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Abstract: It is challenging for endoscopists to accurately detect esophageal lesions during gastroin-
testinal endoscopic screening due to visual similarities among different lesions in terms of shape, size,
and texture among patients. Additionally, endoscopists are busy fighting esophageal lesions every
day, hence the need to develop a computer-aided diagnostic tool to classify and segment the lesions
at endoscopic images to reduce their burden. Therefore, we propose a multi-task classification and
segmentation (MTCS) model, including the Esophageal Lesions Classification Network (ELCNet)
and Esophageal Lesions Segmentation Network (ELSNet). The ELCNet was used to classify types
of esophageal lesions, and the ELSNet was used to identify lesion regions. We created a dataset by
collecting 805 esophageal images from 255 patients and 198 images from 64 patients to train and
evaluate the MTCS model. Compared with other methods, the proposed not only achieved a high
accuracy (93.43%) in classification but achieved a dice similarity coefficient (77.84%) in segmenta-
tion. In conclusion, the MTCS model can boost the performance of endoscopists in the detection
of esophageal lesions as it can accurately multi-classify and segment the lesions and is a potential
assistant for endoscopists to reduce the risk of oversight.

Keywords: classification; deep learning; esophageal lesions; gastrointestinal endoscopy; multi-task;
segmentation

1. Introduction

Esophageal diseases are one of the most common diseases in humans, resulting in
threatening to human health such as esophageal cancer. In 2020, the number of incidents
ranked tenth in the world, with 604,100 new cases, and the number of deaths ranked
sixth, with 544,076 deaths [1]. When treating cancer, the 5-year survival rate of early
esophageal cancer patients is higher than 90%, and the 5-year survival rate of advanced
esophageal cancer patients is lower than 20% [2]. Therefore, it is important to diagnose
various esophageal lesions quickly and accurately.

Generally, gastrointestinal endoscopic screening has become the typical diagnostic
choice for the evaluation of patients with esophageal diseases. Unfortunately, it is some-
times difficult to accurately distinguish some esophageal lesions, such as normal and
esophagitis, or esophagitis and cancer, based on conventional endoscopic white-light imag-
ing (WLI) because of its lower sensitivity and specificity [3]. Narrow-band imaging (NBI)
is an advanced imaging system that overcomes the drawbacks of WLI, but it extends
examination time and requires experienced endoscopists [4]. Moreover, endoscopists with
less experience are unlikely to be able to differentiate similar esophageal lesions, because of
their visual similarity in terms of shape, size, and texture. Additionally, endoscopists re-
quire to carefully interpret a larger lot of esophageal images one by one to make the correct
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diagnosis every day. Therefore, developing an effective computer-aided diagnostic tool is
of great significance to reduce the burden of endoscopists in analyzing esophageal lesions.

Lesion classification and lesion segmentation are the two basic tasks of computer-aided
diagnostic tools to help endoscopists to formulate reliable diagnosis schemes based on
analyses of classification and segmentation for esophageal lesions. Lesion classification
can help endoscopists quickly distinguish different types of lesions from a large number
of endoscopic images, saving a lot of time. Lesion segmentation can further annotate
the shape, size, and texture of lesions, which is very important for the clinic. Previous
methods of medical lesion classification and segmentation often depended on support
vector machine [5], template matching techniques [6], active contours [7], edge detection [8],
and so on. However, these approaches depend on the utilization of hand-crafted features.
It is difficult to design representative features for different applications, as the features
designed for one type of medical image can only be used for this specific type, but often
fail in other types. Therefore, a general approach to extracting the features is lacking.

