Non-Invasive Blood Flow Speed Measurement Using Optics
Abstract
:1. Introduction
2. Experimental Setup
2.1. Tissue Phantom Fabrication
2.2. Blood Preparation
2.3. Optical and Electronics Setup
2.4. Experimental Results
3. Physical Models
3.1. Diffused Light Equation for Moving Scatters
3.2. Analytic Relation between Decorrelation Time and RBC Flow Speed
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mendelson, Y. Pulse oximetry: Theory and applications for noninvasive monitoring. Clin. Chem. 1992, 38, 1601–1607. [Google Scholar] [CrossRef] [PubMed]
- Jayanthy, A.; Sujatha, N.; Reddy, M.R. Measuring blood flow: Techniques and applications—A review. Int. J. Res. Rev. Appl. Sci. 2011, 6, 203–216. [Google Scholar]
- Poelma, C.; Kloosterman, A.; Hierck, B.P.; Westerweel, J. Accurate blood flow measurements: Are artificial tracers necessary? PLoS ONE 2012, 7, e45247. [Google Scholar] [CrossRef]
- Blumgart, H.L.; Yens, O.C. Studies on the velocity of blood flow: I. The method utilized. J. Clin. Investig. 1927, 4, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Pietrangelo, S.J.; Lee, H.S.; Sodini, C.G. A wearable transcranial Doppler ultrasound phased array system. In Intracranial Pressure & Neuromonitoring XVI; Heldt, T., Ed.; Springer: Cham, Switzerland, 2018; pp. 111–114. [Google Scholar]
- Kashima, S.; Nishihara, M.; Kondo, T.; Ohsawa, T. Model for measurement of tissue oxygenated blood volume by the dynamic light scattering method. Jpn. J. Appl. Phys. 1992, 31, 4097. [Google Scholar] [CrossRef]
- Kashima, S.; Sohda, A.; Takeuchi, H.; Ohsawa, T. Study of measuring the velocity of erythrocytes in tissue by the dynamic light scattering method. Jpn. J. Appl. Phys. 1993, 32, 2177. [Google Scholar] [CrossRef]
- Bonner, R.; Nossal, R. Model for laser Doppler measurements of blood flow in tissue. Appl. Opt. 1981, 20, 2097–2107. [Google Scholar] [CrossRef] [PubMed]
- Rajan, V.; Varghese, B.; van Leeuwen, T.G.; Steenbergen, W. Review of methodological developments in laser Doppler flowmetry. Lasers Med. Sci. 2009, 24, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Ishimaru, A. Wave Propagation and Scattering in Random Media; Academic press: New York, NY, USA, 1978; Volume 2. [Google Scholar]
- Wang, L.V.; Wu, H.I. Biomedical Optics: Principles and Imaging; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Durduran, T.; Choe, R.; Baker, W.B.; Yodh, A.G. Diffuse optics for tissue monitoring and tomography. Rep. Prog. Phys. 2010, 73, 076701. [Google Scholar] [CrossRef] [Green Version]
- Vishwanath, K.; Zanfardino, S. Diffuse Correlation Spectroscopy at Short Source-Detector Separations: Simulations, Experiments and Theoretical Modeling. Appl. Sci. 2019, 9, 3047. [Google Scholar] [CrossRef] [Green Version]
- Zanfardino, S.; Vishwanath, K. Sensitivity of diffuse correlation spectroscopy to flow rates: A study with tissue simulating optical phantoms. In Medical Imaging 2018: Physics of Medical Imaging; International Society for Optics and Photonics; SPIE: Bellingham, WA, USA, 2018; Volume 10573, p. 105732K. [Google Scholar]
