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Abstract: Development of distributed Multi-Agent Reinforcement Learning (MARL) algorithms has
attracted an increasing surge of interest lately. Generally speaking, conventional Model-Based (MB) or
Model-Free (MF) RL algorithms are not directly applicable to the MARL problems due to utilization
of a fixed reward model for learning the underlying value function. While Deep Neural Network
(DNN)-based solutions perform well, they are still prone to overfitting, high sensitivity to parameter
selection, and sample inefficiency. In this paper, an adaptive Kalman Filter (KF)-based framework
is introduced as an efficient alternative to address the aforementioned problems by capitalizing on
unique characteristics of KF such as uncertainty modeling and online second order learning. More
specifically, the paper proposes the Multi-Agent Adaptive Kalman Temporal Difference (MAK-TD)
framework and its Successor Representation-based variant, referred to as the MAK-SR. The proposed
MAK-TD/SR frameworks consider the continuous nature of the action-space that is associated
with high dimensional multi-agent environments and exploit Kalman Temporal Difference (KTD)
to address the parameter uncertainty. The proposed MAK-TD/SR frameworks are evaluated via
several experiments, which are implemented through the OpenAI Gym MARL benchmarks. In
these experiments, different number of agents in cooperative, competitive, and mixed (cooperative-
competitive) scenarios are utilized. The experimental results illustrate superior performance of the
proposed MAK-TD/SR frameworks compared to their state-of-the-art counterparts.

Keywords: Kalman Temporal Difference; Multiple Model Adaptive Estimation; Multi-Agent Rein-
forcement Learning; Successor Representation

1. Introduction

Reinforcement Learning (RL), as a class of Machine Learning (ML) techniques, targets
providing human-level adaptive behavior by construction of an optimal control policy [1].
Generally speaking, the main underlying objective is learning (via trial and error) from
previous interactions of an autonomous agent and its surrounding environment. The
optimal control (action) policy can be obtained via RL algorithms through the feedback
that environment provides to the agent after each of its actions [2–9]. Policy optimality can
be reached via such an approach with the goal of increasing the reward over time. In most
of the successful RL applications, e.g., Go and Poker games, robotics, and autonomous
driving, typically, several autonomous agents are involved. This naturally falls within
the context of Multi-Agent RL (MARL), which is a relatively long-established domain;
however, it has recently been revitalized due to the advancements made in the single-agent
RL approaches. In the MARL domain, which is the focus of this manuscript, multiple
decision-making agents interact (cooperate and/or compete) in a shared environment to
gain a common or a conflicting goal. Research Questions: In this paper, we aim to answer
the following research questions:
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• How to tackle overfitting, high sensitivity to parameter selection, and sample ineffi-
ciency issues of MARL, typically, associated with DNN-based solutions?

• How to properly handle a change in the reward model for learning the underlying
value function and how to capture uncertainty of the Successor Representation (SR)?

• How multi-agent adaptive Kalman Temporal Difference (KTD) can be adopted to
work within the SR formulation?

• Ho to find a trade-off between exploration and exploitation of MARL?

Challenges: To address the aforementioned research questions, we faced the following
challenges:

• Learning localized reward functions and dealing with the lack of prior knowledge on
observation noise covariance and observation mapping function.

• Selecting KF parameters for learning the reward function as its performance is highly
dependent on these values.

• Encoding continuous states into feature vectors and projecting the reward function as
a linear function of the extracted features.

• Adopting KTD approach to the SR learning procedure.
• Capturing the uncertainty associated with the SR and calculating the value function

based on the learned SR values and the reward function.
• Exploration/exploitation trade-off, i.e., to select from actions with known associated

rewards or explore new possible actions with unknown rewards.

Before, introducing contributions of the paper and its novelties, first, a brief literature
review is provided next.

Literature Review: Traditionally, RL algorithms are classified as (i) Model-Free (MF)
approaches [4,10,11] where sample trajectories are exploited for learning the value function,
and (ii) Model-Based (MB) techniques [12] where reward functions are estimated by lever-
aging search trees or dynamic programming [13]. MF methods, generally, do not adapt
quickly to local changes in the reward function. On the other hand, MB techniques can
adapt quickly to changes in the environment, but this comes with a high computational
cost [14–16]. To address the above adaptation problems, Successor Representation (SR)
approaches [17,18] are proposed as an alternative RL category. The SR method provides
the flexibility of the MB algorithm and has computational efficiency comparable to that
of the MF algorithms. In SR-based methods, both the immediate reward expected to be
received after each action and the discounted expected future state occupancy (which is
called the SR) are learned. Afterwards, in each of the successor states, the value function is
factorized into the SR and the immediate reward. This factorization only needs learning
of the reward function for new tasks, allowing rapid policy evaluation when reward con-
ditions are changed. In scenarios with a limited number of states, the SR and the reward
function (thus, the value function) associated with each state can be readily computed.
Computation of the value function, however, is infeasible for MARL problems, as in such
scenarios we deal with a large number of continuous states [19]. In other words, conven-
tional approaches developed for single agent scenarios such as single-agent SR, Q-Learning,
or policy gradient cannot be directly adopted to MARL to compute the value function. The
main problem here is that, typically, from a single agent’s perspective, the environment
tends to become unstable as each agent’s policies change during the training process. In the
context of deep Q-learning [20], this leads to stabilization issues as it is difficult to properly
use the previous localized experiences. From the perspective of policy gradient, typically,
observations demonstrate high variance in coordinating multiple agents.

To leverage SR-based solutions for MARL, value function approximation is unavoid-
able, and one can use either linear or non-linear estimation approaches [21,22]. In both
categories, a set of adjustable parameters define the value of the approximated function.
Non-linear function approximators, such as Deep Neural Networks (DNNs) [21,23–25],
have enabled application of RL methods to complex multi-agent scenarios. While DNN
approaches like Deep Q-Networks (DQN) [26] and Deep Deterministic Policy Gradient
(DDPG) [27] achieved superior results, they suffer from some major disadvantages includ-
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ing the overfitting problem, high sensitivity in choosing parameters, sample inefficiency,
and high number of episodes required for training the models. The linear function approxi-
mators, on the other hand, transform the approximation problem into a weight calculation
problem in order to fuse several local estimators. Convergence can be examined when lin-
ear function approximators are utilized, as they are better understood than their non-linear
counterparts [28,29]. Cerebellar Model Articulation Controllers (CMACs) [30] and Radial
Basis Functions (RBFs) [31] are usually used as linear estimators in this context. It has been
shown, however, that the function approximation process can be better represented via
gradual-continuous transitions [32]. Albeit the computation of the RBFs’ parameters is
usually based on prior knowledge of the problem at hand, these parameters can also be
adapted leveraging observed transitions in order to improve the autonomy of the approach.
In this context, cross entropy and gradient descent methods [33] can be utilized for the
adaptation task. Stability of the gradient descent-based approach was later improved by
exploiting a restrictive method in [32], which is adopted in this manuscript.

