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Abstract: Swimmers take great advantage by reducing the drag forces either in passive or active
conditions. The purpose of this work is to determine the frontal area of swimmers by means of an
automated vision system. The proposed algorithm is automated and also allows to determine lateral
pose of the swimmer for training purposes. In this way, a step towards the determination of the
instantaneous active drag is reached that could be obtained by correlating the effective frontal area
of the swimmer to the velocity. This article shows a novel algorithm for estimating the frontal and
lateral area in comparison with other models. The computing time allows to obtain a reasonable
online representation of the results. The development of an automated method to obtain the frontal
surface area during swimming increases the knowledge of the temporal fluctuation of the frontal
surface area in swimming. It would allow the best monitoring of a swimmer in their swimming
training sessions. Further works will present the complete device, which allows to track the swimmer
while acquiring the images and a more realistic model of conventional active drag ones.

Keywords: swimming; active drag; resistive force; computer vision; area determination

1. Introduction
1.1. Preliminaries

Swimming performance is affected by both the propulsive and resistive forces [1].
Regarding the hydrodynamic drag, this force can be defined as an external force that acts in
the swimmer’s body parallel but in the opposite direction of his movement [2,3]. According
to Newton’s second law of motion, the sum of these forces determines the acceleration of
the swimmer (Equation (1)).

m a = FP + FR (1)

where m is the swimmer’s mass, a is the acceleration of the swimmer, and FP and FR are
the total propulsive and resistive forces, respectively. According to Equation (1), when the
magnitude of the propulsive and the resistive force are equal, a swimmer would maintain
a constant speed. When, however, the amount of one force exceeds that of the other, the
swimmer will accelerate or decelerate. Thus, swimmers should have an ability to both
produce large propulsive force and to reduce resistive forces for the purpose of improving
performance. Quantifying these forces when swimming is therefore very beneficial in
improving our understanding about swimming technique and improving swimming
performance. In this sense, it has been found that speed in swimming sprint events
is positively correlated to maximal force and mean force production [4,5]. Nevertheless, an
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increase in force production is not directly linked with an increment in swimming velocity
because swimming drag could be also higher [6]. For instance, expert swimmers present
higher propulsive forces than less expert swimmers but do not show higher drag values,
therefore obtaining higher swimming speed and performance [5].

Because there are currently no methods that allow researchers to quantify these forces
directly, several methods for indirect estimation of propulsive and resistive forces have
been developed to assess either the mean forces over a period of time or time-series force
data. Although mean propulsive/resistive force values would provide an overview of the
forces related to swimming strokes or swimming skill levels, a better insight on technique
can be gained with a time-series approach. For example, in the last decade, time-series
propulsive forces produced by the hands or feet have been quantified with the use of
pressure sensors [7–10], which has provided insight into relationships between swimmer’s
motion and propulsive forces. Examples of such knowledge include the positive effect
of shoulder roll angular velocity on the propulsive force production in front craw [7,8],
differences in the time-series leg propulsive force between an elite and sub-elite breaststro-
ker [9], and the increase in the propulsive impulse (despite the decrease in the stroke cycle
duration) when increasing the front crawl swimming velocity [10].

On the other hand, time-series resistive force information has only been scarcely
explored in the literature even though the mean resistive force over a period of time
has been investigated using different methods. One of the first methods developed to
estimate resistive forces was the Measuring Active Drag (MAD) system [3,11]. This method
quantifies the mean resistive force based on a directly measured reaction force from pushing-
pads, which are placed in fixed depth and between-pad distance. A limitation of this
method, though, is that it only allows calculation of resistive forces in arm-only front crawl
swimming and also that the propulsive mechanism (propelling forward by pushing fixed-
pads of set distances and depths) is quite different to the one used in actual front crawl
swimming. In the 1990s, an alternative method (Velocity Perturbation Method (VPM)) was
proposed [12]. VPM is based on two maximal effort trials, one with a known additional
resistance and one without, and assuming that the power outputs in the two conditions are
equal, the resistive force at the maximal effort can be mathematically computed. The same
calculation can also be done using free-swimming and overspeed (assisted) swimming
conditions, which is known as Assisted Towing Method (ATM) [13]. In both VPM and
ATM, the resistive force of all four strokes can be computed. However, disadvantages of
these methods include the inability of assessing the resistive force at non-maximal efforts
and potential errors due to the equal power output assumption [2,14]. More recently, the
Measuring Residual Thrust (MRT) method was developed, which allows estimation of the
resistive force at any speed [15]. The MRT method requires multiple trials (assumed to be
performed with identical technique) in a swimming flume. This, however, presents some
limitations, such as the swimming flume, which may affect the technique used and the
propulsive/resistive forces, while the assumption of identical technique ignores any errors
that may be caused by variation in all aspects of a swimmer’s technique. Finally, a common
limitation among all the above methods is that they only provide the mean resistive force
over a period of time.

