RGB Faster R-CNN + LSTM

+ learnable fusion coefficients 4 daily actions

[76] Domestic RGB 2D Mask R-CNN +
particle filter +CNN classifier

Atypical/Typical
Trajectories

[78] Domestic RGB
(from YouTube)

YOLOv3 + HOF + K-means
K-means + MLP 4 repetitive Actions

[77] Domestic
(SSBD dataset) RGB CNN + LSTM ASD/Typical

[79] domestic
(Tariq dataset) RGB Various regressors

Classifiers ASD Features Rating

5. Recent Advances in Human Motion Analysis

As described in the previous sections, the approaches for assessing children’s move-
ments rely on well-consolidated machine learning techniques. Some of them still rely on
classical strategies (hand-crafted features and shallow neural networks) whereas the most
recent and performing ones exploit deep learning for feature extraction or for providing
end-to-end solutions. Anyway, research in machine learning is running ahead very fast [80],
and thus, it could be of interest here to have a glimpse on the very latest methodologies
for movement analysis which could be transferred in the considered domain of the early
detection of NDD in children.

There are several possible research directions that could be pursued to improve existing
frameworks aiming at computer-based early diagnosis of NDD by analysing video data.
Among all, the tasks that have been attracting great attention from the machine learning
and computer vision community are:

• Motion feature extraction;
• Human pose estimation;
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• Extraction significant motion segments/temporal action localization;
• Human image completion;
• Action recognition and action quality assessment;
• Humans-objects interaction prediction/understanding;
• Spatiotemporal video representation;
• Interpretablilty of involved AI models.

Improving motion feature extraction could be the first pathway to explore for im-
proving computer-aided diagnosis. To this aim, a rich and robust motion representation
based on spatiotemporal self-similarity has been recently proposed [81]. Given a sequence
of frames, the method represents each local region with similarities to its neighbours in
space and time, enabling this way the learner to better recognize structural patterns in
space and time. Code is available at https://github.com/arunos728/SELFY (accessed
on 10 December 2021). Alternatively, the trainable neural module (MotionSqueeze) for
effective motion feature extraction proposed in [82] could be exploited. Inserted in the
middle of any neural network, it learns to establish correspondences across frames and
convert them into motion features, which are readily fed to the next downstream layer
for better prediction. Code is available at https://github.com/arunos728/MotionSqueeze
(accessed on 10 December 2021).

In addition, improving human pose estimation could help the technologies for NDD
diagnosis in children. To this aim, it is undoubtedly important to improve the localization
quality of the regressed key point positions and this could be achieved by a multi-branch
structure for separate regression (i.e., each branch learns a representation with dedicated
adaptive convolutions and regresses one key point) as proposed in [83]. The code and
models are available at https://github.com/HRNet/DEKR (accessed on 10 December 2021).
An effective regression-based human-pose recognition method could be also carried out by
building cascade transformers as suggested in [84] whose code has been made available at
https://github.com/mlpc-ucsd/PRTR (accessed on 10 December 2021). Pose estimators
still suffer from severe performance drop on corrupted images, and thus, some authors
proposed to overcome this drawback by an adversarial data augmentation method together
with a knowledge distillation module applied to transfer clean pose structure knowledge
to the target pose estimator [85]. Code available at https://github.com/AIprogrammer/
AdvMix (accessed on 10 December 2021). Operating on either pixel-level or key point-level
transitions is good for analysing local and short-term motions of human bodies but not to
handling higher-level spatial and longer-lasting temporal structures well.

Since children’s body is often partially occluded, useful approaches could be those
solving human image completion, which tries to recover the human body part with a
reasonable human shape from the corrupted region. In [86], a framework for recovering
the human body parts by a reasonable topological structure of the human body has been
introduced. The paper proposes a structure and texture memory bank to introduce more
additional priors as compensation for the corrupted region.

Skeleton-based action recognition is a very common solution also in children move-
ment analysis. A substantial improvement of this strategy has been recently proposed
in [87] where a temporal-then-spatial recalibration method, named memory attention net-
works (MANs), has been deployed using a temporal attention-recalibration module and a
spatiotemporal convolution module.

