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Abstract: In recent decades, there has been an increasing number of studies on control flow in-
tegrity (CFI), particularly those implementing hardware-assisted CFI solutions that utilize a special
instruction set extension. More recently, ARM and Intel, which are prominent processor architec-
tures, also announced instruction set extensions for CFI called branch target identification (BTI) and
control-flow enhancement technology (CET), respectively. However, according to our preliminary
analysis, they do not support various CFI solutions in an efficient and scalable manner. In this study,
we propose Bratter, a new instruction set extension for forward CFI solutions on RISC-V. At the
center of Bratter, there are Branch Tag Registers and dedicated instructions for these registers. We
implemented well-known CFI solutions (i.e., branch regulation and function signature check) using
Bratter to evaluate its performance. Our experimental results show that, by using Bratter, even
when these two solutions work together, they impose only 1.20% and 5.99% overhead for code size
and execution time, respectively.

Keywords: CFI; RISC-V; ISA

1. Introduction

In recent decades, control-flow integrity (CFI) has been considered to effectively
prevent a number of control hijacking attacks such as return-oriented programming (ROP)
and jump-oriented programming (JOP) attacks. Basically, CFI thwarts these attacks by
checking whether the target address of control transfer instruction (CTI) is legitimate before
executing the instruction. CFI solutions can be categorized into forward CFI for indirect
call/jump and backward CFI for return. In general, it is known that backward CFI can
be safely guaranteed by using shadow stack [1], however, in the case of the forward CFI,
various methods have been conducted. For example, to check whether the target address
of indirect calls is valid, some studies have utilized a control flow graph (CFG) [2] whereas
others make use of the function type [3].

To implement such various policies, some researchers have proposed a software-based
approach in which additional instructions are inserted to every CTI to prevent control
hijacking attacks exploiting the instruction. As the added instructions consist of a couple of
arithmetic and memory instructions, this approach is applicable regardless of the processor
architecture and software type (e.g., OS kernel and user application). However, the added
instructions promote considerable performance overhead. Thus, to relieve such overhead,
several commodity processor architectures introduced instruction set extensions for CFI,
such as ARM branch target identification (ARM BTI) [4] and Intel CETS [5]. By enforcing
CFI with special instructions, the amount of added instructions for check operation can be
reduced and the performance can be improved.

However, according to our preliminary analysis, these extensions do not provide
sufficient programmability to implement various CFI policies. In short, BTI and CETS
only enforce that the instruction after executing indirect CTIs (i.e., indirect call and indirect
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jump) should be the special instruction (bti in ARM BTI and endbranch in Intel CETS).
Thus, they cannot be used to implement finer-grained CFI solutions that enforce different
rules for every indirect CTI. Although researchers [6–10] have proposed an extension that
can define multiple rules to address this issue, it cannot efficiently support context-sensitive
rules. More details are provided in Section 3.1.

In this study, we present Bratter, an instruction set extension for supporting for-
ward CFI solutions in RISC-V. Similarly to existing works, Bratter also provides special
instructions to verify the behaviors of CTIs. Bratter introduces a branch tag register and
provides special instructions that allow developers to set and verify the value of the register.
However, unlike previous studies, the branch tag register supports multiple 8-bit long branch
tags; thus, it can effectively support various CFI policies simultaneously. We implemented
the prototype of Bratter on RISC-V, which is an open source instruction set architecture.
To verify the feasibility of Bratter, we implemented well-known CFI policies (i.e., branch
regulation and function-type based CFI) using Bratter. Our evaluation indicated that
Bratter can efficiently support these CFI solutions.

2. Background

In this section, we provide background information for Bratter, such as jump instruc-
tions and the reserved elements of the RISC-V [11].

2.1. Control Transfer Instructions

There are two types of CTIs: direct and indirect. In RISC-V, beqz, bnqz, j and jal
correspond to direct CTIs, whereas jalr and jr are indirect CTIs. Note that in the direct
CTIs, the target address is obtained from the offset (±4 KiB ranges) embedded in the
instruction encoding, whereas in the case of indirect CTIs, the target address is loaded from
the general purpose register specified in the instruction encoding.

