Fall Risk Assessment Using Wearable Sensors: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Fall Risk Assessment Methods
3.1. Fall Risk Assessment Based on Clinical Scales
3.1.1. Sensor System Characteristics
3.1.2. Clinical-Based Scales Adopted
3.1.3. Algorithms for the Classification of Fall Risk
3.2. Fall Risk Assessment Based on the Detection of Fall Risk Events
3.2.1. Sensor System Characteristics
3.2.2. Types of Activities Performed
3.2.3. Algorithms for the Classification of Fall Risk
3.3. Other Fall Risk Assessment Methods
3.4. System’s Validation
4. Discussion and Future Directions
4.1. Which Are the Main Types of Fall Risk Assessment Methods Using Wearable Sensors in Literature Studies?
4.2. What Types, Number, and Location of Wearable Sensors Were Adopted in the Literature Studies?
4.3. Which Tasks or Clinical Scales Were Performed during Experimental Protocols for Data Acquisition?
4.4. Which Algorithms Are Used in the Scientific Literature for the Classification of Fall Risk?
4.5. How Was the Validation of Fall Risk Assessment Systems Performed Using Wearable Sensors?
4.6. Future Directions and Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- WHO. Falls. Available online: https://www.who.int/news-room/fact-sheets/detail/falls (accessed on 15 May 2021).
- Rajagopalan, R.; Litvan, I.; Jung, T.P. Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions. Sensors 2017, 17, 2509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemmatpour, M.; Ferrero, R.; Montrucchio, B.; Rebaudengo, M. A Review on Fall Prediction and Prevention System for Personal Devices: Evaluation and Experimental Results. Adv.-Hum.-Comput. Interact. 2019, 2019, 9610567. [Google Scholar] [CrossRef] [Green Version]
- Saadeh, W.; Butt, S.A.; Altaf, M.A.B. A Patient-Specific Single Sensor IoT-Based Wearable Fall Prediction and Detection System. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Leone, A.; Rescio, G.; Giampetruzzi, L.; Siciliano, P. Smart EMG-based Socks for Leg Muscles Contraction Assessment. In Proceedings of the 2019 IEEE International Symposium on Measurements Networking (M N), Catania, Italy, 8–10 July 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Rucco, R.; Sorriso, A.; Liparoti, M.; Ferraioli, G.; Sorrentino, P.; Ambrosanio, M.; Baselice, F. Type and Location of Wearable Sensors for Monitoring Falls during Static and Dynamic Tasks in Healthy Elderly: A Review. Sensors 2018, 18, 1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, H.; Rehman, R.Z.U.; Yu, X.; Xiong, S. Application of Wearable Inertial Sensors and A New Test Battery for Distinguishing Retrospective Fallers from Non-fallers among Community-dwelling Older People. Sci. Rep. 2018, 8, 16349. [Google Scholar] [CrossRef]
- Rivolta, M.W.; Aktaruzzaman, M.; Rizzo, G.; Lafortuna, C.L.; Ferrarin, M.; Bovi, G.; Bonardi, D.R.; Sassi, R. Automatic vs. clinical assessment of fall risk in older individuals: A proof of concept. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 6935–6938. [Google Scholar] [CrossRef]
- Tang, W.; Fulk, G.; Zeigler, S.; Zhang, T.; Sazonov, E. Estimating Berg Balance Scale and Mini Balance Evaluation System Test Scores by Using Wearable Shoe Sensors. In Proceedings of the 2019 IEEE EMBS International Conference on Biomedical Health Informatics (BHI), Chicago, IL, USA, 19–22 May 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Greene, B.R.; McManus, K.; Redmond, S.J.; Caulfield, B.; Quinn, C.C. Digital assessment of falls risk, frailty, and mobility impairment using wearable sensors. NPJ Digit. Med. 2019, 2, 125. [Google Scholar] [CrossRef] [Green Version]
