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Abstract: To enable today’s industrial automation, a significant number of sensors and actuators are
required. In order to obtain trust and isolate faults in the data collected by this network, protection
against authenticity fraud and nonrepudiation is essential. In this paper, we propose a very efficient
symmetric-key-based security mechanism to establish authentication and nonrepudiation among
all the nodes including the gateway in a distributed cooperative network, without communicating
additional security parameters to establish different types of session keys. The solution also offers
confidentiality and anonymity in case there are no malicious nodes. If at most one of the nodes
is compromised, authentication and nonrepudiation still remain valid. Even if more nodes get
compromised, the impact is limited. Therefore, the proposed method drastically differs from the
classical group key management schemes, where one compromised node completely breaks the
system. The proposed method is mainly based on a hash chain with multiple outputs defined at the
gateway and shared with the other nodes in the network.

Keywords: wireless sensor networks; authentication; nonrepudiation; cooperative network;
anonymity; TESLA

1. Introduction

Wireless Sensor and Actuator Networks (WSANs) are currently very popular and
are nowadays applied in a multitude of domains for monitoring and control. Application
domains are, for instance, industrial automation, home automation, agriculture, trans-
portation and logistics, body area networks, military applications, underground sensor
networks, traffic monitoring, and air pollution monitoring. WSANs consist of a group
of sensors, measuring different types of environmental parameters such as temperature,
sound, humidity, and motion together with actuators equipped with, e.g., servos and
motors that interact with them.

A very important requirement in WSANs is to present trustworthy measurements to
the end users such that they can have confidence and accept conclusions drawn from them.
At the same time, a long lifetime should be guaranteed with minimum to no maintenance
overhead as the sensors are mostly battery powered and maintenance is very expensive.
Therefore, adequate and efficient security mechanisms should be included, which are in
the first place focused on the establishment of authentication and integrity.

Since efficiency is of utmost importance, symmetric-key-based solutions should be
addressed. A very popular and elegant symmetric-key-based broadcast authentication
mechanism for WSANs, called TESLA [1], was developed in 2002. However, this protocol
only allows authentication by the root, also known as sink or cluster head, to the other
nodes of the network. An effective symmetric-key-based mechanism, which also addresses
authenticity, coming from the different nodes of a distributed network (without predefined
positions) has not yet been proposed in literature as far as the authors are aware. This
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shortcoming has been circumvented till now by the use of a common group key shared
among all nodes in the network. It is not the most optimal and secure solution as it
does not provide protection against malicious insiders, who can take the identity of the
others without them being notified, and thus only offers authentication at the group level.
Moreover, as soon as one of the nodes is captured and corrupted, the whole security of the
network is broken.

2. Related Work

There exists a wide variety of solutions addressing key management in wireless sensor
networks for different types of keys (pairwise keys, group keys, individual keys) for
different types of network topologies (hierarchical, flat). Both symmetric- and asymmetric-
key-based approaches have been proposed. For efficiency reasons, we focus on the most
efficient ones—those being the symmetric-key-based ones. We also limit our discussion
to key management schemes for WSANs, which address security at the group level, and
exclude schemes such as SPINS [2] and BROSK [3] whose focus is on the construction of
pairwise keys.

One of the most complete symmetric key management schemes for WSANs is the
Localized Encryption and Authentication Protocol (LEAP) [4]. This protocol for hierarchical
networks explains how to establish a pairwise key between two cluster heads, a group key
in the same cluster, and a network key.

Other symmetric-key-based group key management schemes for tree- and star-based
networks can be found in [5–7]. In [5], the group key is constructed by means of the
evaluation of a bivariate polynomial in combination with Lagrange interpolation. In [6,7],
the group key is constructed using a generator matrix.

For distributed ad-hoc networks with randomly deployed nodes, there are only a
limited number of symmetric-key-based proposals for key management since it is more
difficult as the positions of the nodes in the network are not known in advance. In [8],
the keys are generated by relying on a robot-assisted network bootstrapping technique.
Recently, in [9], another approach has been proposed to derive multicast keys among a
dynamic group of nodes by using a cloud-based Network Multicast Manager (NMM) and
a dedicated asymmetric distribution of key material between NMM and a sensor node.