Consequently, attackers typically exploit indirect CTIs by tampering with the target
address in the register, and they manipulate the control flow of the victim process to launch
control-flow hijacking attacks such as ROP [12], JOP [13] and call-oriented programming
(COP) [14]. Indirect CTIs can be categorized according to their expression in the CFG.
Specifically, in CFG, indirect branches and indirect calls are called forward-edges, and
a return instruction is called backward-edge. Consequently, CFI solutions can also be divided
into forward-edge and backward-edge CFIs according to what they aim to protect.

2.2. Hints Instruction

RISC-V instruction set architecture (ISA) provides hint instructions, which are com-
posed of instructions that do not require processing under particular circumstances. The
hint instructions are treated as nop instructions when the behavior is not implemented.
Table 1 shows the table of several examples of hint instructions with constraints and code
points. The column constraints explains the conditions for the hint instruction. The col-
umn code points indicates the range of the value provided by the instruction. Moreover,
these hint instructions can be divided into two ways: for future standard use, which means
reserved for extending the ISA in the future, and for custom use, which means for user
custom. For instance, when srli instruction has the register x0 as the rd field, srli can be
used for the hint instruction. Because x0 is the zero register in RISC-V, the result will be
discarded. Moreover, the developer can configure 10 bits of the srli instruction except for
opcode and rd.



Sensors 2022, 22, 1392 3 of 14

Table 1. Hint instruction table in RISC-V. The first column presents the base instruction. The
second shows the constraints’ conditions. The third shows the number of possible expressions with
programmable bits in each instruction. The last presents the purpose of the hint instruction.

Instructions Constraints Code Points Purpose
LUI rd = x0 220 Reserved for

future standard useAND rd = x0 210

SLLI rd = x0 210 Reserved for
custom useSRLI rd = x0 210

2.3. Control Status Register

In RISC-V, control status registers (CSRs) are special purpose registers that represent
system configurations, such as MMU and architecture extensions. RISC-V provides a dif-
ferent set of CSRs to each privilege level (user, supervisor, machine). The higher privilege
level instruction can access lower-level CSRs. However, the opposite is not true. Unlike
general purpose registers, CSRs can only be accessed by special instructions, not by any
arithmetic and memory instructions. RISC-V provides a 12-bit encoding space for CSRs,
and among them, several CSR numbers are reserved for custom use.

3. Design and Implementation

In this section, we first explain the motivation and design goals, followed by the design
and implementation of Bratter.

3.1. Problem Statement

Recently, commercial processor architectures (ARM and Intel) announced special
instruction set extensions, i.e., ARM BTI and indirect branch tracking (IBT), to defend
against control-flow hijacking attacks. In Intel IBT, the instruction located at the target
address of the branch instruction should be a special landing pad instruction, that is
an endbranch. Otherwise, the processor generates a control protection fault. Similarly,
ARM BTI also provides a special landing pad instruction, i.e., bti. However, in ARM BTI,
developers can configure a branch type that can jump to each landing pad instruction by
configuring the corresponding operand. For example, as shown in Figure 1a, an indirect
call (i.e., blr x0) at line 3 in the main function can jump to line 7 and line 11, which are the
entries of functions (i.e., foo and goo), as there is a landing pad instruction with operand
‘c,’ which means a call branch type. However, if the indirect call attempts to execute the
code that begins with bti j, such as in line 4, the processor would generate a fault (i.e.,
branch target exception) because operand ‘j’ means the jump branch type. In addition, when
an indirect control transfer occurred, targeted to a not-bti instruction, such as in line 8,
the processor also generates a fault. Consequently, by using these extensions, developers
can reinforce the program against control-flow hijacking attacks. However, according to
our preliminary analysis, these extensions are not capable of implementing sophisticated
defense solutions. For example, in Figure 1a, the functions foo and goo have the same
operand c, and the indirect call instruction in the main (line 3) can branch to both functions.
In other words, because they do not distinguish between landing pad instructions with the
same branch types, an attacker can exploit the indirect call instruction to execute arbitrary
functions, that is, a function reuse attack [15].