In recent years, a number of end-to-end approaches based on 2D or 3D convolutional
neural networks (CNN) have emerged for video action recognition, achieving state-of-the-
art results on several large-scale benchmark datasets. An in-depth comparative analysis
of available approaches on video data framing adults is available in [88]. How they can
impact the movement analysis of children and the recognition of their actions is less debated
instead [89]. Furthermore, their impact in the specific context of early diagnosis of NDD
is totally missing. In the following, some examples of end-to-end (E2E for short) deep
learning-based methods that can potentially impact the NDD diagnosis are reported. An
approach with a novel temporal-spatial pooling block for action classification, which can

https://github.com/arunos728/SELFY
https://github.com/arunos728/MotionSqueeze
https://github.com/HRNet/DEKR
https://github.com/mlpc-ucsd/PRTR
https://github.com/AIprogrammer/AdvMix
https://github.com/AIprogrammer/AdvMix
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learn pool discriminative frames and pixels in a certain clip, has been recently proposed
in [90]. Similarly, in [91], an efficient spatiotemporal human action recognition framework
for long and overlapping action classes has been proposed. Fine-tuned pre-trained CNN
models were exploited to learn the spatial relationship at the frame level whereas an
optimized Deep Autoencoder [92] was used to squeeze high-dimensional deep features.
A Recurrent Neural Network (RNN) with LSTM [93] was used to learn the long-term
temporal relationships.

However, RNN suffers from non-parallelism and gradient vanishing; hence, it is hard
to be optimized, and then, encoder-decoder frameworks based on transformers [94] are
becoming popular. For example, in the solution introduced in [95], the encoder attached
with a task token aims to capture the relationships and global interactions between historical
observations. The decoder extracts auxiliary information by aggregating anticipated future
clip representations. Therefore, a transformer can recognize current actions by encoding
historical information and predicting future context simultaneously. The code is available at
https://github.com/wangxiang1230/OadTR (accessed on 10 December 2021). Following
this research trend, a Video Transformer (VidTr) model with separable attention for video
classification has been proposed [96]. Compared with commonly used 3D networks, these
frameworks are able to aggregate spatiotemporal information via stacked attention and
provide better performance with higher efficiency [97]. Multiscale Vision Transformers
(MViT) for video and image recognition could be another important architecture to test for
children movement analysis. It connects the seminal idea of multiscale feature hierarchies
with transformer models [98]. Code is available at https://github.com/facebookresearch/
SlowFast (accessed on 10 December 2021). A pure-transformer-based model for video
classification, drawing upon the recent success of such models in image classification
has been proposed in [99]. The model extracts spatiotemporal tokens from the input
video, which are then encoded by a series of transformer layers. Code was released at
https://github.com/google-research/scenic/tree/main/scenic/projects/vivit (accessed
on 10 December 2021).

Training temporal action detection in videos requires large amounts of labelled data,
yet such annotation is expensive to collect. This could be more and more challenging in the
case of children, and even more if NDDs have to be observed. Incorporating unlabelled
or weakly-labelled data to train action detection models could help reduce annotation
costs. In [100], authors designed an unsupervised foreground attention module utilizing
the conditional independence between foreground and background motion and put it in a
Semi-supervised Action Detection (SSAD) task.

In a real-world scenario, human actions are typically out of the distribution from
training data, which requires a model to both recognize the known actions and reject the
unknown. Different from image data, video actions are more challenging to be recognized
in an open-set setting due to the uncertain temporal dynamics and static bias of human
actions. This is even more true in the case of children and in particular when we want
to identify subtle behavioural differences. To overcome this issue, some researchers [101]
formulated the action recognition problem from the evidential deep learning perspective
and proposed a novel model calibration method to regularize the training and to mitigate
the static bias of video representation through contrastive learning [102]. Code and pre-
trained models used in [101] are available at https://www.rit.edu/actionlab/dear (accessed
on 10 December 2021).

Another task that could be of interest in analyzing children’s movement is related to
the automatic Action Quality Assessment, i.e., analysing/quantifying how well an action
(either spontaneous or voluntary) was performed. Assessing action quality is challenging
since it has to rely on just subtle differences while performing. Mapping these differences,
when found, in reliable scores is a difficult task as well. Regression strategies are commonly
used to tackle this problem but they suppose to be able to extract a reliable quality score
from a single video, ignoring the ineluctable large inter-video variations even when the
action is performed by the same person. The consideration that relations among videos can

https: //github.com/wangxiang1230/OadTR
https://github.com/facebookresearch/SlowFast
https://github.com/facebookresearch/SlowFast
https://github.com/google-research/scenic/tree/main/scenic/projects/vivit
https://www.rit.edu/actionlab/dear
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provide important clues for more accurate action quality assessment during both training
and inference inspired the work in [103]. The authors reformulated the problem of action
quality assessment: instead of learning unreferenced scores, they aimed at regressing
relative scores with reference to another video that has shared attributes (e.g., category
and difficulty). Small intervals are considered in order to build a coarse-to-fine approach.
In other words, they proposed a differential approach followed by a grouping strategy in
order to achieve effective action scoring.