However, in all of these approaches, the focus is on the generation of a group key,
sometimes combined with a pairwise key between two nodes or an individual key with
the cluster node/sink. The authentication of the individual sensor nodes verifiable by
each of the other members in the group has not yet been addressed via a cryptographic
approach. If it is considered at all, trust- and reputation-based schemes are defined [10],
which typically require very high computational efforts and are mainly installed at the
gateway level.

Despite the needed efforts, the feature is worth considering, particularly for cooper-
ative WSANs [11]. First, it allows the node to verify the trustworthiness of its neighbor
nodes such that the data received from them can be used for own purposes (e.g., calibra-
tion). Second, it also enables to localize malicious nodes in the network and to avoid all
types of corresponding attacks such as wormholes, sinkhole, Sybil, sleep, selective forward,
and denial of service. For the detection of malicious nodes, several statistical [12] and
AI-based methods [13] have been explained in literature. However, a solution based on
a cryptographic approach is not yet available in literature, although it is one of the most
effective assets to avoid these type of attacks.

For the authentication of the cluster node using symmetric key cryptography, the
TESLA protocol [1] and its variants [14–16] offer currently the most efficient solution. These
schemes are based on a hash chain and on an orchestrated release of each of the values
of the chain in predefined timeslots. As a consequence, there is a delay of one timeslot to
verify the authenticity of the message. Note that there is also the scheme of [17], which
also uses a hash chain, but now combined with authenticated encryption resulting in a
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scheme where there is no delay for authentication. The proposed scheme was applied in an
edge-based architecture.

In this paper, we extend the usage of the TESLA protocol to all the sensor nodes in the
network by relying on the extendable output feature of the sponge functions, proposed by
Bertoni et al. in [18].

3. Preliminaries

First, we provide some background information on the network model and the corre-
sponding attacker model. Next, the required security features are elaborated and a short
description of the cryptographic operations used in our system is given.

3.1. Network Model

We consider a distributed WSAN, consisting of constrained sensors with limited
energy and computational resources. The sensors can change position in the network (e.g.,
animal monitoring) or can stay at fixed positions (e.g., pollution monitoring at different
predefined locations). We assume that changes in the network are limited. Nodes can be
added, but if nodes are removed, then the memory on it should also be erased.

The gateway sends a broadcast message to all the sensor nodes in the network, which
can reply by sending a message back to the gateway. Both communications can be done via
a multihop approach. Each of the nodes on the routing path should be able to derive the
content and origin of the message and verify its authenticity and integrity. A representation
of such a network is depicted in Figure 1.

GW

Figure 1. Representation of a WSAN. The orange node represents the gateway of the network. The
other nodes represent sensors or actuators in the network.

3.2. Attacker Model

We make the following assumptions regarding the attack model.

• The attacker is active during the whole process and is able to eavesdrop the messages
sent over the wireless channel. The attacker can actively change, delete, alter, and
replay messages (or parts of it) sent over the channel.

• The gateway is considered trusted and possesses the required protection measures to
resist security attacks. As a minimum, secure storage of key material is guaranteed.

• The security material in the nodes is stored in tamper-proof memory, such that it is
difficult for an attacker to reveal it.

3.3. Security Features

The classical security features of confidentiality, integrity, authentication, and anonymity
together with nonrepudiation are attained at group level. This means that all nodes in the
network are able to send messages satisfying these features as long as no network node is
malicious. Compared with other schemes, we make it possible to address these features
among all nodes, without storage of a shared pairwise key upfront or submission of random
values to derive session keys during the actual operation.
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The strong point in our scheme is that the security features of authentication, integrity,
and nonrepudiation also apply on an individual level and are maintained as long as at most
one of the nodes gets compromised. In schemes based on group keys, a malicious node can
take the identity of another node of the group, which is not possible in our scheme. Our
scheme protects against impersonation and man-in-the-middle attacks as long as at most
one node is hijacked.