With the rapid development of convolutional neural networks in image processing, an
increasing number of deep learning-based methods have been proposed and have achieved
obvious success in different medical image analyses such as diabetes prediction [9,10],
cervical cancer detection [11], and skin disease classification [12]. For esophageal lesions
analyses, a large number of studies have been conducted on the diagnosis of esophageal
diseases by endoscopy based on the deep learning model, which has shown better perfor-
mance than traditional methods [13–15]. For example, Liu et al. [16] used a convolutional
neural network consisting of O-stream and P-stream to classify esophageal cancer and pre-
malignant lesions with 85.83% accuracy and 94.23% sensitivity. Du et al. [17] proposed an
efficient channel attention deep dense convolutional neural network to divide esophageal
lesions into four categories and achieved an accuracy of 90.63%. Wang et al. [18] put
forward a multi-scale context-guided deep network to segment esophageal lesions with
high mean intersection over union. More research about deep learning in esophageal lesion
analysis is summarized in Table 1.

Table 1. Comparison of the methods for esophageal lesion analysis.

Methods Tasks Dataset Image Type Performance

Liu et al. [16] Classification Private Endoscopic image 85.83% accuracy
Du et al. [17] Classification Private Endoscopic image 90.63% accuracy
Liu et al. [19] Classification Private Endoscopic image 89.00% accuracy

Igarashi et al. [20] Classification Private Endoscopic image 96.5% accuracy
Kumagsi et al. [21] Classification Private Endoscopic image 90.90% accuracy

Zhu et al. [22] Classification Private Endoscopic image 89.16% accuracy
Wang et al. [18] Segmentation Public Endoscopic image 74.00% intersection over union

Huang et al. [23] Segmentation Private Computed tomography 72.55% dice similarity coefficient
Chen et al. [24] Segmentation Private Computed tomography 79.00% dice similarity coefficient
Zhou et al. [25] Segmentation Private Computed tomography 84.839% dice similarity coefficient

Yousefi et al. [26] Segmentation Private Computed tomography 79.00% dice similarity coefficient

Although these deep learnings have achieved obvious success in the classification
or segmentation of esophageal lesions, they have a common problem: they are only used
for a single task. The classification and segmentation of esophageal lesions provide com-
prehensive information for endoscopists to fully understand the status of esophageal
lesions and are indispensable for computer-aided diagnostic tools. Hence, we propose a
multi-task classification and segmentation (MTCS) model, incorporating an Esophageal
Lesions Classification Network (ELCNet) and an Esophageal Lesions Segmentation Net-
work (ELSNet), to realize the classification and segmentation of esophageal lesions using
esophageal endoscopic images. The ELCNet was used to classify esophageal lesions into
three categories: cancer, esophagitis, and normal, and when the image is predicted as
esophageal cancer, the ELSNet can locate the lesion area. More importantly, in order to
achieve an accurate diagnosis, especially when there are differences in the size and shape
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of the same type of lesions, it is essential to allow the deep neural network to learn the best
representative features of lesions. However, these professional skills are usually acquired
only by experienced endoscopists who are capable of a detailed examination of the core
features of subtle differences among lesions. Therefore, inspired by [27], we used dilated
convolution to improve the proposed deep learning model by enlarging the receptive
field in convolutional neural networks, thereby allowing the model to extract the most
useful features of the esophageal images when training. The proposed model can assist
endoscopists to diagnose esophageal lesions in an efficient strategy while reducing labor
and misdiagnosis as much as possible.

The rest of this paper is organized as follows. In Section 2, we introduce materials and
methods in detail. Section 3 shows experiments and results. Discussion is presented in
Section 4. Finally, we get the conclusions in Section 5.