The PyTorch implementation of the method is available at https://github.com/
yuxumin/CoRe (accessed on 10 December 2021).

Unfortunately, some children actions have a similar appearance and they require
complex temporal-level relation understanding to be well analysed. Hence, a way to
overcome this drawback could be to get an effective spatiotemporal video representation
that could help to disambiguate them. Representing video structure as a space-time graph
and discovering the discriminative sub-graphs is the solution proposed in [104]. This also
leads to the elegant views of how to perform end-to-end learning of the discriminative
sub-graphs, and how to nicely present the complexity of different actions in the reasoning
process, which are problems not yet fully understood. The recent paper [105] studies
the problem of learning self-supervised representations on videos. It presents a contrast-
and-order representation framework for learning self-supervised video representation
that can automatically capture both the appearance information within each frame and
temporal information across different frames. Self-supervised video representation learning
methods have been also addressed in [106] by two tasks to learn the appearance and speed
consistency, respectively. Nevertheless, temporal modelling still remains challenging
for action recognition in videos. To mitigate this issue, new video architectures with a
focus on capturing multi-scale temporal information for efficient action recognition are
being proposed. For example, in [107], an efficient temporal module that leverages a
two-level difference modelling paradigm, assessing local and global motion, respectively,
on short-term and long-term motion modelling, has been recently introduced. Code at
https://github.com/MCG-NJU/TDN (accessed on 10 December 2021).

A list of the works mentioned in this section is shown in Table 5: the leftmost column
indicates the referring works, the central one points out which tasks, among those involved
in frameworks for the early diagnosis of NDD, have been improved. Finally, the method-
ological contributions that brought to the knowledge advancement are highlighted in the
rightmost column.

Table 5. Recent works on human motion analysis.

Work Improved Task Key Contribution

[81] Motion Features Extraction Spatiotemporal self-similarity

[82] Motion Features Extraction MotionSqueeze module

[83] Pose Estimation (Key points Positioning) Multi-branch regression

[84] Pose Estimation (Key points Positioning) Cascade Transformers

[85] Pose Estimation (Key points Positioning) Adversarial algorithms

[86] Human Completion Topological Structure/Memory Bank

[87] Skeleton-Based Action Recognition Memory Attention Networks

[90] Action Recognition Temporal-Spatial pooling block

[91] Action Recognition CNN+Autoencoder+LSTM

[101] Action Recognition Contrastive Learning

[100] Action Recognition Semi-supervised Action Detection

https://github.com/yuxumin/CoRe
https://github.com/yuxumin/CoRe
https://github.com/MCG-NJU/TDN
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Table 5. Cont.

Work Improved Task Key Contribution

[95–99] Action Classification Transformers

[103] Action Quality Assessment Contrastive Regression

[104] video representation Space-Time Graph

[105,106] Video Representation Self-supervised learning

[107] Temporal Modeling Two-level Motion Modeling

[108] Motion Segment Extraction Hierarchical Framework

[109] Temporal Action Localization E2E anchor free method

[110] Temporal Action Localization Anchor-Constrained Viterbi

[111] Temporal Action Localization Memory Network

[112] Temporal Action Localization Multi-Label Action Dependency layer

[113] Human Object Interaction Transformer /Cascade detector

[114] Human Object Interaction Graph Networks

One of the main issues when using machine learning approaches, especially in the
medical domain, is to understand the rationale behind the prediction. This general problem
is referred to in the literature as interpretable AI. Models are often seen as ‘black boxes’ in
which the underlying structures can be difficult to understand. There is an increasing re-
quirement for the mechanisms behind why systems are making decisions to be transparent,
understandable and explainable. In medical scenarios, the cost of a simple prediction error
could be significantly high, and thus, the reliance on the trained model and its capability to
deliver both efficient and robust data processing must be guaranteed. Therefore, under-
standing the behaviours of machine learning models, gaining insights into their working
mechanisms, and further generating explainable deep learning models have become essen-
tial and fundamental problems. Hence, another research line could be explaining the AI,
and, in particular, making clearer how deep learning works for movement analysis when
children are involved. To this aim, including visualization and uncertainty estimation can
improve acceleration, robustness and stability making automatic tools actually exploitable
in the clinical practice for early diagnosis of NDD. To this end, a starting reading could be
the recent survey paper on explainable AI [115].