In case more than one node is compromised, the authentication and integrity of the
gateway is still valid but they are impacted for a limited number of nodes, which vary in
the different timeslots. Therefore, it also enables fast fault isolation and effective intrusion
detection and avoidance.

3.4. Cryptographic Operations

Taking into account the limited computational resources and the minimum lifetime
of three years to be guaranteed by the sensors, the overhead created due to ensuring
the required security features should be as low as possible. Therefore, the cryptographic
operations used in the proposed scheme are limited to xor operations, encryptions, and
hash operations.

We denote the xor operation by ⊕, the symmetric key encryption by means of a
common shared key K by EK() and corresponding decryption by DK(). We assume the
usage of an Authenticated Encryption (AE) mode such as AES-GCM or AES-CCM.

The hash operation used in our scheme is based on the SHA3 standard SHAKE256(M,d),
which is an algorithm providing an output with variable length d and providing a mini-
mum security strength of min(d/2, 256)-bit against collision attacks and min(d, 256)-bit
against preimage and second preimage attacks. We denote by Hi(M) = (M1, M2, ..., Mi)
the SHAKE256(M,d) algorithm working on message M providing i output blocks, where
the total length of all blocks in the output vector equals to d, |M1|+ |M2|+ . . . + |Mi| = d.

4. Proposed Scheme

The scheme consists of three different entities: nodes, gateway, and application server. We
consider two different phases: key initialization and actual communication and authentication.

4.1. Key Initialization

Suppose there are 2n − 1 nodes with identities IDi = i ∈ {1, ..., 2n − 1} in the WSAN.
The gateway chooses two random keys K0 and K0

e and computes a hash chain of both
with length t and a corresponding output consisting of n + 1 blocks and 1 block using the
hash functions Hn+1 and H1, respectively. The hash chain of key K0 will be mainly used
to derive material for authentication purposes and the hash chain of key K0

e will define
the encryption keys in the process. There are n independent components needed in the
hash chain of K0 in order to be able to define unique authentication material for each of the
2n − 1 nodes in the network.

j = 1 : K1 = Hn+1(K0) = (K1
0, K1

1, K1
2, . . . , K1

n), K1
e = H1(K0

e )

j = 2 : K2 = Hn+1(K1
0) = (K2

0, K2
1, K2

2, . . . , K2
n), K2

e = H1(K1
e )

j = 3 : K3 = Hn+1(K2
0) = (K3

0, K3
1, K3

2, . . . , K3
n), K3

e = H1(K2
e )

...

j = t : Kt = Hn+1(Kt−1
0 ) = (Kt

0, Kt
1, Kt

2, . . . , Kt
n), Kt

e = H1(Kt−1
e )

Note that for all j ∈ {1, ..., t}, the variables K j
0, K j

e consist of 256 bits and K j
s of 128 bits for

all s ∈ {1, ..., n}. We also denote the first 128 bits of the variables K j
0 and K j

e by K j
0 and K j

e.
Each node i receives t + 1, Kt+1

0 = H1(Kt
0) installed, corresponding with the root of

the first hash chain.
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Define for each node i and timeslot j ∈ {1, ..., t} the parameter b, which equals to

b = (i + j (mod 2n − 1)) + 1 if i + j 6= 2n − 1

= 1 if i + j = 2n − 1

Denote the binary representation of b by b = (b1, ..., bn). Then, the node i also obtains
for each timeslot j ∈ {1, ..., t} the following tuple Kij = (K j1

i , K j2
i ) installed:

K j1
i = ⊕n

s=1bsK j
s

K j2
i = E

K j+1
0 ⊕K j1

i
(K j

e)

Note that the first variable in the tuple K j1
i corresponds with a linear combination,

defined by b, of the hash outputs of K j−1
0 . Since b varies for each node i and timestamp j,

the overall complexity of the linear combinations can be considered similar for all nodes.
The second variable K j2

i enables deriving the first part of the hash chain of K0
e .

The key K j1
i is used in the later protocol to firstly verify the authentication of the hash

chain of the gateway and to secondly authenticate its own message, which can be publicly
verified by the other nodes in the next timestamp. The key K j2

i enables the derivation of the
decryption key of the encrypted message coming from the gateway, which is also used as
the group encryption key by the nodes in the same timestamp. Note that this key K j

e can
only be defined after reception of the value K j+1

0 , as this is required to decrypt K j2
i .

