MEMS Underwater Directional Acoustic Sensor in Near Neutral Buoyancy Configuration
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Acceleration Measurements
3.2. Anechoic Chamber Measurements
3.3. Underwater Measurements
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leslie, C.B.; Kendall, J.M.; Jones, J.L. Hydrophone for Measuring Particle Velocity. J. Acoust. Soc. Am. 1956, 28, 711–715. [Google Scholar] [CrossRef]
- Moffett, M.B.; Trivett, D.H.; Klippel, P.J.; Baird, P.D. A Piezoelectric, Flexural-Disk, Neutrally Buoyant, Underwater Accelerometer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1998, 45, 1341–1346. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Kumar, A.; Aggarwal, M.; Bahl, R. Design and Experimentation with Acoustic Vector Sensors. In Proceedings of the 2009 International Symposium on Ocean Electronics (SYMPOL 2009), Cochin, India, 18–20 November 2009; pp. 139–146. [Google Scholar]
- Gabrielson, T.B.; Gardner, D.L.; Garrett, S.L. A Simple Neutrally Buoyant Sensor for Direct Measurement of Particle Velocity and Intensity in Water. J. Acoust. Soc. Am. 1995, 97, 2227–2237. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, H.-J.; Wang, W.-Z. An Underwater Acoustic Vector Sensor with High Sensitivity and Broad Band. Sens. Transducers 2014, 170, 30. [Google Scholar]
- McConnell, J.A. Practical Experiences with Inertial Type Underwater Acoustic Intensity Probes. In Proceedings of the OCEANS’02 MTS/IEEE, Biloxi, MI, USA, 29–31 October 2002; Volume 4, pp. 1915–1923. [Google Scholar]
- Banner, A. Simple Velocity Hydrophones for Bioacoustic Application. J. Acoust. Soc. Am. 1973, 53, 1134–1136. [Google Scholar] [CrossRef]
- Keller, B.D. Gradient Hydrophone Flow Noise. J. Acoust. Soc. Am. 1977, 62, 205–208. [Google Scholar] [CrossRef]
- Gardner, D.; Hofler, T.; Baker, S.; Yarber, R.; Garrett, S. A Fiber-Optic Interferometric Seismometer. J. Light. Technol. 1987, 5, 953–960. [Google Scholar] [CrossRef] [Green Version]
- D’ Spain, G.L.; Hodgkiss, W.S.; Edmonds, G.L. The Simultaneous Measurement of Infrasonic Acoustic Particle Velocity and Acoustic Pressure in the Ocean by Freely Drifting Swallow Floats. IEEE J. Ocean. Eng. 1991, 16, 195–207. [Google Scholar] [CrossRef]
- Berliner, M.J.; Lindberg, J.F. Acoustic Particle Velocity Sensors: Design, Performance, and Applications Proceedings; American Institutes of Physics: New York, NY, USA, 1996. [Google Scholar]
- Franklin, J.B.; Barry, P.J. Acoustic Particle Acceleration Sensors. AIP Conf. Proc. 1996, 368, 144–165. [Google Scholar]
- Cray, B.A.; Christman, R.A. Acoustic and Vibration Performance Evaluations of a Velocity Sensing Hull Array. AIP Conf. Proc. 1996, 368, 177–188. [Google Scholar]
- Gray, M.; Rogers, P.H.; Zeddies, D.G. Acoustic Particle Motion Measurement for Bioacousticians: Principles and Pitfalls. Proc. Meet. Acoust. 4ENAL 2016, 27, 010022. [Google Scholar]
- Josserand, M.A.; Maerfeld, C. PVF2 Velocity Hydrophones. J. Acoust. Soc. Am. 1985, 78, 861–867. [Google Scholar] [CrossRef]
- Rockstad, H.K.; Kenny, T.W.; Kelly, P.J.; Gabrielson, T.B. A Micro-Fabricated Electron-Tunneling Accelerometer as a Directional Acoustic Sensor. In Proceedings of the Acoustic Particle Velocity Sensors: Design, Performance and Applications 9/95; AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 1996; p. 368. [Google Scholar]
- Roh, Y.; Pyo, S.; Lee, S. Design of an Accelerometer to Maximize the Performance of Vector Hydrophones. In Proceedings of the Nano-, Bio-, Info-Tech Sensors, and 3D Systems II; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10597, p. 1059707. [Google Scholar]