After verifying the value function’s structure, to train the value function approximator,
the following methodologies can be used: (i) Bootstrapping methods, e.g., Fixed-Point
Kalman Filter (FPKF) [34]; (ii) Residual techniques such as Kalman Temporal Difference
(KTD) and Gaussian Process Temporal Difference (GPTD) [35], which is a special form of
the KTD; and (iii) Projected fixed-point methods such as Least Square Temporal Difference
(LSTD) [36]. Among these methodologies, KTD [37] is a prominent technique as, based
on the selected structure, it provides both uncertainty and Minimum Mean Square Error
(MMSE) approximation of the value function. In particular, uncertainty is beneficial for
achieving higher sample efficiency. The KTD approach, however, requires prior knowledge
of the filter’s parameters (e.g., noise covariance of the process and measurement mod-
els), which are not readily available in realistic circumstances. Parameter estimation is a
well-studied problem within the context of Kalman Filtering (KF), where several adaptive
schemes are developed over the years including but not limited to Multiple Model Adap-
tive Estimation (MMAE) methods [38–40] and, innovation-based adaptive schemes [41].
When the system’s mode is changing, the latter has the superiority to adapt faster and its
efficiency was shown in [42], where different suggested averaging and weighting patterns
were compared. MMAE methods were already utilized in the RL problems, for instance,
Reference [43] proposed a multiple model KTD coupled with a model selection mech-
anism to address issues related to the parameter uncertainty. Existing multiple model
methodologies are, however, not easily generalizable to the MARL problem.

In methods proposed in [16,44–46], while the classical TD learning is coupled with
DNNs, uncertainty of the value function and that of the SR is not studied. To deal with
uncertainty, a good combination of exploitation and exploration should be used to prevent
the agent’s overconfidence about its knowledge to fully rely on exploitation. Alternatively,
an agent can perform exploration over other possible actions, which might lead to improved
results and a reduction in the uncertainty. Although, from computation points of view, it is
intractable to find an optimal trade-off between exploitation and exploration, it has been
represented that exploration can benefit from the uncertainty in two separate ways, i.e.,
through added randomness to the value function, and via shifting towards uncertain action
selection [1]. Consequently, the approximated value function’s uncertainty, is a beneficial
information for resolving the available conflict between exploration and exploitation [1,47].
It was shown in [47] that the sensitivity of the framework to the parameters of the model
can be diminished via uncertainty incorporation within the KTD method. Therefore, the
required time and memory to find/learn the best model will be reduced compared to DNN-
based methods [16,44–46]. The reduced sensitivity in setting the parameters enhances
the reproducibility feature of a reliable approach, which leads to regeneration of more
consistent outputs while running multiple learning epochs. Consequently, the risk of
getting unacceptable results in real scenarios will decrease [48]. Geerts et al. [18] leveraged
the KTD framework to estimate the SR for problems with discrete state-spaces, however
information related to uncertainty of the estimated SR is not considered in the action
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selection procedure. We have started our research on signal processing-based RL solutions
by introducing the MM-KTD [4,5], which is a multiple model Kalman temporal difference
approach for single-agent environments with continuous state-space. The AKF-SR is
then proposed in [49], which is an adaptive KF-based successor representation approach
developed for single-agent scenarios. This paper targets extending our previous works to
multi-agent scenarios with heterogenous and continuous state-spaces.

Contributions: The paper proposes a Multi-Agent Adaptive Kalman Temporal Differ-
ence (MAK-TD) framework and its SR-based variant, the Multi-Agent Adaptive Kalman
Successor Representation (MAK-SR) framework. MAK-TD/SR frameworks consider the
continuous nature of the action-space that is associated with high dimensional multi-agent
environments and exploit KTD to address the parameter uncertainty. By leveraging the
KTD framework, SR learning procedure is modeled into a filtering problem in this work.
Intuitively speaking, the goal is to take advantage of the inherent benefits of the KF, i.e.,
online second-order learning, uncertainty estimation, and non-stationary handling. Af-
terwards, RBF-based estimation is utilized within the MAK-TD/SR frameworks in order
for continuous states to be encoded into feature vectors and for the reward function to
be projected as a linear function of the extracted feature vectors. On the other hand, for
learning localized reward functions, we resort to MMAE as a remedy to deal with the
lack of prior knowledge on observation noise covariance and observation mapping func-
tion. Targeting the identified research questions and by addressing the aforementioned
challenges, in summary, the paper makes the following key contributions:

• Within the MARL domain, the so-called MAK-TD framework is proposed as com-
pensation for the information inadequacy about a key unknown filter’s parameter,
which is the measurement noise covariance. For learning the optimal policy and to
simultaneously enhance sample efficiency of the proposed MAK-TD, an off-policy
Q-learning approach is implemented.

• MAK-TD is extended to MAK-SR by incorporation of the SR learning process into the
filtering problem using KTD formulation for learned SR uncertainty approximation.
Moreover, adopting KTD is beneficial to reduce the required memory/time to learn the
SR while reducing the model’s sensitivity to parameters selection (i.e., more reliability)
in comparison to DNN-based algorithms.

• A coupled gradient descent and MMAE-based approach is adopted for development of
the MAK-SR framework to form a KF-based approximation of the reward function. Via
the utilized MMAE formulation, sensitivity to prior knowledge on KF key parameters
is reduced.

• For establishing a trade-off between exploration and exploitation, an innovative
active learning mechanism is implemented to incorporate the uncertainty of the value
function obtained from SR learning. Such a mechanism results in efficiently enhancing
performance in terms of cumulative reward.

Novelty: The novelty of the proposed frameworks lies in the integration of Kalman
temporal different, multiple-model adaptive estimation, and successor representation for
MARL problems. Through such an integration, issues related to overfitting and high
sensitivity to parameter selection are addressed and changes in the reward model can
be accommodated. Furthermore, for establishing a trade-off between exploration and
exploitation, an innovative active learning mechanism is implemented to use the obtained
uncertainty of the value function. Such a mechanism results in efficiently enhancing
performance in terms of cumulative reward.

A multi-agent extension of the OpenAI gym benchmark, a two-dimensional world
with continuous space [50] is utilized to simulate cooperative, competitive scenarios, and
mix interaction settings. The proposed MAK-TD/SR frameworks are evaluated through a
comprehensive set of experiments and simulations illustrating their superior performance
compared to their counterparts. The remainder of the paper is organized as follows: In
Section 2, the basics of RL and MARL are briefly discussed. The proposed MAK-TD
framework is presented in Section 3, and its SR-based variant, the MAK-SR framework,
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is introduced in Section 4. Experimental results based on multi-agent RL benchmark are
presented in Section 5. Section 7, finally, concludes the paper.

2. Problem Formulation

To provide the background required for development of the proposed MAK-TD/SR
frameworks, in this section, we present an overview of single agent and MARL techniques.