The gateway installs the hash chain K0, K1
0, ..., Kt+1

0 and K0
e , K1

e , ..., Kt
e. We consider

nodes and gateway synchronized, which is also needed for several well-known medium
access and radio duty cycling (RDC) protocols such as IEEE 802.15.4e Time Slotted Channel
Hopping (TSCH).

Example 1. The construction of the key material for n = 2, t = 4 and node ID1 (i = 1) is as
follows.

Construction of key material, starting from two root keys K0 and K0
e .

j = 1 : K1 = H3(K0) = (K1
0, K1

1, K1
2), K1

e = H1(K0
e )

j = 2 : K2 = H3(K1
0) = (K2

0, K2
1, K2

2), K2
e = H1(K1

e )

j = 3 : K3 = H3(K2
0) = (K3

0, K3
1, K3

2), K3
e = H1(K2

e )

j = 4 : K4 = H3(K3
0) = (K4

0, K4
1, K4

2), K4
e = H1(K3

e )

For ID1, the following material is stored.

j = 1(b=3) : K11
1 = K1

1 ⊕ K1
2, K12

1 = E
K2

0⊕K11
1
(K1

e )

j = 2(b=1) : K21
1 = K2

1, K22
1 = E

K3
0⊕K21

1
(K2

e )

j = 3(b=2) : K31
1 = K3

2, K32
1 = E

K3
0⊕K31

1
(K3

e )

j = 4(b=3) : K41
1 = K4

1 ⊕ K4
2, K42

1 = E
K4

0⊕K41
1
(K4

e )

j = 5 : K5
0 = H1(K4

0)

4.2. Actual Communication and Authentication Process

In each timeslot j, the gateway starts with a broadcast message and the nodes react to
this message. Both steps are explained in more detail below.
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4.2.1. Broadcast Message of Gateway

Denote by Mj the data to be broadcasted by the gateway at timeslot j ∈ {t− 1, ..., 1}
with decreasing timeslots. The message Mj can include different types of information.
For instance, it can contain the list of nodes from whom data are (not) received, the list
of malicious nodes, and data on the clock to enable synchronization. For each timeslot
j ∈ {t− 1, ..., 1}, the following information is broadcasted:

j, K j+1
0 , E

K j
e
(Mj, H1(Mj, K j

0))

4.2.2. Reaction of Nodes

Upon arrival of this message, the sensors in the network perform the following actions.

Step 1: First, the nodes are able to verify the authenticity of the gateway, but not the real
authenticity of the received broadcast message of the gateway.

In order to do this, the authenticity of the received value K j+1
0 is verified by computing

the hash of it. In case j = t− 1, this corresponds with the prestored value. If j < t− 1,
comparison is made with the previously sent value and the prestored key material of
slot j.

Step 2: Next, by construction of the key material stored in each node and the received
value K j+1

0 , the node is able to extract K j
e = D

K j+1
0 ⊕K j1

i
(K j2

i ) and decrypt the last part

of the broadcast message.

This key is also used to send, in the timeslot j, their own data Mj
i in the same way, by

encoding it in the following format:

j, E
K j

e
(i, Mj

i , H1(Mj
i , K(j+1)1

i ))

Note that using the same key material, multiple messages can be sent by the nodes
during this timeslot. An enumeration of the order can be included in the message.
The number of messages that can be received in each slot depends on the receivers’
buffer because messages are tentatively accepted based on the validation of the first
part of the message and completely accepted on the next slot if the authentication tag
is correct.

Step 3: In the same timeslot, the node is able to extract the received message Mj
r of all of

its children or its neighbors (depending on the routing protocol) with identity r using
the same decryption key K j

e. Again, this is an authenticity check at the group level.
To enable it at the node level, the messages need to be stored such that they can be
verified in the next timeslot.

The sensors also store the broadcast message (j, Mj, H1(Mj, K j
0), K j+1

0 ) for further
verification in the next timeslot.