- Guan, L.; Zhang, G.; Xu, J.; Xue, C.; Zhang, W.; Xiong, J. Design of T-Shape Vector Hydrophone Based on MEMS. Sens. Actuators Phys. 2012, 188, 35–40. [Google Scholar] [CrossRef]
- Xue, C.; Tong, Z.; Zhang, B.; Zhang, W. A Novel Vector Hydrophone Based on the Piezoresistive Effect of Resonant Tunneling Diode. IEEE Sens. J. 2008, 8, 401–402. [Google Scholar] [CrossRef]
- Edalafar, F.; Azimi, S.; Qureshi, A.Q.A.; Yaghootkar, B.; Keast, A.; Friedrich, W.; Leung, A.M.; Bahreyni, B. A Wideband, Low-Noise Accelerometer for Sonar Wave Detection. IEEE Sens. J. 2017, 18, 508–516. [Google Scholar] [CrossRef]
- Miles, R.N.; Robert, D.; Hoy, R.R. Mechanically Coupled Ears for Directional Hearing in the Parasitoid Fly Ormia Ochracea. J. Acoust. Soc. Am. 1995, 98, 3059–3070. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, A.; Kim, B. Sound source localization by Ormia ochracea inspired low-noise piezoelectric MEMS direcional microphone. Sci. Rep. 2020, 10, 9545. [Google Scholar] [CrossRef]
- Wang, R.; Shen, W.; Zhang, W.; Song, J.; Li, N.; Liu, M.; Zhang, G.; Xue, C.; Zhang, W. Design and implementation of a jellyfish otolith-inspired MEMS vector sensor hydrophone for low frequency detection. Microsyst. Nanoeng. 2021, 7, 1. [Google Scholar] [CrossRef]
- Touse, M.; Sinibaldi, J.; Simsek, K.; Catterlin, J.; Harrison, S.; Karunasiri, G. Fabrication of a Microelectromechanical Directional Sound Sensor with Electronic Readout Using Comb Fingers. Appl. Phys. Lett. 2010, 96, 173701. [Google Scholar] [CrossRef]
- Yu, H.J.; Ding, Z.Q.; He, X.P.; Du, L.M.; Qu, H.; Zhou, W.; Peng, B. The Research on MEMS Micro Capacitance Sensor Detection Based on MS3110. In Key Engineering Materials; Trans Tech Publications Ltd.: Switzerland, 2015; Volume 645, pp. 528–532. [Google Scholar]
- Wilmott, D.; Alves, F.; Karunasiri, G. Bio-Inspired Miniature Direction Finding Acoustic Sensor. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Vanhellemont, J.; Swarnakar, A.K.; Van der Biest, O. Temperature dependent Young’s modulus of Si and Ge. ECS Trans. 2014, 64, 283. [Google Scholar] [CrossRef]
- Davies, S. Bearing Accuracies for Arctan Processing of Crossed Dipole Arrays. In Proceedings of the OCEANS’87, Halifax, NS, Canada, 28 September–1 October 1987; pp. 351–356. [Google Scholar]
- Rabelo, R.; Alves, F.; Karunasiri, G. MEMS Directional Acoustic Sensor with Charge Amplifier Based Electronic Readout. J. Acoust. Soc. Am. 2019, 146, 2997. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, F.; Park, J.; McCarty, L.; Rabelo, R.; Karunasiri, G. MEMS Underwater Directional Acoustic Sensor in Near Neutral Buoyancy Configuration. Sensors 2022, 22, 1337. https://doi.org/10.3390/s22041337
Alves F, Park J, McCarty L, Rabelo R, Karunasiri G. MEMS Underwater Directional Acoustic Sensor in Near Neutral Buoyancy Configuration. Sensors. 2022; 22(4):1337. https://doi.org/10.3390/s22041337
Chicago/Turabian StyleAlves, Fabio, Jaehyun Park, Leland McCarty, Renato Rabelo, and Gamani Karunasiri. 2022. "MEMS Underwater Directional Acoustic Sensor in Near Neutral Buoyancy Configuration" Sensors 22, no. 4: 1337. https://doi.org/10.3390/s22041337
APA StyleAlves, F., Park, J., McCarty, L., Rabelo, R., & Karunasiri, G. (2022). MEMS Underwater Directional Acoustic Sensor in Near Neutral Buoyancy Configuration. Sensors, 22(4), 1337. https://doi.org/10.3390/s22041337