1.2. Related Works

The most recent work of Takagi et al. [16] reviewed the literature on front crawl, focus-
ing on propulsive and resistive forces at different swimming velocities. The relationships
between energetic, biomechanical, and fluid dynamics indices in competitive swimming
were established factors that determine the mean of the instantaneous magnitudes of hand
velocity over some time. Experimental attempts to quantify the time-series resistive force
have been scarce. The only study in which the time-series resistive force was assessed was
conducted by Morais et al. [17]. The time-series resistive force was quantified by obtaining
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the time-series frontal surface area and forward swimming velocity and applying these to
the steady-state equation below (Equation (2)):

FRi = 1/2 CR Ai ρ v2
i (2)

where FRi is the resistive force at time i, CR is the resistive force coefficient derived from
VPM, ρ is the density of the water, and Ai and vi are the frontal surface area and the forward
velocity of the swimmer at time i. A limitation of this method is the application of the
steady-state equation to a non-steady-state (fluctuating velocity) condition, which suggests
that the absolute drag value derived from this method might not be accurate. Nevertheless,
it is likely that the fluctuation of the frontal surface area affects proportionally the resistive
force variation, as a larger reference area would produce a larger hydrodynamic pressure
difference between the front and back sides of the body. Thus, quantifying changes in the
frontal surface area during swimming should provide an insight into the resistive force
fluctuation. The frontal surface area during swimming has also been assessed in another
study in which intra-cycle variation of the frontal surface area was investigated in the four
swimming strokes and in streamlined kicking [18]. In both studies, however, the frontal
surface area was obtained at a very low sampling frequency. Morais et al. [17] obtained
the surface area at only five key events in one stroke cycle and estimated the time-series
one-cycle frontal surface area data using a spline function, and Gatta et al. [18] calculated
the surface area with 12.5 Hz, which was 2–4 times lower than the recommended sampling
frequency range for swimming motion analysis (25–50 Hz) [19].

The reason for the low sampling frequency used in the two studies was probably due
to the analysis process involved. Researchers in both studies manually outlined the body in
video images to obtain the frontal surface area, which was probably very time consuming.
Considering that manual processing of data obtained at a high sampling frequency is both
challenging and time consuming, establishing an automatic process to obtain the frontal
surface area would substantially improve our ability to collect and analyse more complex
and accurate data. At the moment, this is an open problem that we tried to sort out.

The purpose of the present study was to develop an automated method to obtain
the frontal surface area during swimming. Such a method would be of great benefit for
both swimming researchers and practitioners when exploring the relationships between
technique and resistive forces in swimming, as it would lead us better understand the
temporal fluctuation of the frontal surface area that is directly linked to the time-series
resistive force in swimming.

2. Materials and Methods
2.1. Experimental Protocol

A set of experimental tests were conducted with one regional male swimmer (age: 20 y;
body mass 68 kg; height: 173 cm; training hours: 9 h per week). The swimmer was
specialized in individual medley events and had 5 years of competitive training experience.
The participant visited the swimming pool in a non-fatigued state (non-intense exercise in
the 48 h and no strength training in the 72 h prior to testing). The study was performed
in accordance with the Declaration of Helsinki (October 2008, Seoul, Korea), and the
experimental protocols were approved by the ethical committee of the local University
(Approval Number UNNE-2020-010).