Meanwhile, some researchers have proposed an extension that can define multiple
rules, unlike ARM BTI and Intel CET. Figure 1b shows the application of the extension to
ensure the control-flow integrity of indirect calls. This extension provides a value for each
function and stores it in the dedicated register (i.e., label state register (LSR)) before indirect
control-flow transfer (line 3). Subsequently, the entry point of the function compares the
given function signature value with the value stored in the register (line 7). It provides
control-flow integrity more precisely than ARM BTI because the signature value is stricter
than the jump types. For example, line 4 can jump to the function foo; however, it cannot
jump to the function goo, unlike ARM BTI.
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(a) (b)

Figure 1. Simple example for ARM BTI [4] and SWT [6]. Assume that the indirect call in the main
function is intended to invoke the foo function: (a) ARM BTI; and (b) SWT.

However, this extension also has some limitations in terms of programmability and
security. For example, we assume a multi-level system that has a context-sensitive path as
shown in Figure 2a. This must distinguish between paths from user to user-ex and admin
to admin-ex that pass through auth function. Moreover, management function can only be
executed using the admin function. auth function can be executed both by the user and
admin; therefore, they need the same tag value, that is, A. Thus, user function can execute
the manage function because the user and the admin have the same tag value. Furthermore,
the auth function can invoke both _ex functions. From this point, both functions need to
have the same tag value, that is, B. Therefore, the user can execute the admin_ex function
through auth function. These unintended paths are represented by dotted lines in Figure 2a.

Figure 2b uses a trampoline to solve this problem; In the tram function, it checks the
tag for the admin function and sets a tag that will be checked in auth function. Therefore, the
user cannot invoke the manage function because admin and user have different tag values.
However, the user can still invoke admin_ex because both _ex functions have the same tag
value while they are both invoked by auth function.

Then, Figure 2c shows a solution in which the auth function is duplicated for user
and admin. By having a relationship with the admin function, a tag value B is demanded;
at this point, auth for admin, that is, auth_d, demands B and sets the tag value C for
admin_ex. Therefore, the user cannot invoke the auth_d function because the user function
has a tag value A, which means that user can only execute the auth function. However, this
approach wastes memory space for the same function duplicated differently, for only one
signature value.

3.2. Design Goals

We designed Bratter with the following design goals.
G1. Programmability. In existing CFI studies, the legitimacy of changing the control

flow is evaluated based on various criteria such as function signature [3] and code range [16].
Therefore, we designed Bratter as a flexible instruction-set extension to support such
CFI policies.

G2. Security. Bratter is an instruction set extension similar to other extensions,
such as cryptography. Thus, to enforce the control flow integrity of the target program,
developers should develop their solutions using Bratter instructions. However, if Bratter
instructions can be exploited by an attacker, the security guarantee of the solution would
be neutralized. Thus, we designed Bratter to be safe from such software exploitation.
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G3. Compatibility. We designed a Bratter to minimize changes to the existing
processor architecture. Otherwise, Bratter cannot be a widely used extension.

(a) (b) (c)

Figure 2. Control-flow sensitive example. Each line style represents a different path level. The solid
shows user-level and the dashed shows admin-level. The red dotted line means unintended malicious
paths: (a) problem state; (b) trampoline; and (c) duplication.

3.3. Overview

To check the legitimacy of control transfers, Bratter introduced a branch tag into the
system. Specifically, as shown in Figure 3, Bratter is composed of the following: branch
tag register (BTR), Bratter instructions and branch tag mismatch exception. The BTR is a CSR
register dedicated to holding branch tag values. Bratter provides special instructions,
sbtag, i.e., set branch tag register, and cbtag, i.e., check branch tag register, to manage
the branch tag values in the BTR. Specifically, sbtag is an instruction to assign a tag
value to BTR, and cbtag is an instruction to check whether this value is legitimate. The
detailed implementation and operation of the BTR and Bratter instructions are explained
in Sections 3.4 and 3.5. To detect control-flow hijacking attacks that violate the security
policy of Bratter, we added a new exception to the RISC-V architecture, described in
Section 3.6.