- Boas, D.A.; Sakadžić, S.; Selb, J.J.; Farzam, P.; Franceschini, M.A.; Carp, S.A. Establishing the diffuse correlation spectroscopy signal relationship with blood flow. Neurophotonics 2016, 3, 031412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durduran, T.; Yodh, A.G. Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement. Neuroimage 2014, 85, 51–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torricelli, A.; Contini, D.; Dalla Mora, A.; Pifferi, A.; Re, R.; Zucchelli, L.; Caffini, M.; Farina, A.; Spinelli, L. Neurophotonics: Non-invasive optical techniques for monitoring brain functions. Funct. Neurol. 2014, 29, 223. [Google Scholar] [CrossRef] [PubMed]
- Verdecchia, K.; Diop, M.; Morrison, L.B.; Lee, T.Y.; Lawrence, K.S. Assessment of the best flow model to characterize diffuse correlation spectroscopy data acquired directly on the brain. Biomed. Opt. Express 2015, 6, 4288–4301. [Google Scholar] [CrossRef] [Green Version]
- Rička, J. Dynamic light scattering with single-mode and multimode receivers. Appl. Opt. 1993, 32, 2860–2875. [Google Scholar] [CrossRef]
- Lai, P.; Xu, X.; Wang, L.V. Dependence of optical scattering from Intralipid in gelatin-gel based tissue-mimicking phantoms on mixing temperature and time. J. Biomed. Opt. 2014, 19, 035002. [Google Scholar] [CrossRef] [Green Version]
- Pogue, B.W.; Patterson, M.S. Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. J. Biomed. Opt. 2006, 11, 041102. [Google Scholar] [CrossRef]
- Flock, S.T.; Jacques, S.L.; Wilson, B.C.; Star, W.M.; van Gemert, M.J. Optical properties of Intralipid: A phantom medium for light propagation studies. Lasers Surg. Med. 1992, 12, 510–519. [Google Scholar] [CrossRef]
- Ding, H.; Lu, J.Q.; Jacobs, K.M.; Hu, X.H. Determination of refractive indices of porcine skin tissues and intralipid at eight wavelengths between 325 and 1557 nm. JOSA A 2005, 22, 1151–1157. [Google Scholar] [CrossRef] [Green Version]
- Cummins, H.Z.; Swinney, H.L. III Light beating spectroscopy. In Progress in Optics; Elsevier: Amsterdam, The Netherlands, 1970; Volume 8, pp. 133–200. [Google Scholar]
- He, L.; Lin, Y.; Shang, Y.; Shelton, B.J.; Yu, G. Using optical fibers with different modes to improve the signal-to-noise ratio of diffuse correlation spectroscopy flow-oximeter measurements. J. Biomed. Opt. 2013, 18, 037001. [Google Scholar] [CrossRef] [Green Version]
- Haskell, R.C.; Svaasand, L.O.; Tsay, T.T.; Feng, T.C.; McAdams, M.S.; Tromberg, B.J. Boundary conditions for the diffusion equation in radiative transfer. JOSA A 1994, 11, 2727–2741. [Google Scholar] [CrossRef] [Green Version]
- Boas, D.A.; Yodh, A.G. Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation. JOSA A 1997, 14, 192–215. [Google Scholar] [CrossRef]
- Belau, M.; Scheffer, W.; Maret, G. Pulse wave analysis with diffusing-wave spectroscopy. Biomed. Opt. Express 2017, 8, 3493–3500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Pine, D.; Chaikin, P.; Huang, J.; Weitz, D. Diffusing-wave spectroscopy in a shear flow. JOSA B 1990, 7, 15–20. [Google Scholar] [CrossRef]
- Owen, C.A.; Roberts, M. Arterial vascular hemodynamics. J. Diagn. Med. Sonogr. 2007, 23, 129–140. [Google Scholar] [CrossRef]
- Goldsmith, H.; Marlow, J. Flow behavior of erythrocytes. II. Particle motions in concentrated suspensions of ghost cells. J. Colloid Interface Sci. 1979, 71, 383–407. [Google Scholar] [CrossRef]
- Funck, C.; Laun, F.B.; Wetscherek, A. Characterization of the diffusion coefficient of blood. Magn. Reson. Med. 2018, 79, 2752–2758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanne, E.E.; Aucoin, C.P.; Leonard, E.F. Shear rate and hematocrit effects on the apparent diffusivity of urea in suspensions of bovine erythrocytes. ASAIO J. 2010, 56, 151. [Google Scholar] [CrossRef]