- Reginatto, B.; Taylor, K.; Patterson, M.R.; Power, D.; Komaba, Y.; Maeda, K.; Inomata, A.; Caulfield, B. Context aware falls risk assessment: A case study comparison. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 5477–5480. [Google Scholar] [CrossRef]
- Parvaneh, S.; Najafi, B.; Toosizadeh, N.; Riaz, I.B.; Mohler, J. Is there any association between ventricular ectopy and falls in community-dwelling older adults? In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; pp. 433–436. [Google Scholar]
- Annese, V.F.; De Venuto, D. FPGA based architecture for fall-risk assessment during gait monitoring by synchronous EEG/EMG. In Proceedings of the 6th International Workshop on Advances in Sensors and Interfaces (IWASI), Gallipoli, Italy, 18–19 June 2015; pp. 116–121. [Google Scholar] [CrossRef]
- Agmon, M.; Shochat, T.; Kizony, R. Sleep quality is associated with walking under dual-task, but not single-task performance. Gait Posture 2016, 49, 127–131. [Google Scholar] [CrossRef]
- Nait Aicha, A.; Englebienne, G.; van Schooten, K.S.; Pijnappels, M.; Kröse, B. Deep Learning to Predict Falls in Older Adults Based on Daily-Life Trunk Accelerometry. Sensors 2018, 18, 1654. [Google Scholar] [CrossRef] [Green Version]
- Howcroft, J.; Lemaire, E.D.; Kofman, J. Prospective elderly fall prediction by older-adult fall-risk modeling with feature selection. Biomed. Signal Process. Control 2018, 43, 320–328. [Google Scholar] [CrossRef]
- Howcroft, J.; Kofman, J.; Lemaire, E. Review of Fall Risk Assessment in Geriatric Populations Using Inertial Sensors. J. Neuroeng. Rehabil. 2013, 10, 91. [Google Scholar] [CrossRef] [Green Version]
- Shany, T.; Wang, K.; Liu, Y.; Lovell, N.H.; Redmond, S.J. Review: Are we stumbling in our quest to find the best predictor? Over-optimism in sensor-based models for predicting falls in older adults. Healthc. Technol. Lett. 2015, 2, 79–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganz, D.; Higashi, T.; Rubenstein, L. Monitoring Falls in Cohort Studies of Community-Dwelling Older People: Effect of the Recall Interval. J. Am. Geriatr. Soc. 2006, 53, 2190–2194. [Google Scholar] [CrossRef] [PubMed]
- Delbaere, K.; Crombez, G.; Vanderstraeten, G.; Willems, T.; Cambier, D. Fear-related avoidance of activities, falls and physical frailty. A prospective community-based cohort study. Age Ageing 2004, 33, 368–373. [Google Scholar] [CrossRef] [Green Version]
- Maki, B.E. Gait changes in older adults: Predictors of falls or indicators of fear. J. Am. Geriatr. Soc. 1997, 45, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Annese, V.F.; De Venuto, D. Gait analysis for fall prediction using EMG triggered movement related potentials. In Proceedings of the 10th International Conference on Design Technology of Integrated Systems in Nanoscale Era (DTIS), Napoli, Italy, 21–23 April 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Vellas, B.J.; Wayne, S.J.; Romero, L.J.; Baumgartner, R.N.; Garry, P.J. Fear of falling and restriction of mobility in elderly fallers. Age Ageing 1997, 26, 189–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montesinos, L.; Castaldo, R.; Pecchia, L. Wearable