An Indoor Positioning Method Based on UWB and Visual Fusion
Abstract
:1. Introduction
2. An Overview of Indoor Positioning Methods of the UWB
2.1. Description of the TDOA Positioning Method
2.2. Chan-Taylor Cascade Location Algorithm
2.3. Robust Kalman Filtering Algorithm Based on the PCA
3. The Mechanism of Visual Target Tracking and Positioning
3.1. Multi-Target Tracking Algorithm
3.2. Principle of Coordinate Frame Transformation
4. Positioning Model Based on the UWB and Visual Fusion
4.1. Pedestrian Identity Matching Process
4.2. The UWB and Visual Fusion Positioning Algorithm Based on the Federated Kalman Filter
- (1)
- If the local state estimation and are unbiased estimates, then should also be an unbiased estimate, namely:
- (2)
- The estimated state error covariance matrix of is the smallest, that is
- Step 1:
- Input the visual and UWB localization values of the pedestrian, i.e., two-dimensional coordinate values.
- Step 2:
- Initialize the error variance P11 and P22.
- Step 3:
- Calculate the global optimal state estimate according to Equation (34).
- Step 4:
- Output results of the fusion positioning.
5. Experiment Results and Analysis
5.1. Experimental Results of the UWB and Visual Fusion Positioning
5.2. Experimental Results of Kalman Filtering Based on the PCA
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zhang, H.; Zhang, Z.; Zhao, R.; Lu, J.; Wang, Y.; Jia, P. Review on UWB-based and multi-sensor fusion positioning algorithms in indoor environment. In Proceedings of the 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chong Qing, China, 12–14 March 2021; pp. 1594–1598. [Google Scholar] [CrossRef]
- Do, T.H.; Yoo, M. An in-Depth Survey of Visible Light Communication Based Positioning Systems. Sensors 2016, 16, 678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottigliero, S.; Milanesio, D.; Saccani, M.; Maggiora, R. A Low-Cost Indoor Real-Time Locating System Based on TDOA Estimation of UWB Pulse Sequences. IEEE Trans. Instrum. Meas. 2021, 70, 5502211. [Google Scholar] [CrossRef]
- Sheikh, S.M.; Asif, H.M.; Raahemifar, K.; Al-Turjman, F. Time Difference of Arrival Based Indoor Positioning System Using Visible Light Communication. IEEE Access. 2021, 9, 52113–52124. [Google Scholar] [CrossRef]
- Shao, W.; Luo, H.; Zhao, F.; Ma, Y.; Zhao, Z.; Crivello, A. Indoor Positioning Based on Fingerprint-Image and Deep Learning. IEEE Access 2018, 6, 74699–74712. [Google Scholar] [CrossRef]
- Ding, H.; Zheng, Z.; Zhang, Y. AP weighted multiple matching nearest neighbors approach for fingerprint-based indoor localization. In Proceedings of the 2016 Fourth International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services (UPINLBS), Shanghai, China, 2–4 November 2016; pp. 218–222. [Google Scholar] [CrossRef]
- Özçelik, I.M.; Dönmez, M.Y. A Wi-Fi fingerprinting-based indoor localization approach: M-Weighted position estimation (m-WPE). In Proceedings of the 2017 25th Signal Processing and Communications Applications Conference (SIU), Antalya, Turkey, 15–18 May 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Dinh, T.-M.T.; Duong, N.-S.; Sandrasegaran, K. Smartphone-Based Indoor Positioning Using BLE iBeacon and Reliable Lightweight Fingerprint Map. IEEE Sens. J. 2020, 20, 10283–10294. [Google Scholar] [CrossRef]
- Ju, H.; Park, S.Y.; Park, C.G. A Smartphone-Based Pedestrian Dead Reckoning System with Multiple Virtual Tracking for Indoor Navigation. IEEE Sens. J. 2018, 18, 6756–6764. [Google Scholar] [CrossRef]
- Xue, W.; Jiang, P. The Research on Navigation Technology of Dead Reckoning Based on UWB Localization. In Proceedings of the 2018 Eighth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), Harbin, China, 19–21 July 2018; pp. 339–343. [Google Scholar] [CrossRef]
- Yao, L.; Wu, Y.-W.A.; Yao, L.; Liao, Z.Z. An integrated IMU and UWB sensor based indoor positioning system. In Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 September 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Chen, X.C.; Chu, S.; Li, F.; Chu, G. Hybrid ToA and IMU indoor localization system by various algorithms. J. Cent. South Univ. 2019, 26, 2281–2294. [Google Scholar] [CrossRef]