- Higgins, J.M.; Eddington, D.T.; Bhatia, S.N.; Mahadevan, L. Statistical dynamics of flowing red blood cells by morphological image processing. PLoS Comput. Biol. 2009, 5, e1000288. [Google Scholar] [CrossRef] [Green Version]
- Biasetti, J.; Spazzini, P.G.; Hedin, U.; Gasser, T.C. Synergy between shear-induced migration and secondary flows on red blood cells transport in arteries: Considerations on oxygen transport. J. R. Soc. Interface 2014, 11, 20140403. [Google Scholar] [CrossRef] [Green Version]
- Cha, W.; Beissinger, R.L. Evaluation of shear-induced particle diffusivity in red cell ghosts suspensions. Korean J. Chem. Eng. 2001, 18, 479–485. [Google Scholar] [CrossRef]
- Tang, J.; Erdener, S.E.; Li, B.; Fu, B.; Sakadzic, S.; Carp, S.A.; Lee, J.; Boas, D.A. Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography. J. Biophotonics 2018, 11, e201700070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakadžić, S.; Boas, D.A.; Carp, S.A. Theoretical model of blood flow measurement by diffuse correlation spectroscopy. J. Biomed. Opt. 2017, 22, 027006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandran, R.S.; Devaraj, G.; Kanhirodan, R.; Roy, D.; Vasu, R.M. Detection and estimation of liquid flow through a pipe in a tissue-like object with ultrasound-assisted diffuse correlation spectroscopy. JOSA A 2015, 32, 1888–1897. [Google Scholar] [CrossRef] [PubMed]
- Gabe, I.T.; Gault, J.H.; Ross, J., Jr.; Mason, D.T.; Mills, C.J.; Schillingford, J.P.; Braunwald, E. Measurement of instantaneous blood flow velocity and pressure in conscious man with a catheter-tip velocity probe. Circulation 1969, 40, 603–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazareva, E.N.; Tuchin, V.V. Blood refractive index modelling in the visible and near infrared spectral regions. J. Biomed. Photonics Eng. 2018, 4. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Lin, L.; Xie, S. Refractive index of human whole blood with different types in the visible and near-infrared ranges. In Laser-Tissue Interaction XI: Photochemical, Photothermal, and Photomechanical; International Society for Optics and Photonics; SPIE: Bellingham, WA, USA, 2000; Volume 3914, pp. 517–521. [Google Scholar]
- Bosschaart, N.; Edelman, G.J.; Aalders, M.C.; van Leeuwen, T.G.; Faber, D.J. A literature review and novel theoretical approach on the optical properties of whole blood. Lasers Med. Sci. 2014, 29, 453–479. [Google Scholar] [CrossRef] [Green Version]
- Jacques, S.L. Optical properties of biological tissues: A review. Phys. Med. Biol. 2013, 58, R37. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, A.C.; Lo, Y.-H. Non-Invasive Blood Flow Speed Measurement Using Optics. Sensors 2022, 22, 897. https://doi.org/10.3390/s22030897
Zhang AC, Lo Y-H. Non-Invasive Blood Flow Speed Measurement Using Optics. Sensors. 2022; 22(3):897. https://doi.org/10.3390/s22030897
Chicago/Turabian StyleZhang, Alex Ce, and Yu-Hwa Lo. 2022. "Non-Invasive Blood Flow Speed Measurement Using Optics" Sensors 22, no. 3: 897. https://doi.org/10.3390/s22030897
APA StyleZhang, A. C., & Lo, Y. -H. (2022). Non-Invasive Blood Flow Speed Measurement Using Optics. Sensors, 22(3), 897. https://doi.org/10.3390/s22030897