inertial sensors for fall risk assessment and prediction in older adults: A systematic review and meta-analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 573–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivolta, M.W.; Aktaruzzaman, M.; Rizzo, G.; Lafortuna, C.L.; Ferrarin, M.; Bovi, G.; Bonardi, D.R.; Caspani, A.; Sassi, R. Evaluation of the Tinetti score and fall risk assessment via accelerometry-based movement analysis. Artif. Intell. Med. 2019, 95, 38–47. [Google Scholar] [CrossRef]
- Shahzad, A.; Ko, S.; Lee, S.; Lee, J.; Kim, K. Quantitative Assessment of Balance Impairment for Fall-Risk Estimation Using Wearable Triaxial Accelerometer. IEEE Sensor J. 2017, 17, 6743–6751. [Google Scholar] [CrossRef]
- Saporito, S.; Brodie, M.A.; Delbaere, K.; Hoogland, J.; Nijboer, H.; Rispens, S.M.; Spina, G.; Stevens, M.; Annegarn, J. Remote timed up and go evaluation from activities of daily living reveals changing mobility after surgery. Physiol. Meas. 2019, 40, 035004. [Google Scholar] [CrossRef] [Green Version]
- Rescio, G.; Leone, A.; Caroppo, A.; Siciliano, P. A preliminary study on fall risk evaluation through electromiography systems. In Proceedings of the 2015 International Conference on Interactive Mobile Communication Technologies and Learning (IMCL), Thessaloniki, Greece, 19–20 November 2015; pp. 219–221. [Google Scholar] [CrossRef]
- Leone, A.; Rescio, G.; Siciliano, P. Fall risk evaluation by surface electromyography technology. In Proceedings of the 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC), Madeira, Portugal, 27–29 June 2017; pp. 1092–1095. [Google Scholar] [CrossRef]
- Buisseret, F.; Catinus, L.; Grenard, R.; Jojczyk, L.; Fievez, D.; Barvaux, V.; Dierick, F. Timed Up and Go and Six-Minute Walking Tests with Wearable Inertial Sensor: One Step Further for the Prediction of the Risk of Fall in Elderly Nursing Home People. Sensors 2020, 20, 3207. [Google Scholar] [CrossRef]
- Yang, Z.; Song, C.; Lin, F.; Langan, J.; Xu, W. A Smart Environment-Adapting Timed-Up-and-Go System Powered by Sensor-Embedded Insoles. IEEE Internet Things J. 2019, 6, 1298–1305. [Google Scholar] [CrossRef]
- Selvaraj, M.; Baltzopoulos, V.; Shaw, A.; Maganaris, C.N.; Cullen, J.; O’Brien, T.; Kot, P. Stair Fall Risk Detection Using Wearable Sensors. In Proceedings of the 11th International Conference on Developments in eSystems Engineering (DeSE), Cambridge, UK, 2–5 September 2018; pp. 108–112. [Google Scholar] [CrossRef]
- Vieira, B.; Pereira, L.; Freitas, R.; Terroso, M.; Simoes, R. A gamified application for assessment of balance and fall prevention. In Proceedings of the 10th Iberian Conference on Information Systems and Technologies (CISTI), Aveiro, Portugal, 17–20 June 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Dzhagaryan, A.; Milenkovic, A.; Jovanov, E.; Milosevic, M. Smart Button: A wearable system for assessing mobility in elderly. In Proceedings of the 17th International Conference on E-health Networking, Application Services (HealthCom), Boston, MA, USA, 14–17 October 2015; pp. 416–421. [Google Scholar] [CrossRef] [Green Version]
- Vavoulas, G.; Pediaditis, M.; Chatzaki, C.; Spanakis, E.; Tsiknakis, M. The MobiFall Dataset:: Fall Detection and Classification with a Smartphone. Int. J. Monit. Surveill. Technol. Res. 2016, 2, 44–56. [Google Scholar] [CrossRef]