2.1. Single-Agent Reinforcement Learning (RL)

In conventional RL scenarios, typically, a single agent is placed in an unknown environ-
ment performing autonomous actions with the goal of maximizing its accumulated reward.
In such scenarios, the agent starts its interactions with the environment in an initial state
denoted by s0 and continues to interact with the environment until reaching a pre-defined
terminal state sT . Action set A is defined from which the agent can select potential actions
following a constructed optimal policy. In other words, given its current state sk ∈ S , the
single agent follows a policy denoted by πk and performs action ak ∈ A at time k. Follow-
ing the agent’s action, based on transition probability of P(sk+1|sk, ak) ∈ Pa, it moves to a
new state sk+1 ∈ S receiving reward of rk ∈ R. A discount factor γ ∈ (0, 1) is utilized to
incorporate future rewards as such balancing the immediate rewards and future ones. In
summary, a Markov Decision Process (MDP), denoted by 5-tuple {S ,A,Pa,R, γ}, is typi-
cally used as the underlying mathematical model that governs the RL process. Therefore,
the main objective is learning an optimal policy to map states into actions by maximiz-
ing the expected sum of discounted rewards, which is referred to as the optimal policy
π∗ [1]. The optimal policy π∗ is typically obtained based on the following state-action
value function:

Qπ(s, a) = E
{

T

∑
k=0

γkrk|s0 = s, a0 = a, ak = π(sk)

}
. (1)

Note that in Equation (1), E{·} denotes the expectation operator. To perform an
action at the learning stage, the current policy is utilized. Once convergence is reached,
ak = arg maxa∈A Qπ∗(sk, a), which is the optimal policy, can be used by the agent to
perform the required tasks. This completes a brief introduction to RL, next, the TD learning
is reviewed as a building block of the proposed MAK-TD/SR frameworks.

2.2. Off-Policy Temporal Difference (TD) Learning

By taking an action and moving from one state to another, based on the Bellman equa-
tion and Bellman update scheme [51], the value function is gradually updated using sample
transitions. This procedure is referred to as Temporal Difference (TD) update [51]. There
are two approaches to update policy: “on-policy learning” or “off-policy learning”. The
former techniques use the current policy for action selection. For example, SARSA [52,53]
is an on-policy approach that optimizes the network as

Qπ(sk, ak) = Qπ(sk, ak) + α
(

rk + γ Qπ(sk+1, ak+1)−Qπ(sk, ak)
)

, (2)

where α denotes the learning rate and Qπ(sk, ak) is the state-action value function. In on-
policy methods, by following a defined policy, selecting a new state becomes a non-optimal
task. Additionally, this approach seems to be inefficient in sample selection since the value
function is updated through the current policy instead of using the optimized one. In
“off-policy” solutions, such as Q-learning [53–56], the information received from previous
policies is exploited to update the policy and reach a new one (exploitation). On the other
hand, to properly explore new states, a stochastic policy is usually chosen as the behavior
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policy (exploration). In brief, Q-learning is formed based on the Bellman optimal equation
as follows:

Qπ∗(sk, ak) = Qπ∗(sk, ak) + α
(

rk + γ max
a∈A

Qπ∗(sk+1, a)−Qπ∗(sk, ak)
)

, (3)

where the optimal policy π∗ is used to form the state-action value function Qπ∗(sk, ak). The
policy can be obtained via a greedy approach as follows:

Vπ∗(s) = max
a∈A

Qπ∗(sk, a). (4)

Upon convergence, actions can be selected based on the optimal policy and not the
behavior policy as follows:

ak = arg max
a∈A

Qπ∗(sk, a). (5)

This completes our discussion on TD learning. In what follows, we discuss the MARL
approaches as well as value function approximation using the proposed algorithms in the
multi-agent environments.

2.3. Multi-Agent Setting

Within the context of MARL, we consider a scenario with N agents, each with its
localized observations, actions, and states. In other words, Agent i, for (1 ≤ i ≤ N),
utilizes policy π(i), which is a function from the Cartesian product of its localized action
set A(i) and its localized observation set Z (i) to a real number within zero and one. We
use superset S = {S (1), . . . ,S (N)} to collectively represent all the localized states, S (i), for
(1 ≤ i ≤ N). Likewise, supersets A = {A(1), . . . ,A(N)} and Z = {Z (1), . . . ,Z (N)} are used
to jointly represent all the localized actions and local observations, respectively. Each agent
makes localized decisions following the transition function T : S×A(1)×, . . . ,×A(N) → S2.
Consequently, an action is performed locally resulting in a new localized measurement and
a localized reward r(i) : S×A(i) → R. The main objective of each agent is to maximize
its localized expected return R(i) = ∑T

t=0 γt(r(i))t over a termination window of T using a
predefined discount factor of γ.

Traditional models like policy gradient or Q-Learning are not suitable for MARL
scenarios [57], since the policy of an agent changes during the progress of the training,
and the environment becomes non-stationary towards that specific agent’s points of view.
Consequently, most recently proposed platforms for multi-agent scenarios employ other
strategies, where the agents’ own observation (known as local information at the execution
time) are exploited to learn optimal localized policies. Typically, such methods do not
consider specific communication patterns between agents or any differentiable model of
the environment’s dynamics [57]. Moreover, these models support different interactions
between agents from cooperation to competition or their combination [57,58]. In this
context, an adaptation is made between the decentralized execution and centralized training
to be able to feed the policy training steps with more available data to speed up the process
of finding the optimal policy.

2.4. Multi-Agent Successor Representation (SR)

Within the context of SR, given an initial action a(i) and an initial state s(i), the expected
discounted future state occupancy of state s′(i) is estimated based on the current policy π(i)

as follows:

Mπ(i)(s(i), s′(i), a(i)) = E
[

T

∑
k=0

γk
1[s(i)k = s′(i)]|s(i)0 = s(i), a(i)0 = a(i)

]
, (6)
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where 1{·} = 1 if s(i)k = s′(i); otherwise, it is zero. The SR can be represented with
a Ns(i) × Ns(i) matrix when the state-space is discrete. The recursive approach used in
Equation (2), can be leveraged to update SR as follows:

Mnew
π(i) (s

(i)
k , s′(i), a(i)k ) = Mold

π(i)(s
(i)
k , s′(i), a(i)k )+ (7)

α
(
1[s(i)k = s′(i)] + γMπ(i)(s

(i)
k+1, s′(i), a(i)k+1)−Mold

π(i)(s
(i)
k , s′(i), a(i)k )

)
.

After computation (approximation) of the SR, its inner product with the estimated
value of the immediate reward can be used to form the state-action value function based
on Equation (1), i.e.,

Qπ(i)(s
(i)
k , a(i)k ) = ∑

s′(i)∈S (i)
M(s(i)k , s′(i), a(i)k )R(i)(s′(i), a(i)k ). (8)

As a final note, it is worth mentioning an important characteristic of the SR-based
approach, i.e., the state-action value function can be reconstructed based on the reward
function. The developed MARL/MASR formulation presented here is used to develop the
proposed MAK-TD/SR frameworks in the following sections.