Step 4: Finally, the nodes can start verifying the individual authenticity of the messages
stored from the previous timeslot j + 1 coming from the gateway and the children or
neighboring nodes using the received value K j+1

0 .

In timeslot j, the gateway is also collecting all the messages from the nodes and is
able to check the validity of the messages at the node level as the gateway possesses the
required security material.
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Example 2. The actual communication and authentication process for node ID1 in the case n = 2
at timeslot j = 2 consists of the following steps, based on the key material as described in Example 1.

Step 0 : Gateway sends: 2, K3
0, E

K2
e
(M2, H1(M2, K2

0))

Step 1 : Node: H3(K3
0) = (K4

0, K4
1, K4

2), and verifies K4
0, K41

1

Step 2 : Node: K2
e = D

K3
0⊕K21

1
(K22

1 ),

D
K2

e
(M2, H1(M2, K2

0)), E
K2

e
(2, M2

1, H1(M2
1, K31

1 ))

Step 3 : Node decrypts: (E
K2

e
(2, M2

r , H1(M2
r , K31

r )))r

: Node stores: {2; (M2, H1(M2, K2
0)), (M2

r , H1(M2
r , K31

r ))r}
Step 4 : Node checks: {3; M3, H1(M3, K3

0)), (M3
r , H1(M3

r , K41
r ))r}

4.2.3. Addition/Removal of Nodes

Corresponding with the hash function Hn+1, there is security material for 2n− 1 nodes.
As long as there are less than 2n − 1 nodes in the field, additional nodes can still securely
join the network by storing the security material in the node.

In case a node needs to be removed, the memory on it should be completely erased as
a malicious insider would be able to break the confidentiality and the anonymity of the
consecutive communication (cf. Theorem 2).

We have assumed in the attacker model that the keys are stored in tamper-proof
memory; therefore, an attacker will not be able to simply extract the key material of the
node. The problem occurs in the case of so-called insider attacks, where nodes become
malicious. In this situation, the node’s identity should be noted. If more potential malicious
nodes pop up, a list of untrusted inputs should be made, based on the identities of the
malicious nodes (cf. Theorem 3).

5. Security Evaluation

For the security proofs, we consider the usage of building blocks that are semantically
secure under chosen plaintext attacks. As a consequence, the generated ciphertext and
authentication tag can be considered indifferentiable from the ones generated by a random
permutation or random function, respectively. To be more specific, in this proposed scheme,
the selected algorithms SHAKE256(M,d) and AES satisfy this feature.

Theorem 1. The protocol is able to offer confidentiality, integrity, authentication, anonymity, and
nonrepudiation with a minimum security level of 128 bits with the condition that there are no
malicious nodes in the network and the underlying security algorithms are not broken.

Proof. First, we prove the statement from the gateway point of view, where the focus is on
authentication, integrity, and confidentiality. A valid key K j+1

0 in the broadcast message
cannot be constructed by an attacker if the underlying hash algorithm offers protection
against collision and preimage attacks, which has, in the best situation, a probability of 2−128

in the case of the SHAKE256(M,d) protocol. Without knowledge of the value K j
e, which is

impossible to derive without having additional information (such as the trusted nodes)
the broadcast message cannot be decrypted and is thus protected against confidentiality
and integrity with a probability of 2−128, corresponding with a brute force guess of the key.
In addition, due to the security of the building blocks under chosen plaintext attacks, the
generated ciphertexts cannot be differentiated from a random value.

For the trusted nodes, the transmitted message cannot be decrypted by attackers
eavesdropping on the channel as they are encrypted with the same key used by the gateway;
thus, they have a probability of 2−128 to be successful. In addition, the message cannot
be distinguished from a randomly generated value due to the strength of the encryption
algorithm with respect to chosen plaintext attacks. As the message cannot be decrypted,
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the identity remains hidden and, due to the usage of an authenticated encryption mode,
the integrity is also provided. The authentication is offered in the next timeslot as the hash
in the encrypted message can then be validated. Only the node with the correct prestored
information is able to derive this hash.