Figure 3. Overview of the Bratter architecture and behavior model.
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3.4. Branch Tag Register

In Bratter, BTR is the storage for branch tags. As shown in Figure 4, the BTR is
a 32-bit register and it has four fields for four 8-bit branch tag values (tag–tag3). In the
current implementation of Bratter, there is a single BTR in the system. However, the
number of BTR can be increased depending on the required number of branch tag values.
The changes in Bratter when there are multiple BTR are described in Section 7. For
software compatibility (G1) and security (G2), we implemented the BTR as a reserved CSR
in the RISC-V architecture. In other words, should we reserve one of the general-purpose
registers as BTR, it will not be compatible with the software that uses the reserved register;
however, in Bratter, we are able to obtain software compatibility by using the unused
CSR. Furthermore, unlike general purpose registers, CSR can only be accessed through
special instructions (see Section 3.5), preventing unintended access to the BTR.

Figure 4. Encoding of the branch tag register.

3.5. Bratter Instructions

To enforce CFI using branch tag values, developers should be able to assign values
to the branch tags and check their validity. For this, Bratter provides two dedicated
instructions, sbtag and cbtag. These instructions take two operands, 2-bit id and 8-bit value.
As a consequence, sbtag assigns a value to the id-th branch tag and cbtag checks whether
the assigned value is the same. We added two dedicated instructions, that is, sbtag and
cbtag, to access the BTR. We implemented these by extending slli and srli instructions
because these are hint instructions when the rd field is x0 and provide 10 bits of code points,
which we need. Owing to this feature, Bratter instructions are performed when the rd
field is x0. Furthermore, we provide compatibility with legacy machines because it behaves
like nop when the Bratter is not adopted. Before the control transfer (e.g., indirect jump,
indirect call), we inserted the sbtag instructions to store the tag value into the BTR. After
the control transfer, the cbtag instruction guarantees CFI by using the tag value and tag
number. Figure 5 depicts the encoding form of the instruction, which consists of six fields.
The form is almost the same as that of the base instruction. However, the rd field is x0 as we
extend the hint instruction. Then, we use 10-bits of code points for taking the two operands,
the value and the id.

Figure 5. Encoding of Bratter instructions.

Figure 6 shows that our approach can solve the problem. Let us describe the aspects
of the user function. First, we set the tag value A in tag0 at the user function and C in tag1.
Therefore, the auth function can check tag1 with value C to verify the legitimate functions
(i.e., user and admin) and set tag value D in tag1. Then, user_ex is invoked, and it checks
tag value A with tag0 and D with tag1. Owing to multiple fields, both ex functions check
the two tag values (A, D) and (B, D). Therefore, the user function cannot invoke functions
exclusive to the admin.
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Figure 6. Address the problem in Figure 2a by using Bratter.

3.6. Changes in RISC-V Processor

To ensure CFI, the processor needs to guarantee cbtag instruction after the control
transfer. This means that after the control transfer, when the next instruction is not cbtag,
the processor should halt the process and an exception occurs. For this, we leverage
the internal counter; furthermore, when the tag mismatch occurs, we raise the same
exception, and halt the process. The best approach to address the exception is by adding
a new exception to the architecture. However, it is challenging to implement and the
available exception numbers are difficult to find. Therefore, we use a similar exception:
illegal instruction. The exception will be realized in future work when it is implemented
in hardware.

4. Use Cases

To show the programmability of Bratter (G1), we implemented two well-known CFI
solutions, function signature check and branch regulation, using Bratter.