Before the test started, an investigator took pictures of the whole body in different
positions for subsequent calculation of the dry model (see Figure 1). Following this process,
the swimmer performed a 400-m standardized warm-up consisting of 200-m easy front
crawl, 100 m of short sprint sets (12.5 fast and 12.5 easy), and two sets of 25-m kick and 25-m
swim. All measurements were conducted on the same day in an indoor 25-m swimming
pool with a water temperature of 27 degrees Celsius.
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Figure 1. Pictures of the swimmer in different poses.

2.2. Hardware Description and Experimental Setting

Two underwater cameras (frontal and lateral) filmed 5 different 60-s tethered swim-
ming trials at sub-maximal intensity with a 90-s rest between each trial. The cameras were
positioned at 60-cm depth taking into account the swimming pool characteristics. The
swimmer was connected to SwimOne device by means of a hardness through a steel cable [20].
For the work presented here, the drum of SwimOne was locked, and the swimmer therefore
performed the swimming trials without moving forward. Figure 2a illustrates the testing
setting, and Figure 2b details the camera position regarding to the swimmer, with θL and ρL
as the angle and distance from the reference point of the swimmer to the lateral camera and
θF and ρF as the angle and distance to the frontal one. The placement of the cameras was
established trying to minimize θL and θF as much as possible taking into account the pool
limitation. The final values that determine the cameras poses are θF = 5.6◦, θL = 11.2◦,
ρL = 3140 mm, and ρF = 6352 mm. Swimmer was placed at 3 and 6 m from the lateral and
front cameras, respectively (taking as reference the swimmer hips), in order to reduce as
much as possible θF and θL. In this way, we could obtain an optimal balance between the
validity of the measurements obtained and the quality of the swimmer image.
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Figure 2. (a) Scenario description; (b) Cameras position.

Both cameras were the same model and allowed to record videos of 1080 × 1920 resolu-
tion with a framerate of 30 fps (normal mode). The cameras were calibrated using a series
of poles of fixed length. They were positioned at specifically known positions (sagittal and
frontal plane) throughout the area in which swimmers performed each trial (Figure 3).
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For illustrative purpose, Figure 4 represents two videoframes of the lateral and
frontal cameras.
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2.3. Frontal Area Detection Algorithm

Figure 5 summarizes the steps in the algorithm for automatic detection of the swim-
mer’s frontal area, which was developed using Computer Vision Toolbox of MatlabTM.
Figure 5a represents the Data Flow Diagram of the Algorithm, and Figure 5b shows the
equivalent pseudocode.

The algorithm starts with extracting each videoframe to be processed. These frames are
captured in RGB colormap. Then, the region of interest (ROI) is selected with the purpose to
decrease the computing time by analysing only the region where the swimmer is placed at
the acquired image [21]. Figure 6 shows the ROI of a frontal frame for illustrative purpose.
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Figure 5. Summary of the algorithm steps for swimmer area determination. (a) Data Flow Diagram;
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Figure 6. Region of interest (ROI) of the frontal camera.

The following steps are to detect the swimwear, the harness, and the cap of the
swimmer and to replace it by a region with similar colour to the skin of the swimmer.

In this study, swimwear was dark red, and the cap was black, together with the harness
of SwimOne device (see Figure 1), which were all replaced with other colours to make a
clear contrast with the water colour using colour thresholding technique [22].

The resulting mask was configured in CIELAB colour space, and before this step, RGB
frame was converted to CIELAB colour space, where L represents the lightness of the pixel,
a represents the value of the colour line between green and red, and b channel represents
the value of the colour line between blue and yellow [23,24]. Appendix A summarizes the
equations to obtain channels L, a, and b from RGB ones. The mask for removing swimwear
in the frontal camera is defined by the following:

25.466 < L < 98.620
−46.336 < a < 8.860
−31.446 < b < 60.616

(3)

with L, a, and b representing the lightness, red-green, and blue-yellow channels, respectively.
This mask was applied to identify the pixels illustrating the swimwear, cap, and

harness, which were substituted in the RGB image by (RGB) = (27, 131, 135), which corre-
sponded to a pixel colour of the chest of the swimmer. Figure 7 illustrates the application
of the mask to a frame with the ROI of the original image.
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The following steps consist of removing water area and other elements, such as lanes.
These steps were implemented by other sequential masks. The first one was applied on a
normalised CIELAB colourmap:

5 < L∗ < 160 (4)

with L∗ as the normalization of L channel into (0, 255) range.
Other elements were removed by a filter area down to the water line, which is char-

acterized by i = 97, with i as the row coordinate of the frame ROI. The result of applying
both masks is illustrated in Figure 8. The filter shown in Equation (4) together with the
area filter (i ≥ 97) also remove the possible reflexion of the image of the swimmer up to the
water line.
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Figure 8. Examples of application of the mask to remove water and elements up to water line.

The ROI of the video frame was then converted to grayscale and subsequently bina-
rised to obtain the black and white image. The binarisation of the image was performed
using the algorithm described elsewhere [25]. The subsequent filter area consists of remov-
ing all the blobs with an area less than a minimum allowed value (set experimentally to
3000 pixels) and to fill the resulting blob to avoid internal holes. This process is illustrated
in Figure 9.
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Finally, regionprops function was applied to the black and image to obtain the number
of pixels of the remaining area [26]. Figure 10 represents the results for different frames.
For illustrative purposes, the final mask was coloured in red over the original frame.
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Using a laptop with a Intel(R) Core(TM) i7-8850h with 16 GB RAM and NVIDIA
Quadro P2000, the computing time of the proposed algorithm is illustrated in Figure 11 for
one of the experiments.
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2.4. Extension to Lateral Area Detection

The algorithm described in Figure 5 can be also applied for detecting the lateral area
of the swimmer by customizing the masks described in the frontal area determination.

Figure 12 shows the final result for lateral area estimation.
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Figure 12. Lateral area estimation of several frames.

Note that both frontal and lateral area were only determined in pixels, and no con-
version to the real area was performed [27]. Equation (2) is a model of the resistive force
where Ai should be expressed in m2 but the influence of the correlation between word
coordinates and image coordinates will be a constant (f.e. one pixel ≈ 6.23 mm2), and
therefore, no influence over the goodness of the relationship between effective area and
the linear velocity of the swimmer is expected. Nevertheless, further work will include the
camera calibration procedure in order to obtain frontal and lateral areas in m2.

3. Results
3.1. Frontal and Lateral Area

Figures 13 and 14 represent the time-series variation of the frontal and lateral area in
two different experiments. The result shows the periodic tendency of the swimmer in the
different cycles of the stroke.
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Figure 14. Time evolution of the frontal and lateral area. Test II.

Results shown in Figures 13 and 14 should be correlated to the velocity of the swimmer
to validate or modify model (2).

3.2. Analysis of the Results
3.2.1. Correlation between Frontal and Lateral Areas

Figure 15 presents the representation of the Frontal Area vs. Lateral Area in both Test
(Test I, Figure 15a, Test II, Figure 15b) together with their linear regression. Note that the
coefficients of determination are very small (R2 = 0.1122 and R2 = 0.09951), and therefore,
no correlation between both areas is observed.
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3.2.2. Frequency Domain Characterization

For illustrative purpose, Figure 16 represents the frequency spectrum of frontal and
lateral area for Test I.
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For both measurements the frequency peaks are cle for frontal area at 0.47596 Hz and
0.47595 Hz for lateral one. Both main frequencies have similar values.

The frequency and amplitude values could be used to be correlated to the swimmer
speed when the device shown in Figure 17 will be available.
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4. Discussion