3. The MAK-TD Framework

As stated previously, the MAK-TD framework, is a Kalman-based off-policy learning
solution for multi-agent networks. More specifically, by exploiting the TD approach
represented in Equation (3), the optimal value function associated with the ith agent, for
(1 ≤ i ≤ N), can be approximated from its one-step estimation as follows:

Q
π(i)∗(s

(i)
k , a(i)k ) ≈ r(i)k + γ max

a(i)∈A
Q

π(i)∗(s
(i)
k+1, a(i)). (9)

By changing the variables’ order, the reward at each time can be represented (modeled)
as a noisy observation, i.e.,

r(i)k = Q
π(i)∗(s

(i)
k , a(i)k )− γ max

a(i)∈A
Qπ∗(s

(i)
k+1, a(i)) + v(i)k , (10)

where vk is modeled as a zero-mean normal distribution with variance of R(i). By consider-
ing the local state-space of each agent, we use localized basis functions to approximate each
agent’s value function. Therefore, the following value function can be formed for Agent i,
for (1 ≤ i ≤ N),

Qπ(i)(s
(i)
k , a(i)k ) = φ(s(i)k , a(i)k )Tθ

(i)
k , (11)

where term φ(i)(s(i), a(i)) represents a vector of basis functions, π(i) is the policy associated
with Agent i, and, finally, θ

(i)
k denotes the vector of the weights. Substituting Equation (11)

in Equation (10) results in

r(i)k =
[
φ(s(i)k , a(i)k )T − γ max

a(i)∈A
φ(s(i)k+1, a(i))T

]
θ
(i)
k + v(i)k , (12)

which can be simplified into the following linear observation model:

r(i)k = [h(i)
k ]Tθ

(i)
k + v(i)k , (13)

with

h(i)
k = φ(s(i)k , a(i)k )− γ max

a(i)∈A
φ(s(i)k+1, a(i)). (14)
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In other words, Equation (13) is the localized measurement (reward) of the ith agent,
which is a linear model of the weight vector θ

(i)
k . For approximating localized weight

θ
(i)
k , first we leverage the observed reward, which is obtained by transferring from state

s(i)k to s(i)k+1. Second, given that the noise variance of the measurement is not known a

priori, we exploit MMAE adaptation by representing it with M different values (Rj(i)), for
(1 ≤ j ≤ M). Consequently, a combination of M KFs is used to estimate θ̂

(i)
k based on each

of its candidate values, i.e.,

K j
k
(i)

= P(i)
(θ,k|k−1)h

(i)
k
(
hT

k
(i)

P(i)
(θ,k|k−1)h

(i)
k + Rj(i))−1 (15)

ˆ
θ

j
k

(i)
= θ̂

(i)
(k|k−1) + K j

k
(i)(

r(i)k − hT
k
(i)

θ̂
(i)
(k|k−1)

)
(16)

Pj
θ,k

(i)
=

(
I − K j

k
(i)

hT
k
(i))

PT
(θ,k|k−1)

(i)(
I − K j

k
(i)

hT
k
(i))

+ K j
k
(i)

Rj(i)K j
k

T(i)
, (17)

where superscript j is used to refer to the jth matched KF, for which a specific value (Rj(i))
is assigned to model covariance of the observation model’s noise process. The posterior
distribution associated with each of the M matched KFs is calculated based on its likelihood
function. All the matched a posteriori distributions are then added together based on their
corresponding weights to form the overall posterior distribution given by

P(i)(θk|Yk) =
M

∑
j=1

ω j(i)P(i)(θ
(i)
k |Y

(i)
k , Rj(i)), (18)

where ω j(i) is the jth KF’s normalized observation likelihood associated with the ith agent
and is given by

ω j(i) = P(i)(r(i)k |θ
(i)
(k|k−1), Rj) = c(i).e

[
−1
2

(
r(i)k −hT

k
(i)

θ̂
(i)
(k|k−1)

)T(
hT

k
(i)P(i)

(θ,k|k−1)h
(i)
k +Rj(i)

)−1(
r(i)k − hT

k
(i)

θ̂
(i)
(k|k−1)

)]
, (19)

where c(i) = 1/(∑M
j=1 wj(i)). Exploiting Equation (18), the weight and its error covariance

are then updated as follows:

θ̂
(i)
k =

M

∑
j=1

ω j(i)θ̂
j
k
(i)

(20)

P(i)
θ,k =

M

∑
j=1

ω j(i)
(

Pj
θ,k

(i)
+ (θ̂j(i) − θ̂(i))(θ̂j(i) − θ̂(i))T

)
. (21)

To finalize computation of θ̂
(i)
k based on Equations (13)–(21), localized measurement

mapping function h(i)
k is required. As h(i)

k is formed by the basis functions, its adaptation
necessitates the adaptation of the basis functions. The vector of basis functions shown in
Equation (11) is formed as follows:

φ(s(i)k ) =
[
φ1(s

(i)
k ), φ2(s

(i)
k ), . . . , φNb−1(s

(i)
k ), φNb(s

(i)
k )
]T , (22)

where Nb is the number of basis functions. Each basis function is represented by a RBF,
which is defined by its mean and covariance parameters as follows:

φn(s
(i)
k ) = exp{−1

2
(s(i)k − µ

(i)
n )TΣ

(i)
n
−1

(s(i)k − µ
(i)
n )}, (23)

where µ
(i)
n and Σ

(i)
n are the mean and covariance of φn(s

(i)
k ), for (1 ≤ n ≤ Nb). Generally

speaking, the state-action feature vector can be represented as follows:
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φ(s(i)k , a(i)k ) = [φ1,a1(s
(i)
k ), . . . φNb ,a1(s

(i)
k ), φ1,a2(s

(i)
k ), . . . φNb ,a

D(i)
(s(i)k )]T , (24)

where φ(·) : A(i) × S → RNb×D(i)
, and D(i) denotes the number of actions associated

with the ith agent. The state-action feature vector φ(s(i)k , a(i)k = a(i)d ), for (1 ≤ d ≤ D(i)) in

Equation (24) is considered to be generated from φ(s(i)k ) by placing this state feature vector

in the corresponding spot for action a(i)k while the feature values for the rest of the actions
are set to zero, i.e.,

φ(s(i)k , a(i)k ) = [0, . . . 0, φ1(s
(i)
k ), . . . , φN(s

(i)
k ), 0, . . . 0, ]T . (25)

Due to the large number of parameters associated with the measurement mapping
function, the multiple model approach seems to be inapplicable. Alternatively, Restricted
Gradient Descent (RGD) [32] is employed, where the goal is to minimize the following loss
function:

L(i)
k = (φT(s(i)k , ak) θ

(i)
k − r(i)k )2. (26)

The gradient of the objective function with respect to the parameters of each basis
function is then calculated using the chain rule as follows:

∆µ(i) = −
∂L(i)

k

∂µ(i)
= −

∂L(i)
k

∂Q
π∗(i)

∂Q
π∗(i)

∂φ(i)
∂φ(i)

∂µ(i)
(27)

and ∆Σ(i) = −
∂Σ

(i)
k

∂µ(i)
= −

∂L(i)
k

∂Q
π∗(i)

∂Q
π∗(i)

∂φ(i)
∂φ(i)

∂Σ(i)
, (28)

where calculation of the partial derivations is done leveraging Equations (11), (23) and (26).
Therefore, the mean and covariance of the RBFs can be adapted using the calculated partial
derivative as follows:

µ
(i)
n = µ

(i)
n − 2λµ(i)

(
L(i)

k

) 1
2
θ
(i)
k

T
(Σ

(i)
n )−1(s(i)k − µ

(i)
n ) (29)

Σ
(i)
n = Σ

(i)
n − 2λΣ(i)

(
L(i)

k

) 1
2
θ
(i)
k

T
(Σ

(i)
n )−1 × (s(i)k − µ

(i)
n )(s(i)k − µ

(i)
n )TΣ

(i)
n
−1

, (30)

where both λµ(i) and λΣ(i) denote the adaptation rates. Based on [32], for the sake of stability,
only one of the updates shown in Equations (29) and (30), will be applied. To be more precise,

when the size of the covariance is decreasing (i.e., L(i)
k

1
2
(θ

(i)
k

T
φ(·)) > 0), the covariances

of the RBFs are updated using Equation (30); otherwise, their means are updated using
Equation (29). Using this approach, unlimited expansion of the RBF covariances is avoided.