- Yao, M.; Zhang, Q.; Li, M.; Li, H.; Ning, Y.; Xie, G.; Zhao, G.; Ma, Y.; Gao, X.; Jin, Z. A wearable pre-impact fall early warning and protection system based on MEMS inertial sensor and GPRS communication. In Proceedings of the IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Cambridge, MA, USA, 9–12 June 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Begg, R.; Best, R.; Dell’Oro, L.; Taylor, S. Minimum foot clearance during walking: Strategies for the minimisation of trip-related falls. Gait Posture 2007, 25, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Abbate, S.; Avvenuti, M.; Cola, G.; Corsini, P.; Light, J.; Vecchio, A. Recognition of false alarms in fall detection systems. In Proceedings of the 2011 IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2011; pp. 23–28. [Google Scholar] [CrossRef] [Green Version]
- Nazarahari, M.; Rouhani, H. 40 years of sensor fusion for orientation tracking via magnetic and inertial measurement units: Methods, lessons learned, and future challenges. Inf. Fusion 2021, 68, 67–84. [Google Scholar] [CrossRef]
- Mariani, B.; Rouhani, H.; Crevoisier, X.; Aminian, K. Quantitative estimation of foot-flat and stance phase of gait using foot-worn inertial sensors. Gait Posture 2013, 37, 229–234. [Google Scholar] [CrossRef]
- Mathie, M.J.; Coster, A.C.F.; Lovell, N.H.; Celler, B.G. Accelerometry: Providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiol. Meas. 2004, 25, R1. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Chen, X.; Shen, M. A Framework for Daily Activity Monitoring and Fall Detection Based on Surface Electromyography and Accelerometer Signals. IEEE J. Biomed. Health Inform. 2013, 17, 38–45. [Google Scholar] [CrossRef]
- Lee, D.; Kim, Y.; Yun, J.; Jung, M.; Lee, G. A comparative study of the electromyographic activities of lower extremity muscles during level walking and Pedalo riding. J. Phys. Ther. Sci. 2016, 28, 1478–1481. [Google Scholar] [CrossRef] [Green Version]
- Erik, K. Antonsson, R.W.M. The frequency content of gait. J. Biomech. 1985, 18, 39–47. [Google Scholar] [CrossRef]
- Martinez, F.; Claudio-Sanchez, A.; Rodriguez-Lelis, J.; Vergara-Limon, S.; Olivares Peregrino, V.; Vargas Treviño, M. A portable system with sample rate of 250 Hz for characterization of knee and hip angles in the sagittal plane during gait. Biomed. Eng. Online 2014, 13, 34. [Google Scholar] [CrossRef] [Green Version]
- Winter, D.A. Biomechanics and Motor Control of Human Movement; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Berg, K.O.; Wood-Dauphinee, S.L.; Williams, J.I.; Maki, B. Measuring balance in the elderly: Validation of an instrument. Can. J. Public Health Rev. Can. Sante Publique 1992, 83 (Suppl. 2), S7–S11. [Google Scholar]
- Tinetti, M.E.; Williams, T.F.; Mayewski, R. Fall risk index for elderly patients based on number of chronic disabilities. Am. J. Med. 1986, 80, 429–434. [Google Scholar] [CrossRef]
- Franchignoni, F.; Horak, F.; Godi, M.; Nardone, A.; Giordano, A. Using psychometric techniques to improve the Balance Evaluation Systems Test: The mini-BESTest. J. Rehabil. Med. 2010, 42, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Crapo, R.O.; Casaburi, R.; Coates, A.L.; Enright, P.L.; MacIntyre, N.R.; McKay, R.T.; Johnson, D.; Wanger, J.S.; Zeballos, R.J.; Bittner, V.; et al. ATS Statement: Guidelines for the Six-Minute Walk Test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef]