4.1. Function Signature Check

The function signature check [3] is a solution to prevent an attack that exploits indirect
calls. Specifically, it verifies the behavior of indirect calls by checking whether the target
function has a valid function signature. For this, this solution calculates the signature
values for all functions in the program by analyzing the source code or program binary
code. The function signature is typically derived from the number of parameters and the
data type of the return value and parameters. Then, it inserts instructions before indirect
calls to check whether the called function has a legitimate signature of the indirect call. If
the signature of the called functions is not same as the legitimate one for the indirect call,
then the program execution is halted or an exception arises.

To implement this solution using Bratter, we insert instructions to the target function
entries and before indirect calls. Specifically, the sbtag instruction is inserted before the
indirect call, and the cbtag instruction is inserted at the first function entry point (note that
some functions can be called not only by indirect calls but also by direct calls; in this case,
for compatibility, we also insert sbtag instructions before those direct calls). For example,
as shown in Figure 7a, the indirect call in line 3 is written to call any function that has
an integer return value and no argument. For this, in line 2, the instruction is inserted
to calculate the signature value for line 8. Subsequently, line 8 shows the instruction that
verifies the signature value and tag number. As each function (foo and goo) has a different
argument, line 3 cannot call line 13.
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(a) (b)

Figure 7. CFI solutions using Bratter: (a) indirect call protection; and (b) indirect jump protection.

4.2. Branch Regulation

Branch regulation [16] prevents attacks that exploit indirect branches, such as indirect
calls, indirect jumps and returns. Specifically, it enforces the branch to target only the
entry point of the function or the basic block. However, the solution of the indirect call
is provided in Section 4.1; moreover, as the return is not the focus of our study, we focus
on the indirect jump case. Branch regulation also analyzes the source code or program
binary. However, rather than calculating the signature values, it only calculates the jump
boundaries within the function and the right target of the jump, that is, the entry point of
a basic block. In other words, the indirect jump can only target the basic block entry point
within a function where the jump instruction locates. Therefore, it provides the same block
ID to each basic block in a function.

To implement the branch regulation by using Bratter, we insert instructions to the
basic block entries and before the indirect jumps. For example, as shown in Figure 7b, the
indirect jump in line 3 is written to jump any basic block in the function main. Therefore,
all the basic blocks within the function main have the same block ID, that is, A, and the
same tag number, that is, tag0. From this point, the indirect jump in line 3 can only target
bb1 and bb2 because they have a legitimate signature value and tag number at the entry
point. Furthermore, a fault will occur when targeted out of bound, for example, out of the
main function such as foo in line 14, because it has an illegitimate block ID or tag number.

5. Evaluation
5.1. Experimental Setup

To evaluate Bratter based on use cases in Section 4, we extended the LLVM [17]
compiler framework. In detail, we made a custom machine instruction level pass that inserts
sbtag and cbtag instructions according to the security solutions described in Section 4.
This machine instruction level pass runs on all functions and each basic block right after
the IR is converted to machine IR. We utilized the machine instruction builder interface
(i.e., BuildMI()) provided by LLVM to insert Bratter instructions.

We implemented Bratter on top of a spike RISC-V ISA simulator [18] and used the
Beebs benchmark suite [19] to measure the code size and performance overheads when
security solutions in Section 4 are applied in benchmark program. Bratter_FS and Bratter_BR
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denote the cases in which the function signature check approach and the branch regulation
approach are applied, respectively. Bratter_Both shows the result that two approaches
are simultaneously adopted. The code size was measured using riscv-gnu-toolchain [20].
The execution time was obtained by logging the executed instructions in sequence and by
multiplying the weighted cycle with each instruction.

5.2. Code Size Overhead

The code size overhead of Bratter is shown in Figure 8. The Bratter_FS case shows
an average code size overhead of 0.15%, whereas the Bratter_BR and Bratter_Both cases
show average overheads of 1.05% and 1.20%, respectively.

The Bratter_FS case showed a code size overhead ranging from 0% to 0.66%. In the
normal Bratter_FS case, sbtag and cbtag are pairing as caller and callee, respectively. From
this feature, the term bitcount shows the most significant overhead in the Bratter_FS case
and has the most numerous caller–callee pairs. On the other hand, trio-sscanf has a data
structure with function pointers, and sbtag (48) and cbtag (3) are not paired. Furthermore,
although it has the most numerous added instructions, it does not show the most significant
code size overhead since the added instruction size is very small compared to the original
code size.