One superiority that the proposed learning framework shows over other optimization-
based techniques (e.g., gradient descent-based methods) is the calculation of the uncertainty
for the weights P(i)

θ,k , which is directly related to the uncertainty of the value function. This
information can then be used at each step to select the actions, leading to the most reduction
in the weights’ uncertainty. Using the information form of the KF (information filter [59]),
the information of the weights denoted by P(i)

θ,k is updated as follows:

P−1
θ,k

(i)
= P−1

(θ,k|k−1)

(i)
+ h(i)

k R−1(i)hT
k
(i)

. (31)

In Equation (31), the second element, i.e., h(i)
k R−1(i)hT

k
(i), represents the information

received from the measurement. The action is obtained by maximizing the information of
the weights, i.e.,
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a(i)k = arg max
a

(
h(i)

k (s(i)k , a(i))R−1(i)hT
k
(i)
(s(i)k , a(i))

)
= arg max

a

(
h(i)

k (s(i)k , a(i))hT
k
(i)
(s(i)k , a(i))

)
. (32)

The second equality in Equation (32) is constructed as R(i) is a scalar. The projected
behavior policy in Equation (32) is different from that in [37], where a random policy
was proposed, which favored actions with less certainty of the value function. Although
reducing the value function’s uncertainty through action selection is an intelligent approach,
it is less efficient in sample selection due to the random nature of such policies. Algorithm 1
briefly represents the MAK-TD framework proposed in this work.

Algorithm 1 THE PROPOSED MAK-TD FRAMEWORK

1: Learning Phase:
2: Set θ0, Pθ,0, F, µn,id

, Σn,id
for n = 1, 2, . . . , N and id = 1, 2, . . . , D

3: Repeat (for each episode):
4: Initialize sk
5: Repeat (for each agent i):
6: While s(i)k 6= sT do:

7: a(i)k = arg max
a

(
h(i)

k (s(i)k , a(i))hT
k
(i)
(s(i)k , a(i))

)
8: Take action a(i)k , observe s(i)k+1, r(i)k
9: Calculate φ(i)(s(i), a(i)) via Equations (22) and (23)

10: h(i)
k (s(i)k , a(i)k ) = φ(i)(s(i)k , a(i)k )− γ arg max

a
φ(i)(s(i)k+1, a(i))

11: θ̂
(i)
(k|k−1) = F(i)θ̂

(i)
k

12: P(i)
(θ,k|k−1) = F(i)P(i)

θ,k−1FT(i)
+ Q(i)

13: for j = 1 : M do:

14: kj
k
(i)

= P(i)
(θ,k|k−1)h

(i)
k (hT

k
(i)P(i)

(θ,k|k−1)h
(i)
k + Rj(i))−1

15: θ̂
j
k
(i)

= θ̂
(i)
(θ,k|k−1) + kj

k
(i)
(rj

k − hT
k
(i)

θ̂
(i)
(k|k−1))

16: P(i)
θ,k = (I − K j

k
(i)

hT
k
(i)
)P(i)

(θ,k|k−1)(I − K j
k
(i)

hT
k
(i)
)T + K j

k
(i)

RjK j
k

T(i)

17: end for
18: Compute the value of c and wj(i) by using ∑M

j=1 wj(i) = 1 and Equation (19)

19: θ̂
(i)
k = ∑M

j=1 wj(i)θ̂
j
k
(i)

20: P(i)
θk

= ∑M
j=1 ω j(i)

(
Pj

θ,k

(i)
+ (θ̂j(i) − θ̂(i))(θ̂j(i) − θ̂(i))T

)
21: RBFs Parameters Update:
22: L(i)

k = (φT(s(i)k , ak) θ
(i)
k − r(i)k )2

23: if L(i)
k

1
2
(θ

(i)
k

T
φ(·)) > 0 then:

24: Update Σn,ad via Equation (29)
25: else:
26: Update µn,ad via Equation (30)
27: end if
28: end while
29: Testing Phase:
30: Repeat (for each trial episode):
31: While sk 6= sT do:
32: Repeat (for each agent):
33: ak = arg max

a
φ(sk, a)Tθk

34: Take action ak, and observe sk+1, rk
35: Calculate Loss Sk for all agents
36: End While
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4. The MAK-SR Framework

In the previous section, the MAK-TD framework is proposed, which is a MM Kalman-
based off-policy learning solution for multi-agent networks. To learn the value function,
a fixed model for the reward function is considered, which could restrict its application
to more complex MARL problems. SR-based algorithms are appealing solutions to tackle
this issue where the focus is instead on learning the immediate reward and the SR, which
is the expected discounted future state occupancy. In the existing SR-based approaches
that use standard temporal difference methods, the uncertainty about the approximated
SR is not captured. In order to address this issue, we extend the MAK-TD framework
and design its SR-based variant in this section. In other words, MAK-TD is extended to
MAK-SR by incorporation of the SR learning procedure into the filtering problem using
KTD formulation to estimate uncertainty of the learned SR. Moreover, by applying KTD, we
benefit from the decrease in memory and time spent for the SR learning and also sensitivity
of the framework’s performance to its parameters (i.e., more reliable) when compared to
DNN-based algorithms.

Exact computation of the SR and the reward function is, typically, not possible within
the multi-agent settings as we are dealing with a large number of continuous states. There-
fore, we follow the approach developed in Section 3 and approximate the SR and the reward
function via basis functions. For the state-action feature vector φ(s(i), a(i)), a feature-based
SR, which encodes the expected occupancy of the features, is defined as follows:

Mπ(i)(s(i), :, a(i)) = E
[

T

∑
k=0

γkφ(s(i)k , a(i)k )|s(i)0 = s(i), a(i)0 = a(i)
]

. (33)

We consider that the immediate reward function for pair (s(i), a(i)) can be linearly
factorized as

r(i)(s(i)k , a(i)k ) ≈ φ(s(i)k , a(i)k )Tθ
(i)
k , (34)

where θ
(i)
k is the reward weight vector. The state-action value function (Equation (8)),

therefore, can be computed as follows:

Q(s(i)k , a(i)k ) = θ
(i)
k

T
M(s(i)k , :, a(i)k ). (35)

The SR matrix M(s(i)k , :, a(i)k ) can be approximated as a linear function of the same
feature vector as follows:

Mπ(i)(s
(i)
k , :, a(i)k ) ≈ Mk φ(s(i)k , a(i)k ). (36)

The TD learning of the SR then can be performed as follows:

Mnew
π(i) (s

(i)
k , :, a(i)k ) = Mold

π(i)(s
(i)
k , :, a(i)k ) + α

(
φ(i)(s(i)k , a(i)k ) + γMπ(i)(s

(i)
k+1, :, a(i)k+1)−Mold

π(i)(s
(i)
k , :, a(i)k )

)
. (37)

By defining the estimation structure of the SR and reward function, a suitable method
must be selected to learn (approximate) the weight vector of the reward θ(i) and the weight
matrix of the SR M for Agent i. The proposed multi-agent MAK-SR algorithm contains two
main components: KTD-based weight SR learning and radial basis function update. For
the latter, we apply the method developed in Section 3 to approximate the vector of basis
functions via representing each of them as a RBF. The gradient of the loss function (26),
with respect to the parameters of the RBFs, is calculated using the chain rule for the mean
and covariance of RBFs using (29) and (30).
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For KTD-based weight SR learning, the SR can be obtained from its one-step approxi-
mation using the TD method of Equation (37). In this regard, the state-action feature vector
at time step k can be considered as a noisy measurement from the system as follows:

φ̂(s(i)k , a(i)k ) = Mnew(s(i)k , :, a(i)k )− γM(s(i)k+1, :, a(i)k+1) + n(i)
k , (38)

where n(i)
k follows a zero-mean normal distribution with covariance of R(i)

M . Considering

Equations (36) and (38) together, the feature vector φ(s(i)k , a(i)k ) can be approximated as

φ̂(s(i)k , a(i)k ) = Mk

[
φ(s(i)k , a(i)k )− γφ(s(i)k+1, a(i)k+1)

]
︸ ︷︷ ︸

g(i)k

+n(i)
k . (39)

s Matrix Mk is then mapped to a column vector m(i)
k by concatenating its columns. Us-

ing the vec-trick characteristic of Kronecker product denoted by ⊗, then we can rewrite
Equation (39) as follows:

φ̂(s(i)k , a(i)k ) = (g(i)
T
k ⊗ I)m(i)

k + n(i)
k , (40)

where I represents an identity matrix of appropriate dimension. More specifically, Equa-
tion (40) is used to represent the localized measurements (φ(s(i)k , a(i)k )) linearly based on

vector m(i)
k , which requires estimation. Therefore, we use the following linear state model:

m(i)
k+1 = m(i)

k + µ
(i)
k , (41)

to complete the required state-space representation for KF-based implementation. The
noise associated with the state model (Equation (41)), i.e., µ

(i)
k , follows a zero-mean normal

distribution with covariance of QM . Via implementing the KF’s recursive equations, we
use the new localized observations to estimate m(i)

k and its corresponding covariance

matrix P(i)
m(i),k

. After this step, vector m(i)
k is reshaped to form a (L× L) matrix in order to

reconstruct Matrix Mk. Equation (35) is finally used to form the state-action value function
for associated with (s(i)k , a(i)k ). Algorithm 2 summarizes the proposed MAK-SR framework.

Algorithm 2 THE PROPOSED MAK-SR FRAMEWORK

1: Learning Phase:
2: Initialize: θ0, Pθ,0, m0, PM,0, µn, and Σn for n = 1, 2, . . . , N
3: Parameters: Qθ, QM , λµ, λΣ, and {Rj

θ, Rj
M} for j = 1, 2, . . . , M

4: Repeat (for each episode):
5: Initialize sk
6: Repeat (for each agent i):
7: While s(i)k 6= sT do:
8: Reshape mk into L× L to construct 2-D matrix Mk.

9: a(i)k = arg max
a

(
g(i)k (s(i)k , a)g(i)k

T
(s(i)k , a(i))

)
10: Take action a(i)k , observe s(i)k+1 and r(i)k .

11: Calculate φ(s(i)k , a(i)k ) via Equations (23) and (25).

12: Update reward weights vector: Perform MMAE to update θ
(i)
k .

13: Update SR weights vector: Perform KF on Equations (40) and (41) to update m(i)
k .

14: Update RBFs parameters: Perform RGD on the loss function Lk to update Σn and µn.
15: end while
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It is worth mentioning that, unlike the DNN-based networks for multi-agent scenarios,
the proposed multiple-model frameworks require far less memory due to their sequential
data processing nature. In other words, storing the whole episodes’ information for all the
agents is not needed as the last measured data (assuming one-step Markov decision process)
can be leveraged given the sequential nature of the incorporated filters. Finally, note that
the proposed MAK-SR and MAK-TD frameworks are designed for systems with a finite
number of actions. One direction for future research is to consider extending the proposed
MAK-SR framework to applications where the to action-space is infinite-dimensional. This
might occur in continuous control problems [54,60] where number of possible actions at
each state is infinite.

5. Experimental Results

The performances of the proposed MAK-SR and MAK-TD frameworks are evaluated
in this section, where a multi-agent extension of the OpenAI gym benchmark is utilized.
Figure 1 illustrates snapshots of the environment utilized for evaluation of the proposed
approaches. More specifically, a two-dimensional world is implemented to simulate com-
petitive, cooperative, and/or mix interaction scenarios [50]. The utilized benchmark is
currently one of the most standard environments to test different multi-agent algorithms,
where time, discrete action space, and continuous observations are the basics of the envi-
ronment. Such a multi-agent environment is a natural curriculum in that the environment
difficulty is determined based on the skills of the agents cooperating or competing. The en-
vironment does not have a stable equilibrium, therefore, allowing the participating agents
to become smarter irrespective of their intelligence level. In each step, the implemented
environment provides observations and rewards once the agents performed their actions.
The proposed platforms are implemented on a computer with a 3.79 GHz AMD Ryzen 9,
12-core processor. The frameworks are evaluated via several experiments, which are imple-
mented through the OpenAI Gym multi-agent RL benchmarks. The parameters related
to the proposed MAK-SR and MAK-TD are set randomly. In the designed deep models,
the learning rate is set as 0.001, and the models are trained with the mini-batches of size
128 using Adam Optimizer. MADDPG and DDPG are based on the Actor-Critic approach.
DQN and DDPG receive an observation as input consisting of the current state, next state,
gained reward, and the action taken by the agents at each step in the environment. For
MADDPG, based on the received state data (current and next state) and the actions taken
by all the agents, the future return is approximated considering all the agent’s policies.

In what follows, we discuss different multi-agent environments exploited in this
work as well as the experimental assumptions considered during testing of the proposed
methods. Finally, the results of the experiments will be represented and explained.