2. Materials and Methods
2.1. Training and Validation Sets

This study was conducted at the most representative hospital in Macau, Kiang Wu
Hospital, which is the largest private hospital and has a maximum quantity of cases and
patients of esophageal diseases in Macau. We retrospectively collected 1003 esophageal
images from 319 patients, captured during screening or preoperative examinations in daily
clinical practice between 2016 and 2019. The abnormal esophageal images included lesions
of cancer and esophagitis. All these images were randomly divided into a training set
and a validation set according to a 4:1 ratio. The training set was used to train the MTCS
model and included a total of 805 images from 255 patients, consisting of 233 cancer images,
379 esophagitis images, and 193 normal images. The validation set was an independent
test set used to evaluate the diagnostic performance of the MTCS model, prepared from
64 patients with 57 cancer images, 94 esophagitis images, and 47 normal images. It is
worth mentioning that the training set and validation set were selected from two inde-
pendent groups of patients aged 23 years or older, and the ratio of males to females was
approximately 1:1. The workflow diagram of dataset collection is shown in Figure 1.
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All images in our dataset were captured using conventional endoscopes with standard
WLI and NBI. Standard single-accessory channel endoscopes (GIF-Q240Z, GIF-RQ260Z,
GIF-FQ260Z, GIF-H260Z, GIF-Q260J GIF-H290Z, GIF-HQ290, and GIF-XP290N, Olympus,
Tokyo, Japan) were used in this study. To ensure the correctness of each image in the
datasets, the criteria for identifying either abnormal or normal esophageal images were
confirmed by both the preliminary endoscopy report and pathological results and reviewed
by at least two experienced physicians. All esophageal lesions in the images were then
marked manually by experienced endoscopists who had on average over 10 years of
experience in endoscopy operations.

2.2. Development of the MTCS Model

We proposed a novel MTCS model consisting of ELCNet and ELSNet for the clas-
sification and segmentation of esophageal lesions using esophageal endoscopic images.
Difficulty in distinguishing the representative features among multiple esophageal lesions
may prevent deep learning models from accurately segmenting the lesions, thus it is of
great significance to design a lesion-specific segmentation task after the model has classified
the type of lesions automatically in order so that the first task of the MTCS model was the
multiple classifications of esophagus lesions that separate the images into three categories,
including “cancer”, “esophagitis”, and “normal” using ELCNet, and then the second task
was to perform the segmentation through learning the shared features for a specific lesion
such as cancer using ELSNet. Among them, the dilated convolution was used in the ELSNet
to improve its performance. The diagnostic procedure of the MTCS model is shown in
Figure 2. Finally, we measured the performance of MTCS, and the endoscopists tested it.
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2.2.1. Design of ELCNet and ELSNet

For classification, we proposed the neural network, ELCNet, based on a typical deep
learning VGG-16 model [28]. To improve the training efficiency to be better adapted to
our dataset, we compressed the fully connected layer of the original model to reflect the
scale of our datasets. Therefore, the ELCNet was composed of 13 convolutional layers,
five max-pooling layers, and one fully connected layer. The architecture of the ELCNet is
shown in Figure 3a.

For the segmentation task, we proposed an ELSNet for esophageal lesion segmenta-
tion. The ELSNet was modified with an end-to-end asymmetric structure, in which the
downsampling of the ELSNet was composed of ten convolutional layers and three dilated
convolutional layers, while the upsampling of the ELSNet was implemented by bilinear
interpolation to ensure that the output resolution was the same as that of the input image
and retained better features in the output image. More importantly, we designed a dilated
convolution method [29] in ELSNet. It has an advantage in extracting more useful features
and increasing the resolution of the image, thereby it can further improve the performance
of segmentation. The dilated convolution was defined as follows:

y(m, n) =
M

∑
i=1

N

∑
j=1

x(m + r× i, n + r× j)w(i, j) (1)
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where y(m, n) is the output, x(m, n) is the input, w(i, j) is the filter with the M length and
N width, and r is the dilation rate. It should be noted when r is equal to 1, the dilated
convolution is the same as normal convolution. In our work, considering the trade-off
between model segmentation performance and computational complexity, we set the r rate
size to 2. The architecture of the ELSNet is shown in Figure 3b.
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No matter what ELCNet or ELSNet, the cross-entropy loss function is used as the loss
function. It is defined by:

Lloss = −
1
K

K

∑
k=1

(gk log(pk) + (1− gk) log(1− pk)) (2)

where K is the number of datasets, g is the truth label, and p is the output of the ELCNet
or ELSNet.