In Figure 8, the Bratter_BR case showed a code size overhead ranging from 0% to
11.10%. In this case, the main factor causing overhead is the number of candidate blocks
that can be a target of indirect jumps. From this feature, term cover represents the most
significant code size overhead. As represented in Table 2, cover has just three sbtag;
however, it also has 190 cbtag instructions. Furthermore, the basic blocks are constructed
by three instructions, including CTI; from here, the added cbtag means 125% overhead to
that basic block. After that, the Bratter_Both case shows an overhead of 0.02% to 11.33%,
and this case represents the result of adding Bratter_FS and the Bratter_Both—since the
Bratter_FS and Bratter_BR approaches are exclusive.

Figure 8. Code size overhead of Bratter.

5.3. Execution Time Overhead

The execution time overhead of Bratter is shown in Figure 9. The execution time
overhead measurement was performed by logging the executed instruction histogram of
the spike simulator and multiplying the weighted cycle represented in Table 3 to each
instruction. We weighted two cycles for both instructions, i.e., sbtag and cbtag, consid-
ering the BTR register access. On average, Bratter_FS showed 0.43%, Bratter_BR and the
Bratter_Both show 5.59% and 5.99% execution time overhead, respectively.
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The Bratter_FS case showed an increase from 0% to 3.32%. The sglib families showed
a code size overhead in Section 5.2 since they include a library with a function that has one
or two indirect CTIs. Nevertheless, they showed 0% overhead in execution time because
they did not invoke these functions in practice. After that, term crc32 showed the most
significant overhead in the Bratter_FS case. In this term, Bratter added four instructions;
however, in a loop, it calls the function that includes cbtag with sbtag; therefore, each
instruction is executed 2050 times.

The case Bratter_BR shows overheads from 0% to 33.74% and Bratter_Both shows
overhead from 0% to 33.76%. In Bratter_BR case, the term trio-sscanf executed less added
instructions than the Bratter_FS case; nevertheless, it shows the most significant overhead.
Because, when in the Bratter_BR case, the trio-sscanf executed memory access instructions,
e.g., st, ld, more than the Bratter_FS case. Subsequently, the term sha executed the most
number of instructions in the Bratter_BR case; however, the original executed instruction
count was enormous—so the execution time overhead was very low. The term duff executed
more cbtag than sbtag because it has continuous basic blocks and each basic block can be
a target of the indirect jump. Since the Bratter_BR case restricts the jump boundary into the
function region, then each basic block in a function has the same tag values; thanks to this
feature, the term duff does not violate the policy.

Figure 9. Execution time overhead of the Bratter.

Table 2. The number of added and executed instructions table during Bratter benchmark.

Benchmark

the # of Added Instructions the # of Executed Instructions

Bratter_FS Bratter_BR Bratter_FS Bratter_BR

sbtag cbtag sbtag cbtag sbtag cbtag sbtag cbtag

bitcount 5 5 1 8 4 4 160 160
cover 2 2 3 190 2 2 360 360
crc32 2 2 0 0 2050 2050 0 0
ctl-stack 1 1 0 0 2 2 0 0
ctl-vector 1 1 0 0 2 2 0 0
duff 0 0 1 8 0 0 2 76
jfdctint 1 1 0 0 2 2 0 0
lcdnum 0 0 1 16 0 0 10 10
qurt 3 1 0 0 6 6 0 0
sglib-dllist 2 0 0 0 0 0 0 0
sglib-hashtable 1 0 0 0 0 0 0 0
sglib-listinssort 1 0 0 0 0 0 0 0
sglib-rbtree 2 0 0 0 0 0 0 0
sha 2 2 2 16 2 2 3070 3070
trio-sscanf 48 3 7 65 80 80 64 64
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Table 3. Weighted cycles for measuring the Bratter execution time overhead.