- Jones, C.J.; Rikli, R.E.; Beam, W.C. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res. Q. Exerc. Sport 1999, 70, 113–119. [Google Scholar] [CrossRef]
- Aziz, O.; Musngi, M.; Park, E.; Mori, G.; Robinovitch, S. A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials. Med. Biol. Eng. Comput. 2016, 55, 45–55. [Google Scholar] [CrossRef]
- Yu, D.; Deng, L. Deep Learning and Its Applications to Signal and Information Processing [Exploratory DSP]. IEEE Signal Process. Mag. 2011, 28, 145–154. [Google Scholar] [CrossRef]
- Meyer, B.M.; Tulipani, L.J.; Gurchiek, R.D.; Allen, D.A.; Adamowicz, L.; Larie, D.; Solomon, A.J.; Cheney, N.; McGinnis, R.S. Wearables and Deep Learning Classify Fall Risk From Gait in Multiple Sclerosis. IEEE J. Biomed. Health Inform. 2021, 25, 1824–1831. [Google Scholar] [CrossRef]
- Tan, H.; Aung, N.; Tian, J.; Chua, M.; Ou Yang, Y. Time series classification using a modified LSTM approach from accelerometer-based data: A comparative study for gait cycle detection. Gait Posture 2019, 74, 128–134. [Google Scholar] [CrossRef]
- Casilari, E.; Santoyo-Ramón, J.A.; Cano-García, J.M. Analysis of Public Datasets for Wearable Fall Detection Systems. Sensors 2017, 17, 1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klenk, J.; Schwickert, L.; Palmerini, L.; Mellone, S.; Bourke, A.; Ihlen, E.A.F.; Kerse, N.; Hauer, K.; Pijnappels, M.; Synofzik, M.; et al. The FARSEEING real-world fall repository: A large-scale collaborative database to collect and share sensor signals from real-world falls. Eur. Rev. Aging Phys. Act. Off. J. Eur. Group Res. Elder. Phys. Act. 2016, 13, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCrum, C.; Gerards, M.H.G.; Karamanidis, K.; Zijlstra, W.; Meijer, K. A systematic review of gait perturbation paradigms for improving reactive stepping responses and falls risk among healthy older adults. Eur. Rev. Aging Phys. Act. 2017, 14, 3. [Google Scholar] [CrossRef] [Green Version]
- Arlot, S.; Celisse, A. A Survey of Cross Validation Procedures for Model Selection. Stat. Surv. 2009, 4, 40–74. [Google Scholar] [CrossRef]
- Monaco, V.; Tropea, P.; Aprigliano, F.; Martelli, D.; Parri, A.; Cortese, M.; Molino Lova, R.; Vitiello, N.; Micera, S. An ecologically-controlled exoskeleton can improve balance recovery after slippage. Sci. Rep. 2017, 7, 46721. [Google Scholar] [CrossRef] [PubMed]
- Trkov, M.; Wu, S.; Yi, J.; Liu, T.; Zhao, Q. Design of a Robotic Knee Assistive Device (ROKAD) for Slip-Induced Fall Prevention during Walking. IFAC-PapersOnLine 2017, 50, 9802–9807. [Google Scholar] [CrossRef]
- Huang, Z.G.; Feng, Y.H.; Li, Y.H.; Lv, C.S. Systematic review and meta-analysis: Tai Chi for preventing falls in older adults. BMJ Open 2017, 7, e013661. [Google Scholar] [CrossRef] [PubMed]
- Gerards, M.H.G.; McCrum, C.; Mansfield, A.; Meijer, K. Perturbation-based balance training for falls reduction among older adults: Current evidence and implications for clinical practice. Geriatr. Gerontol. Int. 2017, 17, 2294–2303. [Google Scholar] [CrossRef] [Green Version]
- Granacher, U.; Muehlbauer, T.; Zahner, L.; Gollhofer, A.; Kressig, R.W. Comparison of traditional and recent approaches in the promotion of balance and strength in older adults. Sport. Med. 2011, 41, 377–400. [Google Scholar] [CrossRef]
Author | Sensors | Number | fs (Hz) | Sensor Location | Mean Lead-Time (ms) | Lead-Time Meaning |