2.2.2. Evaluation Metric of ELCNet and ELSNet

To quantitatively analyze the performance of the proposed models, we employed the
following four different metrics.

First, the main outcome measures were diagnostic accuracy, sensitivity, specificity,
positive predictive value (PPV), negative predictive value (NPV), and computational com-
plexity. We used these measures to estimate the diagnostic performance of the MTCS model
with the validation set and to evaluate how endoscopists can improve their performance
when using the MTCS model. They are defined as:

Accuracy =

C
∑

c=1
(TPc + TNc)

C
∑

c=1
(TPc + TNc + FPc + FNc)

× 100% (3)
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Sensitivity =
1
C

C

∑
c=1

TPc

TPc + FNc
× 100% (4)

Specificity =
1
C

C

∑
c=1

TNc

TNc + FPc
× 100% (5)

PPV =
1
C

C

∑
c=1

TPc

TPc + FPc
× 100% (6)

NPV =
1
C

C

∑
c=1

TNc

TNc + FNc
× 100% (7)

where C is the number of types of esophageal lesions. True positives (TP) means the
number of positive samples is correctly classified. True negatives (TN) means the number
of negative samples is correctly classified. False positives (FP) means the number of
negative samples is wrongly classified as positive. False negatives (FN) means the number
of positive samples is wrongly classified as negative.

Second, we used the receiver operating characteristic (ROC) curve to show the diag-
nostic performance of classification. ROC curves are created by plotting the proportion
of the true-positive rate against the proportion of the false-positive rate by varying the
predictive probability threshold. The true-positive rate is equal to sensitivity, and the
false-negative rate can be obtained by 1-specificity. A larger area under the curve (AUC)
indicates better diagnostic performance.

Third, we used the confusion matrix to analyze the classification performance on each
category of esophageal lesion on ELCNet. Each column of the confusion matrix indicates
the predicted categories, and the total number of each column represents the number of
images predicted to be that type; each row indicates the true categories of the images, and
the total number of images in each row represents the number of images of that type. The
value in each column indicates the number of real images predicted to be of that type.

Finally, a dice similarity coefficient (DSC) and an intersection over union (IoU) were
used to evaluate the image segmentation performance. The DSC represents the degree of
overlap between the ground truth region and segmented region, and the IoU represents
the ratio of the intersection and union of the ground truth region and segmented region.
The larger they are, the better the segmentation performance. They are defined as:

DSC =
2|X ∩Y|
|X|+|Y| × 100% (8)

IoU =
|X ∩Y|
|X ∪Y| × 100% (9)

where X represents the ground truth, which is masked by endoscopists, and Y is the
segmentation region of the proposed model.

3. Experiments and Results

In order to improve the performance of the MTCS model using a smaller dataset, we
proposed a pre-trained VGG-16 model on ImageNet for our networks, which adopted an
SGD optimizer with a batch size of 8, a learning rate of 1×104, and the largest epoch was
100. Moreover, we also used data augmentation to reduce the risk of overfitting, including
crop, flip, rotation, and color jitter so that the number of training images was expanded to
five times the original training dataset. Other compared methods set the same parameters
as the proposed model, and their pre-trained model is also based on ImageNet if using
the pre-trained model. All methods used the same set of images we collected to get the
experimental results.