Instruction sbtag cbtag slli srli ld st div reg ecall others
Cycle 2 2 2 2 3 2 1 1 10 1

6. Related Work

Prior to Bratter, numerous studies have been conducted on CFI. In this section, we
briefly explain how these studies relate to Bratter.

6.1. Software-Based Approach

Abadi et al. [2] first proposed a code-instrumentation-based CFI mechanism. They
assigned a label ID to each valid target address and verified the legitimacy of the label ID
before every call site. However, for such fine-grained CFI policies, the mechanism had to
execute a series of additional memories and compare instructions; thus, it suffered from
a high performance overhead. Later works [21–23] focused on addressing the performance
issue by enforcing coarse-grained CFI policies. However, this strategy inevitably creates
a security hole, and several studies have indicated that an attack is possible on coarse-
grained CFI [24,25]. In contrast, because Bratter provides special instructions for CFI,
developers can implement fine-grained CFI policies using these.

6.2. Instruction Set Extension for CFI

In the software-based approach, the main factor of the performance overhead is that
whenever a control transfer occurs at runtime, they must perform a couple of instructions
for checking CFI rules. Thus, some studies have proposed a special instruction set that
can efficiently check the CFI rules. These works typically provide instructions that set
the CFI rules before the control transfer instructions and check the CFI rules at the target
address. However, as explained in Section 3.1, there is a problem in HCFI [8], SWT [6] and
EXCEC [26]. In short, they have to add a trampoline code through complex code analysis
to support context-sensitive CFI rules. ABCFI [10] relieves the need for the trampoline
by introducing a slot containing legitimate target addresses. Concretely, they make the
indirect branch instructions jump to one of the valid addresses in the slot, not just one target
address. However, to allocate multiple slots, they have to align the program code, so they
suffer from high code size overhead. In Bratter, unlike existing works, Bratter provides
special storage (i.e., branch tags) that can hold multiple CFI rules at runtime, so Bratter can
efficiently enforce context-sensitive CFI policies without trampolines and slots. HAFIX [7]
enforces CFI through backward-edge protection based on labels for each function that are
stored in a dedicated memory area; thus HAFIX is orthogonal with Bratter since Bratter
is designed to enforce forward-edge CFI.

6.3. Trace-Based Approach

Several works have utilized the debug feature of the processor architecture such as
ARM ETM [27–29], Intel PT [30–35] and RoCC [9,36]. They typically extract the control
trace of the target process and verify whether an attack occurred through the trace. To
efficiently address the tremendous amount of trace at runtime, some studies introduced
a special co-processor [9,29,37,38] and they can alleviate the performance overhead to some
degree. However, this approach cannot prevent the attack because it detects the attack after
analyzing the trace in the separate hardware.

7. Discussion

Currently, the implementation of Bratter provides one 32-bit branch tag register
(including four 8-bit branch tags). Furthermore, this configuration has been sufficient to
cover two security solutions in our benchmark program, as shown in Table 2. However,
in some programs, the number of this tag configuration cannot be enough to express
complex CFI rules. To deal with this, Bratter can be extended to support multiple branch
tag registers as follows. At first, we have to introduce additional branch tag registers in
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the system. According to the RISC-V instruction set manual, they provide encodings for
256 custom CSRs, so we believe that this number of CSRs is sufficient to support complex
CFI rules. Then, we need to change the special instructions to manipulate branch tag
registers. Because if the number of tags or the number of ids is increased, more bits are
required to express the id–tag value pair. Fortunately, we found some hint instructions
that provide more code points than srli and slli. For instance, slti and sltiu provide
217 code points for custom use.

8. Conclusions

This paper presents Bratter, an instruction extension for the forward CFI on RISC-V.
Specifically, Bratter introduces branch ID registers to store the identifiers of the branch
instructions to be executed. Bratter also adds dedicated instructions to set these registers
and verifies the control-flow integrity based on them. The evaluation results confirm that
Bratter can support CFI solutions in an efficient and scalable manner.
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