This study aimed to determine the frontal area of swimmers employing an automated
vision system. The resistive forces that influence the swimmer in the water include form,
wave drag (as a result of accelerating the water away from the body), and frictional drag,
which are influenced by the swimmer’s velocity, boundary layer, shape, size, and the
frontal surface area [28], while controversial issues exist due to the difficulty of accurately
measuring the wetted surface area of the swimmer’s body [29]. We propose a vision-based
System for Automated Estimation of the frontal surface area of swimmers, and these
instant measurements could allow adapting the technical characteristics for swimmers
into the session to improve the swimming performance reducing the passive drag. Our
results showed the different time evolution of the frontal area, and the difference with the
study of Morais et al. [17] is how the image in our study processes automatically, while
these authors manually digitized the calculation of the frontal surface area. Morais et al.
compared the passive drag calculation between a single frontal surface area land-based
measure and frontal surface area measures obtained at key events during the stroke cycle
of front crawl swimming; however, the frontal surface area was obtained at a very low
sampling frequency. In addition, the work of Gatta et al. [18] established frontal area values
through the swimming stroke cycle for all strokes, trying to estimate active drag (in all
strokes) at different swimming speeds, calculating the surface area 2–4 times lower than
the recommended sampling frequency range for swimming motion analysis.

In comparison with the aforementioned studies, the novelty of this paper is in estab-
lishing an automatic process to obtain the frontal surface area, improving our ability to
collect and analyse more complex and accurate data. The main limitations of this research
may be summarized as follows: (a) we only analysed one swimmer for collecting and (b)
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we analysed in one stroke (crawl). Further studies are warranted to develop a new device
for installation in a swimming pool (Figure 17).

5. Conclusions

The development of an automated method to obtain the frontal surface area during swim-
ming increases the knowledge of the temporal fluctuation of the frontal surface area in swim-
ming. It would allow the best monitoring of a swimmer in their swimming training sessions.

A novel algorithm for estimating the frontal and lateral area is presented. The comput-
ing time allows to obtain a reasonable online representation of the results.

The final objective of this research is to experimentally correlate the linear velocity of the
swimmer to the frontal area estimated in this work. For this purpose, a novel device has been
designed to follow the swimmer during the activity in order to determine the frontal area and
the velocity in a synchronous way. Figure 17 shows the conceptual design of the device.

Our purpose is to experimentally validate model (2) or, if not, to obtain a new model
based on experimental results.
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Appendix A

RGB to CIELAB conversion is detailed in this appendix. Given a pixel, which is R level
of Red Channel, G level of Green Channel, and B level of Blue Channel, and an intermediate
XYZ colourmap, that can be obtained by: X

Y
Z

 =

 0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

 R
G
B

 (A1)

L, a, and b channel can be therefore determined as:

L =


116
(

Y
Yn

)1/3
− 16, for

Y
Yn

> 0.008856

903.3
(

Y
Yn

)
, otherwise

(A2)

a = 500
(

f
(

X
Xn

)
− f

(
Y
Yn

))
(A3)

b = 200
(

f
(

Y
Yn

)
− f

(
Z
Zn

))
(A4)

where

f (t) =

 t
1
3 , for t > 0.008856

7.787t +
16

116
, otherwise

(A5)

and Xn, Yn, and Zn are the tristimulus values of the white reference.



Sensors 2022, 22, 955 12 of 12

References
1. Pendergast, D.; Mollendorf, J.; Zamparo, P.; Termin, A., 2nd; Bushnell, D.; Paschke, D. The influence of drag on human locomotion

in water. Undersea Hyperb. Med. 2005, 32, 45–57. [PubMed]
2. Toussaint, H.M.; Roos, P.E.; Kolmogorov, S. The determination of drag in front crawl swimming. J. Biomech. 2004, 37, 1655–1663.

[CrossRef] [PubMed]
3. Toussaint, H.; De Groot, G.; Savelberg, H.; Vervoorn, K.; Hollander, A.; van Ingen Schenau, G. Active drag related to velocity in

male and female swimmers. J. Biomech. 1988, 21, 435–438. [CrossRef]
4. Morouço, P.G.; Vilas-Boas, J.P.; Fernandes, R.J. Evaluation of adolescent swimmers through a 30-s tethered test. Pediatr. Exerc. Sci.