---|---|---|---|---|---|---|
Saadeh [4] | Acc | 1 | 256 | upper thigh | 300–700 | time between the detection of the unbalance event and the impact of the fall |
Leone [5] | EMG | 4 | 125 | gastrocnemius and tibialis muscles | 750 | time between the detection of the unbalance event and the impact of the fall |
Rescio [28] | EMG | 4 | 1000 | gastrocnemius and tibialis muscles | 200 | time difference between the perturbation onset and the detection of the perturbation |
Leone [29] | EMG | 4 | 1000 | gastrocnemius and tibialis muscles | 775 | time between the detection of the unbalance event and the impact of the fall |
Author | Number of Subjects | Subject’s Age | Model Used | Validation Method | Reference Measures for Classification | Results |
---|---|---|---|---|---|---|
Saadeh [4] | 77 | 20-70 | ML (NLSVM) | N\A | Type of event (pre-fall or normal ADL events). | Sens = 97.8%; Spec = 99.1% |
Leone [5] | 5 | 28.7 ± 7.1 | ML (LDA) | Holdout (70% training; 30% testing) | Type of event (pre-fall or normal ADL events). | Accu = 82.3%; Sens = 86.4 %; Spec = 83.8% |
Rivolta [8] | 13 | 69.7 ± 10.7 | ML (multiple linear regression model) | Leave-one-out CV | Clinical score (Tinetti) | Accu = 84.6% Sens = 85.7%; Spec = 83.3% |
Tang [9] | 30 | 76.0 ± 10.5 | ML (Linear kernel SVR) | Leave-one-out CV | Clinical score (BBS and MiniBEST) | Mean error: 6.07 ± 3.76 (BBS); 5.45 ± 3.65 (MiniBEST) |
Rivolta [25] | 90 | 69.3 ± 16.8 | ML (linear regression model); DL (single hidden layer ANN) | Holdout (60% training; 40% testing) | Clinical score (Tinetti) | Sens (ML) = 71% Spec (ML) = 81% Sens (DL) = 86%; Spec (DL) = 90% |
Shahzad [26] | 23 | 72.87 ± 8 | ML (LLS and LASSO models) | 10-fold CV | Clinical score (BBS) | Mean error: 1.9 ± 2.53 (LLS); 1.44 ± 1.98 (LASSO) |
Saporito [27] | 239 | 75.2 ± 6.1 | ML (regularised linear model) | Leave-one-out CV | Clinical score (TUG) | Mean error: 2.1 ± 1.7s |
Rescio [28] | 7 | 28.8 ± 7.6 | Th | 10-fold CV | Type of event (pre-fall or normal ADL events) | Sens 70%; Spec 70% |
Leone [29] | 15 | 32.6 ± 9.3 | ML (LDA) | 10-fold CV | Type of event (pre-fall or normal ADL events) | Sens = 89.1%; Spec = 87.1% |
Buisseret [30] | 73 | 83.0 ± 8.3 | Th; DL (CNN) | Holdout (78% training; 22% testing) | Faller status based on prospective fall occurrence | Accu(Th) = 73.9%; Sens(Th) = 85.7%; Spec(Th)= 50%; Accu(DL) = 75%; Sens(DL) = 75%; Spec(DL) = 75% |
Yang [31] (*) | 10 | 19-44 | N\A | N\A | Video recordings from TUG | Accu(gait cycle count) = 100% Accu(segment TUG phases) = 92.23% Accu(spatial—temporal features) = 92% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, R.N.; Ribeiro, N.F.; Santos, C.P. Fall Risk Assessment Using Wearable Sensors: A Narrative Review. Sensors 2022, 22, 984. https://doi.org/10.3390/s22030984
Ferreira RN, Ribeiro NF, Santos CP. Fall Risk Assessment Using Wearable Sensors: A Narrative Review. Sensors. 2022; 22(3):984. https://doi.org/10.3390/s22030984
Chicago/Turabian StyleFerreira, Rafael N., Nuno Ferrete Ribeiro, and Cristina P. Santos. 2022. "Fall Risk Assessment Using Wearable Sensors: A Narrative Review" Sensors 22, no. 3: 984. https://doi.org/10.3390/s22030984
APA StyleFerreira, R. N., Ribeiro, N. F., & Santos, C. P. (2022). Fall Risk Assessment Using Wearable Sensors: A Narrative Review. Sensors, 22(3), 984. https://doi.org/10.3390/s22030984