- Yu, N.; Wang, S. Enhanced autonomous exploration and mapping of an unknown environment with the fusion of dual RGB-D sensors. Engineering 2019, 5, 164–172. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, T.; Sun, L.; Li, Q.; Fang, Z. An Indoor Multi-pedestrian Target Localization Method based on Visual and inertial Coordination. Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 672–680. [Google Scholar]
- Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 25–28 September 2016; pp. 3464–3468. [Google Scholar] [CrossRef] [Green Version]
- Deep, A.; Mittal, M.; Mittal, V. Application of Kalman Filter in GPS Position Estimation. In Proceedings of the 2018 IEEE 8th Power India International Conference (PIICON), Sonepat, India, 10–12 December 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Özcan, H.; Şahin, S.; Menteşoğlu, M.; Pir, F. Indoor reduction of noise in RF signal with Kalman Filter. In Proceedings of the 2015 23nd Signal Processing and Communications Applications Conference (SIU), Malatya, Turkey, 16–19 May 2015; pp. 2013–2016. [Google Scholar] [CrossRef]
- Zhou, Z.; Wu, J.; Li, Y.; Fu, C.; Fourati, H. Critical Issues on Kalman Filter with Colored and Correlated System Noises. Asian J. Control. 2017, 19, 1905–1919. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, P.; Wen, H.; Wu, X. Stochastic stability and performance analysis of Cubature Kalman Filter. Neurocomputing 2016, 186, 218–227. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Wang, L.; Liu, F.; Liu, W. Unscented Kalman Filter for Nonlinear Systems with One-step Randomly Delayed Measurements and Colored Measurement Noises. In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 1864–1869. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, D.; Zhang, S.; Zhu, Y.; Teng, L.; Teng, S. Solving the Many to Many assignment problem by improving the Kuhn–Munkres algorithm with backtracking. Theor. Comput. Sci. 2016, 618, 30–41. [Google Scholar] [CrossRef]
- Chopra, S.; Notarstefano, G.; Rice, M.; Egerstedt, M. A Distributed Version of the Hungarian Method for Multirobot Assignment. IEEE Trans. Robot. 2017, 33, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ayabakan, T.; Kerestecioğlu, F. Indoor positioning using federated Kalman Filter. In Proceedings of the 2018 26th Signal Processing and Communications Applications Conference (SIU), Istanbul, Turkey, 2–5 May 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Mengyin, F.; Zhihong, D.; Liping, Y. Kalman Filtering Theory and Its Application in Navigation System; Science Press: Beijing, China, 2010. [Google Scholar]
Scheme | Number of Human Targets | Time Length of Human Target Loss/s | Number of Obstacles | Mean Error of Visual Positioning/cm | Mean Error of UWB Positioning/cm | Mean Error of Fusion Positioning/cm |
---|---|---|---|---|---|---|
① | 2 | 3 | 0 | 30.16 | 33.25 | 22.43 |
② | 1 | 3 | 0 | 29.72 | 30.89. | 20.94 |
③ | 1 | 5 | 0 | 29.45 | 32.23 | 21.28 |
④ | 1 | 1 | 0 | 28.58 | 33.99 | 21.99 |
⑤ | 1 | 0 | 2 | 27.73 | 36.58 | 23.45 |
⑥ | 1 | 0 | 3 | 28.25 | 38.56 | 25.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, P.; Yu, C.; Xia, Q.; Zheng, Z.; Zhao, K.; Chen, W. An Indoor Positioning Method Based on UWB and Visual Fusion. Sensors 2022, 22, 1394. https://doi.org/10.3390/s22041394
Peng P, Yu C, Xia Q, Zheng Z, Zhao K, Chen W. An Indoor Positioning Method Based on UWB and Visual Fusion. Sensors. 2022; 22(4):1394. https://doi.org/10.3390/s22041394
Chicago/Turabian StylePeng, Pingping, Chao Yu, Qihao Xia, Zhengqi Zheng, Kun Zhao, and Wen Chen. 2022. "An Indoor Positioning Method Based on UWB and Visual Fusion" Sensors 22, no. 4: 1394. https://doi.org/10.3390/s22041394
APA StylePeng, P., Yu, C., Xia, Q., Zheng, Z., Zhao, K., & Chen, W. (2022). An Indoor Positioning Method Based on UWB and Visual Fusion. Sensors, 22(4), 1394. https://doi.org/10.3390/s22041394