2012, 24, 312–321. [CrossRef]
5. Silva, A.F.; Figueiredo, P.; Ribeiro, J.; Alves, F.; Vilas-Boas, J.P.; Seifert, L.; Fernandes, R.J. Integrated analysis of young swimmers’

sprint performance. Motor Control 2019, 23, 354–364. [CrossRef]
6. Seifert, L.; Schnitzler, C.; Bideault, G.; Alberty, M.; Chollet, D.; Toussaint, H.M. Relationships between coordination, active drag

and propelling efficiency in crawl. Hum. Mov. Sci. 2015, 39, 55–64. [CrossRef]
7. Kudo, S.; Mastuda, Y.; Yanai, T.; Sakurai, Y.; Ikuta, Y. Contribution of upper trunk rotation to hand forward-backward movement

and propulsion in front crawl strokes. Hum. Mov. Sci. 2019, 66, 467–476. [CrossRef]
8. Kudo, S.; Sakurai, Y.; Miwa, T.; Matsuda, Y. Relationship between shoulder roll and hand propulsion in the front crawl stroke.

J. Sports Sci. 2017, 35, 945–952. [CrossRef]
9. Tsunokawa, T.; Nakashima, M.; Takagi, H. Use of pressure distribution analysis to estimate fluid forces around a foot during

breaststroke kicking. Sports Eng. 2015, 18, 149–156. [CrossRef]
10. Schnitzler, C.; Seifert, L.; Button, C. Adaptability in swimming pattern: How propulsive action is modified as a function of speed

and skill. Front. Sports Act. Living 2021, 3, 56. [CrossRef]
11. Hollander, A.; De Groot, G.; van Ingen Schenau, G.; Toussaint, H.; De Best, H.; Peeters, W.; Meulemans, A.; Schreurs, A.

Measurement of active drag during crawl arm stroke swimming. J. Sports Sci. 1986, 4, 21–30. [CrossRef] [PubMed]
12. Kolmogorov, S.; Duplishcheva, O. Active drag, useful mechanical power output and hydrodynamic force coefficient in different

swimming strokes at maximal velocity. J. Biomech. 1992, 25, 311–318. [CrossRef]
13. Formosa, D.P.; Toussaint, H.M.; Mason, B.R.; Burkett, B. Comparative analysis of active drag using the MAD system and an

assisted towing method in front crawl swimming. J. Appl. Biomech. 2012, 28, 746–750. [CrossRef] [PubMed]
14. Hazrati, P.; Sinclair, P.J.; Spratford, W.; Ferdinands, R.E.; Mason, B.R. Contribution of uncertainty in estimation of active drag

using assisted towing method in front crawl swimming. J. Sports Sci. 2018, 36, 7–13. [CrossRef]
15. Narita, K.; Nakashima, M.; Takagi, H. Developing a methodology for estimating the drag in front-crawl swimming at various

velocities. J. Biomech. 2017, 54, 123–128. [CrossRef]
16. Takagi, H.; Nakashima, M.; Sengoku, Y.; Tsunokawa, T.; Koga, D.; Narita, K.; Kudo, S.; Sanders, R.; Gonjo, T. How do swimmers

control their front crawl swimming velocity? Current knowledge and gaps from hydrodynamic perspectives. Sports Biomech.
2021, 1–20. [CrossRef]

17. Morais, J.E.; Sanders, R.H.; Papic, C.; Barbosa, T.M.; Marinho, D.A. The influence of the frontal surface area and swim velocity
variation in front crawl active drag. Med. Sci. Sports Exerc. 2020, 52, 2357–2364. [CrossRef]

18. Gatta, G.; Cortesi, M.; Fantozzi, S.; Zamparo, P. Planimetric frontal area in the four swimming strokes: Implications for drag,
energetics and speed. Hum. Mov. Sci. 2015, 39, 41–54. [CrossRef]

19. Payton, C.J. Motion analysis using video. In Biomechanical Evaluation of Movement in Sport and Exercise; Routledge: Abingdon, UK,
2007; pp. 22–46.