5.1. Environments

In the represented multi-agent environments, we do not impose any assumption or
requirement on having identical observations or action spaces for the agents. Furthermore,
agents are not restricted to follow the same policy π while playing the game. In the
environments, a different number of agents and possible landmarks can be placed to
establish different interactions such as cooperative, competitive, or mixed strategies. The
strategy in each environment is to keep the agents in the game as long as possible. Each test
can be fully cooperative when agents communicate to maximize a shared return, or can be
fully competitive when the agents compete to achieve different goals. The mixed scenario
for the predator–prey environments (a variant of the classical predator–prey) is defined in a
way that a group of slower agents must cooperate against another group of faster agents to
maximize their returned reward. Each agent takes a step by choosing one of five available
actions, i.e., no movement, left, right, up, and down, transiting to a new state, and receiving
a reward from the environment. Moreover, each agent will receive a list of observations in
each state, which contains the agent’s position and velocity, relative positions of landmarks
(if available), and its relative position to other agents in the environment. That is how
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an agent knows the position and general status of the agents (friends and adversaries),
enabling the decision-making process of that agent. As shown in Figure 1, each environment
has its own margins. An agent that leaves the area will be punished by −50 points, the
game will be reset, and a random configuration will be initiated to start the next state,
which begins immediately. The red agents play the predator role and receive +100 points
intercepting (hunting) a prey (small green agents). The green agents that are faster than
red agents (predators) will receive −100 points by each interception with the red ones.
As their job is to follow the prey, the predators will be punished proportionally to their
distance to the prey (green agents). In contrast, the opposite will happen to the green
agents as they keep the maximum distance from the predators. The proposed MAK-TD/SR
frameworks are evaluated against DQN [26], DDPG [27], and MADDPG [57]. We evaluate
the algorithms in terms of loss, returned discounted reward, and the number of collisions
between agents.

(a) (b)

(c) (d)

Figure 1. Different multi-agent scenarios implemented within the OpenAI gym. (a) Cooperation
Scenario (b) Competition Scenario (c) Predator-Prey 2v1, and (d) Predator-Prey 1v2.

5.2. Experimental Assumptions

In the proposed frameworks, we exploit related RBFs based on the different agents’
sizes of observations and a bias parameter. The size of the observation vector at each
local agent (localized observation vector), which represents the number of global and
local measurements available locally, varies across different scenarios based on the type
and the number of agents present/active in the environment. Irrespective of size of the
localized observation vectors, the size of the localized feature vectors, which represents
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the available five actions, is considered to be 50. Mean and covariance of the RBFs are
initialized randomly for all the agents in all the environments. For example, consider a
Predator–Prey scenario with 2 preys optimizing their actions against one predator. In
this toy-example (discussed for clarification purposes), considering 9 RBFs together with
localized observation vectors of size 12 for the predator and 10 for the preys, the mean
vector associated with the predator and the preys are of dimensions 9× 12 and 9× 10,
respectively. Consequently, for this Predator–Prey scenario, µ, which is initialized ran-
domly contains three agents with random values with the mean size ((9, 12), (9, 10), (9, 10))
and the covariance, Σ = (I12, I10, I10) where I12 and I10 are the identity matrices of size
(12× 12) and (10× 10), respectively. Based on Equation (25), the vector of basis function is
represented as follows:

φ(sk, ak = −2) = [0, . . . , 0, 0, . . . , 0, 1, φ1,ad , . . . φ9,ad , 0, . . . , 0, 0, . . . , 0]T , (42)

φ(sk, ak = −1) = [0, . . . , 0, 0, . . . , 0, 0, . . . , 0, 1, φ1,ad , . . . φ9,ad , 0, . . . , 0]T , (43)

φ(sk, ak = 0) = [0, . . . , 0, 0, . . . , 0, 0, . . . , 0, 0, . . . , 0, 1, φ1,ad , . . . φ9,ad ]
T , (44)

φ(sk, ak = +1) = [0, . . . , 0, 1, φ1,ad , . . . , φ9,ad , 0, . . . 0, 0, . . . , 0, 0, . . . , 0]T (45)

and φ(sk, ak = +2) = [1, φ1,ad , . . . , φ9,ad , 0, . . . , 0, 0, . . . , 0, 0, . . . 0, 0, . . . 0]T , (46)

where φl,ad
is calculated based on Equation (24) for (l ∈ {1, 2, . . . , 9}. , γ, In all the scenarios,

the time step chosen to be 10 milliseconds and the discount factor is 0.95. The transition
matrix is initiated to F = I50, and for the process noise covariance, a small value of
Qk = 10−7 I50 is considered. The covariance matrix associated with the noise of the
measurement model is selected from the following set:

R(i) ∈ {0.01, 0.1, 0.5, 1, 5, 10, 50, 100}. (47)

For initializing the weights, we sample from a zero mean Gaussian initialization distri-
bution N (θ0, Pθ,0), where θ0 = 050 and Pθ,0 = 10I50. By considering the aforementioned
initial parameters, each experiment is initiated randomly and consists of 1000 learning
episodes together with 1000 test episodes. Given small number of available learning
episodes, the proposed MAK-TD/SR frameworks outperformed their counterparts across
different metrics including sample efficiency, cumulative reward, cumulative steps, and
speed of the value function convergence.

5.3. Results

Initially, the agents are trained over different number of episodes, after which 10
iteration each of 1000 episodes is implemented for testing to compute different results
evaluating performance and efficiency of the proposed MAK-TD/SR frameworks. First,
to evaluate stability of the incorporated RBFs, a Monte Carlo (MC) study is conducted
where 10 RBFs are used across all the environments. The results are averaged over multiple
realizations leveraging MC sampling as shown in Tables 1–3. Figure 2b shows the rewards
gained by all the agents in a Predator–Prey environment. It is worth mentioning that the
average number of the steps taken by all the agents in the defined environments is also
represented in Table 3, showing MAK-SR remarkable results in contrast with the other
algorithms. Results related to cumulative distance walked by the agents (computed by
multiplying the number of the steps by 0.74 m for each step) are also shown in Figure 3 for
different environments admitting superiority of the MAK-SR framework in contrast with
other solutions. The loss function associated with each of the five implemented methods is
shown in Figure 4.
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Table 1. Total loss averaged across all the episodes and for all the four implemented scenarios.

Environment MAK-SR MAK-TD MADDPG DDPG DQN

Cooperation 8.93 2.4088 9649.84 10,561.16 10.93

Competition 0.43 4.9301 10,158.18 10,710.37 107.39

Predator–Prey 1v2 0.005 1.9374 6816.34 6884.33 8.21

Predator–Prey 2v1 8.87 1.2421 7390.18 6882.2 10.24

Table 2. Total received reward by the agents averaged for all the four implemented scenarios.

Environment MAK-SR MAK-TD MADDPG DDPG DQN

Cooperation −16.0113 −23.0113 −69.28 −66.29 −39.96

Competition −0.778 −13.358 −63.30 −61.34 −14.49

Predator–Prey 1v2 −0.0916 −13.432 −46.17 −20.53 −23.451

Predator–Prey 2v1 −0.081 −17.0058 −55.69 −49.41 −44.32

Table 3. Average steps taken by agents per episode for all the environments based on the implemented
platforms.

Environment MAK-SR MAK-TD MADDPG DDPG DQN

Cooperation 14.03 12.064 7.377 7.369 15.142

Competition 17.59 17.48 7.36 7.18 11.98

Predator–Prey 1v2 14.78 12.36 6.21 7.69 10.02

Predator–Prey 2v1 9.94 9.773 6.25 7.12 8.46

(a) (b)

Figure 2. The Predator–Prey environment: (a) Loss. (b) Received rewards.
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(a) (b)

(c) (d)

Figure 3. Cumulative distance walked by the agents in four different environments based on the
five implemented algorithms (a) Cooperation. (b) Competition. (c) Predator–Prey 2v1. (d) Predator–
Prey 1v2.