All methods were implemented using the PyTorch platform (1.6.0) on the environment:
Ubuntu 16.04.5, Python 3.7, and GTX1080TI.
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3.1. Comparison of the MTCS Model and Other Methods

When using the validation set to evaluate the classification performance of the MTCS
model, we compared the proposed model with other methods, including VGG-16 used by
Liu et al. [19], AlexNet used by Igarashi et al. [20], GoogLeNet used by Kumagsi et al. [21],
ResNet-50 used by Zhu et al. [22], and ECA-Net proposed by Wang et al. [30]. We firstly
calculated accuracy, sensitivity, specificity, PPV, NPV, and computational complexity for all
methods. As can be observed from Table 2 the classification performance of the ELCNet
outperformed other methods on accuracy (93.43%), sensitivity (92.82%), specificity (96.20%),
PPV (94.25%), and NPV (96.62%). These values were higher than the lowest indices
(Zhu et al. [22]) by 3.87%, 8.81%, 4.72%, 9.57%, and 4.87% and more than the suboptimal
indices (Liu et al. [19]) by 1.51%, 4.34%, 2.74%, 6.06%, and 3.18%. The parameter amount of
the ELCNet was only 14.79 M, which was slightly more than that of Kumagsi et al. [21],
and less than that of other methods.

Table 2. Comparison of the classification performance of our model and other methods.

Methods Pre-Trained Accuracy Sensitivity Specificity PPV NPV Parameters FLOPs

Liu et al. [19] yes 91.92% 88.48% 93.46% 88.19% 93.44% 134.27 M 123.84 G
Igarashi et al. [20] yes 91.59% 87.06% 92.92% 88.02% 93.26% 57.02 M 5.69 G
Kumagai et al. [21] no 91.92% 88.71% 93.54% 87.89% 93.39% 6.30 M 209.45 G

Zhu et al. [22] yes 89.56% 84.01% 91.48% 84.68% 91.75% 23.51 M 32.87 G
Wang et al. [30] no 90.91% 86.00% 92.45% 86.87% 92.71% 21.29 M 29.38 G

Our yes 93.43% 92.82% 96.20% 94.25% 96.62% 14.79 M 122.88 G

As can be seen from Figure 4 the ROC curve of the ELCNet was a better performance
than that of other methods. Specifically, the AUC of the ELCNet was 0.0774 higher than
the lowest value (Kumagai et al. [21]) and more than the suboptimal value (Liu et al. [19])
by 0.0223.
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In addition, the confusion matrix of ELCNet, as shown in Figure 5, intuitively indicated
that most esophageal lesions (cancer: 52/57, esophagitis: 90/94, and normal: 43/47) could
be classified into correct categories of lesions by ELCNet.
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When comparing the segmentation performance of the MTCS model with other
conventional symmetric networks, including U-Net proposed by Ronneberger et al. [31],
Attention U-Net proposed by Oktay et al. [32], CE-Net proposed by Gu et al. [33], HRNet
proposed by Wang et al. [34], and ColonSegNet proposed by Jha et al. [35] on the validation
set. Figure 6 shows that the marked area of different cancer types can achieve satisfactory
results, and the ELSNet achieved better results than other methods in cancer segmentation.
In our study, the cancer type mainly includes esophageal squamous cell carcinoma and
esophageal adenocarcinoma.
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We can see from Table 3 that the ELSNet achieved the highest values on DSC (77.84%)
and IoU (65.63%) and surpassed that of Gu et al. [33] by 2.02% and 3.50%, respectively.
Moreover, the parameter amount of the proposed method was only 9.18 M, which was
4.17 M more than that of Jha et al. [35], and less than half of that of other methods.

Table 3. Comparison of the segmentation performance of our model and other methods.

Methods Pre-Trained DSC IoU Parameters FLOPs

Ronneberger et al. [31] No 75.11% 61.84% 31.04 M 875.49 G
Oktay et al. [32] No 75.78% 62.34% 34.88 M 1.065 T

Gu et al. [33] Yes 75.82% 62.13% 29.00 M 142.60 G
Wang et al. [34] No 74.31% 60.96% 29.53 M 362.60 G

Jha et al. [35] No 75.31% 61.71% 5.01 M 993.96 G
Our Yes 77.84% 65.63% 9.18 M 317.38 G

Finally, we calculated the training time of the proposed MTCS. The average training
time of each epoch of ELCNet was 10.06 s, the average training time of each epoch of
ELSNet was 13.25 s, and each network performed 100 epochs, respectively. The training
time of ELCNet and ELSNet was 16.77 min and 22.08 min, respectively. Therefore, the
training time of the MTCS was 38.85 min by adding the two subnetwork training times.