Theorem 2. The protocol is able to offer integrity, authentication, and nonrepudiation with a
minimum security level of 128 bits in case there is at most one malicious node in the network.

Proof. If there is one malicious node in the network, it is able to derive the encryption
key used to encrypt the messages of the nodes and the gateway and, thus, break the
confidentiality and the anonymity of the messages. However, this node possesses no
further information to break the authenticity of the messages from either the gateway or
the other nodes, since it requires knowledge of prestored information to derive K j1

i , which
is only available in the other nodes and gateway due to the unique construction of b on
which K j1

i is computed. Due to the strength of the hash function with respect to preimage
attacks, it is impossible to find a collision on the hash function.

Theorem 3. The protocol is not able to offer integrity, authentication, and nonrepudiation with a
minimum security level of 128 bits in at most 2m

2n−1 % of nodes per timeslot in the case where there
are m malicious nodes collaborating in the network.

Proof. If there are m malicious nodes collaborating in the network, they are able to construct
the security material of all nodes with identity i for which b = (i + j mod (2n − 1)) + 1
can be constructed as a linear combination of the values mi + j mod (2n − 1)) + 1, with
mi being the identities of the malicious nodes. In total, for each timeslot, there are at most
2m −m− 1 other nodes besides the malicious nodes involved. Once the security material
is revealed, the security features of these nodes are not addressed anymore.

However, note that due to the construction of the key material, which is divided in
a circular way, the infected 2m − m− 1 nodes will vary over the different and indepen-
dent timeslots. Due to the nonrepudiation feature, the source of the attack can be easily
retrieved.

With respect to the resistance against Denial of Service (DoS) attacks, we notice that it
is resistant as long as the nodes are not malicious. Following the attacker model (second
point), the gateway is considered to be trusted, so it is impossible that K j+1

0 is leaked by

assumption. It is also impossible to derive another value of K j+1
0 for an outsider, which

might be valid (because of Theorem 1). Moreover, there are two checks that need to be
done, the one on K j+1

0 and K(j+1),1
1 . Even in the extremely unlikely case the attacker knows

the value K j+1
0 , it should also know the exact value of K j

e since the nodes can already do the

decryption; if it is useless, it may assume that the message is invalid. If K j
e is leaked, which

is due to the strength of the encryption algorithm only possible by means of exhaustive
search, a DoS attack becomes possible. Therefore, malicious insider nodes can still overload
the network, but this is a problem that is very difficult to overcome.

6. Performance Evaluation
6.1. Computational Cost

We focus on the side of the nodes in the network and will determine the computational
efforts for each of the four steps to be performed as the reaction of the nodes on reception
of the broadcast message of the gateway (cf. Section 4.2.2). We concentrate here on the
most costly cryptographic operations, these being encryption and hash. The cost for each
of the fours steps is equal to the following:

Step 1: 1 hash operation with input 256 bits and output length 128n + 256 bits.
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Step 2: 1 decryption operation on 128 bit message, 1 decryption operation on a message with
length 256 + |Mj| bits, and 1 encryption on a message with bit length n + 256 + |Mj

i |.

Step 3: nr decryptions of messages with bit length n + 256 + |Mj
i |, where nr is the number

of nodes from whom the node wants to derive the message (neighbors, children in
routing scheme) and verify the authenticity.

Step 4: 1 hash operation on a message with length 256 + |Mj
i |, output 256 bits; nr hash

operations on messages with input a message with length 256 + |Mj
i | bits, output 256

bits.

As a proof of concept, we implemented our protocol on a constrained device, the
Zolertia RE-Mote development board, which contains a CC2538 microcontroller using
the ARM Cortex-M3 architecture. The device possesses 512 kB flash memory and has
32 kB RAM.

The reason why we only used this board for our measurements is because the be-
havior of the cryptographic primitives used is the same for the different ARM Cortex-M
architectures, as shown for example in [19]. Timing measurements are made using the Data
Watchpoint and Trace (DWT) unit of the microcontroller. This unit contains a monotonically
increasing counter, which increases at the same frequency as the core of the microcontroller.
The error on the measurements is, thus, negligible.