(a) (b)

Figure 4. Cont.
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(c) (d)

Figure 4. Four different normalized loss functions results for all the agents in the for the four
algorithms in four different environments: (a) Cooperation. (b) Competition. (c) Predator–Prey 2v1.
(d) Predator–Prey 1v2.

6. Discussion

The results shown in Section 5 illustrate the inherent stability of the utilized RBFs
and the proposed MAK-TD and MAK-SR frameworks. Capitalizing on the results of
Tables 1–3, the MAK-SR can be considered as the most sample-efficient approach. It is
worth noting that although MAK-SR outperforms the MAK-TD approach, we included
both, as the learned representation is not transferable between optimal policies in the SR
learning. For such scenarios, MAK-TD is an alternative solution providing, more or less,
similar performance to that of the MAK-SR. To be more precise, when solving a previously
unseen MDP, a learned SR representation can only be used for initialization. In other words,
the agents still have to adjust the SR representation to the policy, which is only optimal
within the existing MDP. This limitation urges us to represent the MAK-TD as another
trusted solution.

As it can be seen from Table 1, the average loss associated with the proposed MAK-SR
is better than that of the MAK-TD. Both frameworks, however, outperform their counter-
parts, which can be attributed to their improved sample selection efficiency. This excellence
can also be seen for the Predator–Prey 1v2 environment in Figure 2a. The calculated losses
mostly have small values after the beginning of the experiments, indicating stability of the
implemented frameworks. As can be seen, other approaches cannot provide that level of
performance that is achieved by MAK-SR and MAK-TD with such low number of training
episodes in this experiment. The other three DNN-based approaches can reach such an
efficiency with a much greater amount of experience (more than 10,000 experiments) and
use much more memory space to save the batches of the information.

As can be seen in Table 2 and Figure 2b, the rewards gained in the MAK-SR are
also better than those of the MAK-TD and are much higher than the other approaches.
This can be considered exceptional considering the limited utilized experience. For all
other environments, this better performance in the gained reward can be seen in Figure 5
where four different reward functions for five discussed algorithms in four experiment
environments are shown. As expected, the performance of each model improves over time
as being trained through different training episodes. The proposed MAK-SR and MAK-TD
provide exceptional performances given the small number of training episodes utilized
in these experiments. MADDPG, DDPG, and DQN, however, fail to achieve the same
performance level.
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(a) (b)

(c) (d)

Figure 5. Four different reward functions results for all the agents for the five algorithms in four different
environments: (a) Cooperation. (b) Competition. (c) Predator–Prey 2v1. (d) Predator–Prey 1v2.

Evaluating reliability of the proposed learning frameworks is of significance to verify
their applicability in real-world scenarios. A reliable learning procedure should be able
to provide consistency in its performance and generate reproducible results over multiple
runs of the model [48]. Generally speaking, performance of RL-based solutions, particularly
DNN-based approaches, are highly variable because of their dependence on a large number
of tunable parameters. Hyperparameters, implementation details, and environmental
factors are among these parameters [61]. This can result in unreliability of DNN-based
RL algorithms in real-world scenarios compared to the proposed frameworks that are less
dependent on parameter selection and fine-tuning. To better illustrate reliability of the
proposed frameworks, another experiment is conduced where the initial parameters in
each run are generated randomly. More specifically, we have repeated each test 10 times
consisting of 1000 learning episodes together with 1000 test episodes. A reliable RL algo-
rithm should be consistent in regenerating performance across different training sessions,
i.e., reproducibility feature. As can be seen from Figure 6, for all four test scenarios (i.e.,
cooperative, competitive, and mixed strategies) DNN-based methods (MADDPG, DDPG,
and DQN) have higher variance illustrating their sensitivity to the underlying parame-
ters that can be attributed to reduced reliability. As can be seen from Figure 6, MAK-SR
outperforms other approaches in terms of the received awards. In both MAK-SR and
MAK-TD algorithms, positive effect of uncertainty usage in the action selection procedure
is noticeable. The ability to produce stable performance across different episodes is another
aspect for investigating reliability of RL models. Stability of different models can also be
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compared through Figure 6. It can be seen that the proposed MAK-SR algorithm is more
stable than its counterparts as fewer sudden changes occur during different episodes.

(a) (b)

(c) (d)

Figure 6. The mean (solid lines) and standard deviation (shaded regions) of cumulative episode’s
reward for the four algorithms in four different environments: (a) Cooperation. (b) Competition
(c) Predator–Prey 2v1. (d) Predator–Prey 1v2.

With regards to potential future works, on the one hand, the proposed frameworks
can be implemented and applied to higher-dimensional MARL environments, e.g., large-
scale IoT applications such as indoor localization scenarios in unconstrained environments.
One interesting scenario here is to consider a heterogenous network of multiple agents
using different tracking/localization algorithms with application to Contact Tracing (CT).
Another direction for future research is to focus on optimization of the current SR-based
solution. In its current form, the SR weight matrix is approximated by mapping into a
one-dimensional vector and applying KF leveraging the KTD framework. For application
to higher dimensions, this vectorized approach can result in potential information loss as
such more complex approximation techniques should be developed while being mindful
of potential computation overhead.

7. Conclusions

The paper proposed the MAK-TD framework and its SR-based variant, the MAK-SR
framework, as efficient alternatives to DNN-based MARL solutions. The main objective
of these developments is to address sample inefficiency, memory problems, and lack of
prior information issues of DNN-based MARL techniques. The novelty of the proposed
frameworks lies in the integration of Kalman temporal different, multiple-model adaptive
estimation, and successor representation for MARL problems. Through such an integration,
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aforementioned issues related to overfitting and high sensitivity to parameter selection
are addressed and changes in the reward model are accommodated. More specifically, by
leveraging the KTD framework, SR learning procedure is modeled into a KF problem and
RBFs are used to encode the continuous space into feature vectors. For learning localized
reward functions, we resort to MMAE to deal with the lack of prior knowledge on the
underlying parameters. Additionally, via learning the value function as the inner product
of the SR and the weight vector of the reward function, the models can deal with changes
in the reward function. Finally, an innovative active learning mechanism is implemented
to use the obtained uncertainty of the value function and establish a trade-off between
exploration and exploitation. The proposed MAK-TD/SR frameworks are evaluated via
several experiments across four different environments, which are implemented through
the OpenAI Gym multi-agent RL benchmarks. In these experiments, different number
of agents in cooperative, competitive, and mixed (cooperative-competitive) scenarios are
utilized. For evaluation purposes, we looked at the average loss, average accumulative
reward, the number of steps, and reproducibility/stability aspects of reliability computed
over multiple realizations. Based on the results, the proposed MAK-TD/SR frameworks
outperformed their counterparts across different evaluation metrics. For example, for the
competition scenario, the MAK-SR achieved total average loss of 0.43, while its DNN-based
counterparts achieved total average loss of 10,158.18, 10,710.37, and 107.39 for MADDPG,
DDPG, and DQN, respectively. Finally, MAK-TD/SR and MAK-TD require much less time
and space to find the best policy, while the other three DNN-based approaches can reach
such an efficiency with a much higher amount of experience (more than 10,000 experiments)
and need much more memory space to save the batches of the information.
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