3.2. Comparison between the MTCS Model and Endoscopists

The endoscopists who participated in the testing included senior (endoscopy expe-
rience > 10 years) and junior (endoscopy experience < 10 years) endoscopists and the
ratio was approximately 1:1. Before participating in the test, these endoscopists were not
involved in the labeling of the lesions and had no access to the validation set. Accurate
classification of the categories of esophageal diseases is essential for performing a lesion-
specific segmentation. The results of the classification performance of the MTCS model
compared with the endoscopists are shown in Table 4. The accuracy, sensitivity, specificity,
PPV, and NPV of the MTCS model were higher than those of the endoscopists. Compared
with the performance of the endoscopists, the accuracy, sensitivity, specificity, PPV, and
NPV increased by 9.59%, 13.92%, 8.30%, 17.84%, and 9.17%, respectively.

Table 4. Diagnostic performance of the MTCS model and the endoscopists.

Performance Accuracy Sensitivity Specificity PPV NPV

Our 93.43% 92.82% 96.20% 94.25% 96.62%
Endoscopists 83.84% 78.90% 87.90% 76.41% 87.45%

Based on these favorable results, the MTCS model not only had a good diagnostic
performance for diagnosing esophageal lesions but also was relatively lightweight and
consumed fewer computing resources. Hence, the proposed model could help endoscopists
minimize errors without questioning their diagnostic abilities. Additionally, the final
diagnosis always has to be confirmed by them.

3.3. Ablation Studies

In this subsection, we analyzed the contribution of using a pre-trained model and
dilated convolution on the performance of the proposed model. Table 5 shows the per-
formance of the ELCNet whether to use a pre-trained model. Compared with the model
without the pre-trained model, the accuracy, sensitivity, specificity, PPV, and NPV of the
ELCNet are improved 4.03%, 3.99%, 2.28%, 3.71%, and 2.16%, respectively.
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Table 5. The performance of the ELCNet with and without a pre-trained model.

Pre-Trained Accuracy Sensitivity Specificity PPV NPV Parameters FLOPs

Yes 93.43% 92.82% 96.20% 94.25% 96.62% 14.79 M 122.88 G
No 89.40% 88.83% 93.92% 90.54% 94.46% 14.79 M 122.88 G

Furthermore, as can be observed from Table 6 the performance of the ELSNet is
improved by using a pre-trained model and dilated convolution, boosting 3.28% DSC and
4.89% IoU.

Table 6. The performance of the ELSNet with and without a pre-trained model and dilated convolution.

Pre-Trained Dilated Convolution DSC IoU Parameters FLOPs

Yes Yes 77.84% 65.63% 9.18 M 317.38 G
Yes No 76.14% 62.48% 9.18 M 298.34 G
No No 74.56% 60.74% 9.18 M 298.34 G

4. Discussion

Several methods for screening esophageal lesions have been developed in the past
few decades and are mainly based on endoscopic technology [36–38]. Although advanced
endoscopic equipment has improved the diagnosis of esophageal lesions, only experienced
endoscopists can recognize the subtle differences between different lesions. Therefore, the
overall shortage of well-trained endoscopists is a major problem worldwide [39], causing
them to be busy reading a large number of images every day to filter out the images
with lesions.

To solve this problem, it is necessary to develop a new method by extracting the
features of the images for automatically judging and annotating different esophageal
lesions. Traditional feature extraction methods based on machine learning [40,41] are
usually employed for medical images. However, these methods have the disadvantages
of feature extraction and selection being time-consuming and vary according to different
types [42].