20. Hermosilla, F.; Corral-Gómez, L.; González-Ravé, J.M.; Juárez Santos-García, D.; Rodríguez-Rosa, D.; Juárez-Pérez, S.;
Castillo-Garcia, F.J. SwimOne. New Device for Determining Instantaneous Power and Propulsive Forces in Swimming. Sensors
2020, 20, 7169. [CrossRef]

21. Zhang, L.; Yang, K. Region-of-interest extraction based on frequency domain analysis and salient region detection for remote
sensing image. IEEE Geosci. Remote Sens. Lett. 2013, 11, 916–920. [CrossRef]

22. Kulkarni, N. Color thresholding method for image segmentation of natural images. Int. J. Image. Graph. 2012, 4, 28. [CrossRef]
23. Weatherall, I.L.; Coombs, B.D. Skin color measurements in terms of CIELAB color space values. J. Investig. Dermatol. 1992, 99, 468–473.

[CrossRef] [PubMed]
24. Billmeyer Jr, F.W.; Fairman, H.S. CIE method for calculating tristimulus values. Color. Res. Appl. 1987, 12, 27–36. [CrossRef]
25. Bradley, D.; Roth, G. Adaptive thresholding using the integral image. J. Graph. Tools 2007, 12, 13–21. [CrossRef]
26. Ananthanarasimhan, J.; Leelesh, P.; Anand, M.; Lakshminarayana, R. Validation of projected length of the rotating gliding arc

plasma using ‘regionprops’ function. Plasma Res. Express 2020, 2, 035008. [CrossRef]
27. Song, L.; Wu, W.; Guo, J.; Li, X. Survey on camera calibration technique. In Proceedings of the 2013 5th International Conference

on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2013; pp. 389–392.
28. Sacilotto, G.B.; Ball, N.; Mason, B.R. A biomechanical review of the techniques used to estimate or measure resistive forces in

swimming. J. Appl. Biomech. 2014, 30, 119–127. [CrossRef]
29. Cortesi, M.; Gatta, G.; Michielon, G.; Di Michele, R.; Bartolomei, S.; Scurati, R. Passive drag in young swimmers: Effects of body

composition, morphology and gliding position. Int. J. Environ. Res. Public Health 2020, 17, 2002. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/15796314
http://doi.org/10.1016/j.jbiomech.2004.02.020
http://www.ncbi.nlm.nih.gov/pubmed/15388307
http://doi.org/10.1016/0021-9290(88)90149-2
http://doi.org/10.1123/pes.24.2.312
http://doi.org/10.1123/mc.2018-0014
http://doi.org/10.1016/j.humov.2014.10.009
http://doi.org/10.1016/j.humov.2019.05.023
http://doi.org/10.1080/02640414.2016.1206208
http://doi.org/10.1007/s12283-015-0174-6
http://doi.org/10.3389/fspor.2021.618990
http://doi.org/10.1080/02640418608732094
http://www.ncbi.nlm.nih.gov/pubmed/3735480
http://doi.org/10.1016/0021-9290(92)90028-Y
http://doi.org/10.1123/jab.28.6.746
http://www.ncbi.nlm.nih.gov/pubmed/22695220
http://doi.org/10.1080/02640414.2016.1276295
http://doi.org/10.1016/j.jbiomech.2017.01.037
http://doi.org/10.1080/14763141.2021.1959946
http://doi.org/10.1249/MSS.0000000000002400
http://doi.org/10.1016/j.humov.2014.06.010
http://doi.org/10.3390/s20247169
http://doi.org/10.1109/LGRS.2013.2281827
http://doi.org/10.5815/ijigsp.2012.01.04
http://doi.org/10.1111/1523-1747.ep12616156
http://www.ncbi.nlm.nih.gov/pubmed/1402005
http://doi.org/10.1002/col.5080120106
http://doi.org/10.1080/2151237X.2007.10129236
http://doi.org/10.1088/2516-1067/abae49
http://doi.org/10.1123/jab.2013-0046
http://doi.org/10.3390/ijerph17062002

	Introduction 
	Preliminaries 
	Related Works 

	Materials and Methods 
	Experimental Protocol 
	Hardware Description and Experimental Setting 
	Frontal Area Detection Algorithm 
	Extension to Lateral Area Detection 

	Results 
	Frontal and Lateral Area 
	Analysis of the Results 
	Correlation between Frontal and Lateral Areas 
	Frequency Domain Characterization 


	Discussion 
	Conclusions 
	Appendix A
	References