Figure 2 shows the time it takes for an individual node to perform the required security
actions in case it has to check nr neighboring nodes. As a consequence, we can conclude
that it takes less than 0.18 s if every node has less than 5 neighboring nodes to verify, while
it takes less than 6 s if every node has to check the input of 250 neighboring nodes. As a
consequence, this performance shows that the protocol is feasible for realistic settings.
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Figure 2. Time required for a Zolertia RE-Mote to perform the required security actions as a function
of the number of neighboring nodes.

6.2. Communication Cost

Denote the average length of the message Mj, Mj
i by |M|. During each timeslot, the

node receives a message of length (nr + 1) log2 t + (2 + nr) · 256 + nr · n + (nr + 1)|M|.
The node sends, during each timeslot, its own message of length log2 t + n + |M|+ 256
and forwards the message of its nr children of the same length. There are no additional
intermediate messages needed in the protocol to define separate session keys. Figure 3
shows the total number of sent and received bytes in case the length of the transmitted
message of all nodes equals 32 bytes for a varying number of neighboring nodes. If a node
has less than 5 neighboring nodes, 229 bytes will be sent and 445 bytes received over the
channel. This demonstrates again that the overhead is reasonable for realistic scenarios.



Sensors 2022, 22, 1403 10 of 11

0 50 100 150 200 250
Number of nodes

0

10

20

To
ta

ld
at

a
[b

yt
e]

×103

Sending
Receiving

Figure 3. Amount of data sent and received during communication as a function of the number of
neighboring nodes. Here, we assume the length of the transmitted messages to be equal to 32 bytes.

6.3. Storage Cost

The storage cost is an inherent issue of the TESLA protocol. In order to still show
the feasibility of our approach, we now provide a concrete example. The storage cost on
each node mainly depends on the length of the hash chain and, thus, also the number of
timeslots t in which authenticated messages can be sent. Since there is no relation between
the individual values, there is no smart way to optimize the storage as can be typically
done for a hash chain. Therefore, the storage size is dominated by 8t bytes. Considering a
situation of 12 timeslots a day, corresponding with one every 2 h, the storage area requires
384 bytes per day or 140 kB per year, and thus, 420 kB for 3 years, which is feasible on a
Zolertia RE-Mote given the fact that it contains 512 kB of flash memory.

7. Conclusions and Future Work

This paper proposes an effective and highly efficient scheme to enable broadcast
authentication in a distributed wireless sensor network containing constrained devices. In
particular, it represents the first symmetric-key-based solution to address authentication
and nonrepudiation at the node level without separate key agreement sessions among
the communicating nodes. Moreover, besides authentication and nonrepudiation, the
proposed protocol is also able to offer confidentiality and anonymity without the presence
of malicious nodes. Even with at most one malicious node, authentication and nonre-
pudiation still remain valid. The impact is also limited when there are more malicious
nodes collaborating.

The proposed scheme is constructed by means of a multivector hash chain shared
among the different nodes in the network. The scheme perfectly fits for applications
enabling low-cost sensing and actuating, where trust and fault isolation are essential.

Due to the underlying construction of a hash chain relying on timeslotted commu-
nication, the scheme also possesses some inherent issues. First, while confidentiality and
group-based authentication are obtained in the same timeslot, the actual node-based au-
thentication can only be performed in the next timeslot. However, we believe that this is an
acceptable trade-off between security and efficiency. Second, as there is no inherent struc-
ture in the key chains to be stored at the different nodes, the storage cost is proportional to
the number of timeslots to which security can be offered. However, we have shown that
the security lifetime for a popular lightweight node is still realistic.

Finally, we need to make sure that the memory of the nodes leaving the network is
erased in order to avoid protection against collaboration of inside malicious nodes; thus,
applications relying on limited changes in the network topology are more suitable.

In the future, from a theoretical point of view, we will investigate how patterns among
malicious nodes evolve through the different noninfected nodes over the different timeslots.
From a practical point of view, we will set-up a real application—e.g., for CO2 monitoring
in a building—and study the impact of different network parameters on the efficiency of
the scheme.
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