Moreover, earlier deep learning methods for medical image segmentation were mostly
based on image patches. For example, Ciresan et al. [43] presented segment neuronal mem-
branes in microscopy images based on patches and a sliding window strategy. However,
these methods have two main disadvantages: redundant calculations caused by sliding
windows and the inability to learn global features. In recent years, the success of the
fully convolutional network [44] was witnessed, which is an end-to-end network in image
processing, and it was proved that the end-to-end network was a popular neural network
architecture for biomedical image segmentation tasks [23,45,46].

Based on these findings, we proposed a novel MTCS model, which was composed of
two relatively independent subnetworks (ELCNet and ELSNet), to improve the diagnostic
accuracy of endoscopists with the support of the predicted classification on multiple types
of lesions and the suggested segmentation on each specific type of lesion. Specifically, we
reduced the fully connected layers in the ELCNet to improve classification performance and
used the dilated convolution in the ELSNet to increase segmentation performance. Based
on the dataset (cancer, esophagitis, and normal images) we collected, the proposed model
can achieve higher performance in esophageal lesion classification and can completely
annotate the cancer region with a higher DSC and IoU compared with other methods
in esophageal lesion analysis. Since there is currently no publicly available data set on
the esophagus, we cannot compare the MTCS with other methods on other esophagus
datasets, but we believe it can achieve satisfactory performance if other similar esophagus
datasets are composed of cancer, esophagitis, and normal images are available. Therefore,
we succeeded in developing the MTCS model that can classify multiple esophageal lesions
and segment-specific lesions based on standard WLI and NBI. In practical terms, when
endoscopists use the MTCS model to perform assist examinations on the input esophageal
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endoscopic images, the MTCS model will display predicted results such as the type and
lesion region of the input image to the endoscopists and assist them in making the final
diagnosis decision.

According to the needs of tasks in practical applications, we need to combine two
relatively independent subnetworks (ELCNet and ELSNet) in serial order as an MTCS
model. Therefore, for the input esophageal endoscopic image, the proposed MTCS first used
ELCNet to classify it into one of three categories (cancer, esophagitis, and normal) and used
ELSNet to segment lesion regions when the lesion type is predicted to be cancer. Therefore,
the main advantage of the proposed MTCS is that it can achieve better performance
in identifying esophageal lesions from endoscopic images since their subnetworks are
trained separately to reduce feature interference between subnetworks. On the contrary,
the disadvantage is that when the ELC classification is wrong, such as other lesions are
predicted to be cancer or cancer is predicted to be other lesions, the ELS segmentation will
also mis-segment the lesions or miss the diagnosis.

Additionally, there are already existing commercial systems (such as GI Genius,
Medtronic) that are mainly used for the detection of only one lesion (colorectal polyps).
Compared with these commercial systems, the proposed model focuses on classifying and
segmenting esophageal lesions. Furthermore, the segmentation task of the proposed model
can locate the cancer lesion area. It is better than the detection-based methods since it
avoids the problem of inaccurate positioning but high confidence.

Our study has several limitations. First, the sources of our datasets were only from
Macau Kiang Wu Hospital, although it is the most representative hospital in Macau,
the sample size was small. Therefore, we plan to collect esophageal images from more
hospitals and centers in future research and include more endoscopists from more hospitals
and centers to participate in our research. Second, our work only focused on cancer
and esophagitis and did not include other esophageal lesions such as esophageal polyps,
esophageal leiomyoma, and esophageal hernia. These esophageal lesions will be considered
in the future. Third, since the labeling of endoscopic images takes time, we will consider
using limited labeled datasets and a large number of unlabeled datasets to develop a
semi-supervised or self-supervised network.