Another relevant issue to be furtherly investigated in order to improve computer-based
diagnosis of NDD in children is the Motion Segment Extraction, which aims at detecting
the temporal location of significant motion in the scene. To this aim, the authors in [108]
incorporated higher-level reasoning of motion primitives by introducing a hierarchical
motion understanding framework. They demonstrated also how to detect and extract
significant motion segments that can be a crucial point in many diagnosis tasks. Code is
available at https://sumith1896.github.io/motion2prog (accessed on 10 December 2021).
A very strictly related issue is the temporal action localization, which is an important yet
challenging task in video understanding. Typically, such a task aims at inferring both the
action category and localization of the start and end frame for each action instance in a long,
untrimmed video. They can rely either on pre-defined anchors, generated by different levels
of supervision [110], or on anchor-free end-to-end trainable basic predictor [109]. Anchor-
based methods generally provide a large number of outputs and require a heavy tuning of
locations and sizes corresponding to different anchors. Instead, recently introduced anchor-
free methods are lighter and get rid of redundant hyper-parameters. The code of the anchor-
free approach proposed in [109] is available at https://github.com/TencentYoutuResearch/
ActionDetection-AFSD (accessed on 10 December 2021).

Temporal action localization has been also addressed by an Expectation-Maximization
(EM) framework that comprises Hidden Markov Models, MLP and self-supervised learn-
ing for action-level temporal feature embedding [116]. This way, it relaxes assumptions
about the lengths of latent actions. Alternatively, in [111], an Action Unit Memory Net-

https://sumith1896.github.io/motion2prog
https://github.com/TencentYoutuResearch/ActionDetection-AFSD
https://github.com/TencentYoutuResearch/ActionDetection-AFSD
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work for weakly supervised temporal action localization was proposed. Two attention
modules were designed to adaptively update the memory bank and to learn action units.
Similarly, in [112], an attention based Multi-Label Action Dependency layer was intro-
duced to improve action localization performance. The layer consists of two branches:
a Co-occurrence Dependency Branch and a Temporal Dependency Branch to model
co-occurrence action dependencies and temporal action dependencies. Code is avail-
able at https://github.com/ptirupat/MLAD (accessed on 10 December 2021). Finally,
the problem of human–object interaction detection is very important when observing
children’s behaviours (especially for toddlers). It has been effectively addressed by a
unified model (exploiting a transformer unit and a cascade detection over multi-scale
feature maps) to jointly discover the target objects and predict the corresponding in-
teractions in [113] and by Asynchronous-Sparse Interaction Graph Networks in [114].
Code available at https://github.com/scwangdyd/ (accessed on 10 December 2021) and
https://github.com/RomeroBarata/human_object_interaction (accessed on 10 December
2021) respectively.

6. Conclusions

This paper summarizes the most relevant works on movement analysis in young
children (aged 0–3) employing mainly machine learning techniques and starting from
image/video data. The work was motivated by the observation that existing review papers
dealt with technologies based on physical sensors. Actually, a few works concentrated
on baby motion analysis from input video data and they collected only papers dealing
with general movement assessment (GMA) issues. This paper addresses the more general
problem of motion assessment for early diagnosis of neurodevelopmental disorders (NDD)
in the first 3 years of life.

From the methodological scouting, it emerged that the approaches relying on hand-
crafted features and shallow classifiers were mainly exploited for fast recognition of key
points (e.g., random ferns [117]) to find the positions of body joints or to analyse movement,
e.g., by optical flow. Alternatively, the same task was sometimes achieved by OpenPose
framework. Other well-established deep learning strategies were used in a preliminary
step as well (e.g., for detecting body parts using U-Net [118]). Finally, deep learning was
also exploited for the final classification outcomes (general or clinical-specific) through
properly introduced architectures. In particular, the modelling of temporal dependencies is
the main task assigned to deep architecture such as LSTM.

Besides, a glimpse of recent advancements in computer vision and machine learning
has been provided in order to pave the way towards more effective solutions for the
addressed issue. In particular, it emerged that improving deep architectures for motion
feature extraction (i.e., by an additional MotionSqueeze module) could be an effective
pathway to explore for improving computer-aided diagnosis. Human pose estimation has
a great potential to be improved as well, for example, by multi-branch structures for a
separate regression of key points.
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