5. Conclusions

In this paper, we proposed the MTCS model, including ELCNet and ELSNet, to realize
the classification and segmentation for esophageal lesions. To improve our model for
classifying and segmenting multiple lesions, the ELCNet compressed the fully connected
layer to increase the training efficiency, and the dilated convolution was designed to extract
more useful features and increase the resolution of the image in ELSNet. Compared with
other related methods, the proposed model not only distinguished multiple esophageal
lesions (cancer, esophagitis, and normal) with higher accuracy, sensitivity, specificity, PPV,
and NPV on image-level classification but also outputted the shape, size, and texture
of esophageal lesions (cancer) on pixel-level segmentation with higher DSC and IoU.
Additionally, when compared with the endoscopist, these values increased by 9.59%,
13.92%, 8.30%, 17.84%, and 9.17%, respectively. Based on these favorable results, the MTCS
model is an effective and efficient computer-aided diagnostic tool for analyzing multiple
esophageal lesions.

Author Contributions: Conceptualization, S.T., X.Y. and C.-F.C.; Data curation, S.T., I.-C.C. and
H.-H.Y.; Formal analysis, S.T.; Funding acquisition, C.-F.C. and H.-H.Y.; Investigation, X.Y., Z.H. and
T.F.; Methodology, S.T.; Project administration, C.-F.C. and H.-H.Y.; Resources, C.-F.C., I.-C.C. and
H.-H.Y.; Software, S.T.; Supervision, C.-F.C.; Validation, S.T., X.Y., C.-F.C., Z.H. and T.F.; Visualization,
S.T.; Writing—original draft, S.T.; Writing—review and editing, S.T., X.Y. and C.-F.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Science and Technology Development Fund, Macau SAR
(File No. 0023/2018/AFJ).



Sensors 2022, 22, 1492 12 of 13

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki. Ethical review and approval were waived for this study due to the
retrospective nature of the survey, and the personal details of patients in any part of the manuscript
were removed before submission.

Informed Consent Statement: Patient consent was waived due to the retrospective design of this
study, and due to the use of anonymized data that may not be connected to a real person.

Data Availability Statement: The data supporting reported results are available on request from
the corresponding author. The data are not publicly available due to the Macau law for the privacy
of patients.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sung, H.; Ferlay, J.; Siegel, R.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN

estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

2. Rice, T.W.; Ishwaran, H.; Hofstetter, W.; Kelsen, D.; Apperson-Hansen, C.; Blackstone, E. Recommendations for pathologic staging
(pTNM) of cancer of the esophagus and esophagogastric junction for the 8th edition AJCC/UICC staging manuals. Dis Esophagus
2016, 29, 897–905. [CrossRef]

3. Ezoe, Y.; Muto, M.; Uedo, N.; Doyama, H.; Yao, K.; Oda, I.; Kaneko, K.; Kawahara, Y.; Yokoi, C.; Sugiura, Y.; et al. Magnifying nar-
rowband imaging is more accurate than conventional white-light imaging in diagnosis of gastric mucosal cancer. Gastroenterology
2011, 141, 2017–2025.e3. [CrossRef] [PubMed]

4. Barbeiro, S.; Libânio, D.; Castro, R.; Dinis-Ribeiro, M.; Pimentel-Nunes, P. Narrow-band imaging: Clinical application in
gastrointestinal endoscopy. GE-Port. J. Gastroenterol. 2018, 26, 40–53. [CrossRef] [PubMed]

5. Liu, D.-Y.; Gan, T.; Rao, N.-N.; Xing, Y.-W.; Zheng, J.; Li, S.; Luo, C.-S.; Zhou, Z.-J.; Wan, Y.-L. Identification of lesion images from
gastrointestinal endoscope based on feature extraction of combinational methods with and without learning process. Med. Image
Anal. 2016, 32, 281–294. [CrossRef] [PubMed]

6. Lee, Y.; Hara, T.; Fujita, H.; Itoh, S.; Ishigaki, T. Automated detection of pulmonary nodules in helical CT images based on an
improved template-matching technique. IEEE Trans. Med. Imaging 2001, 20, 595–604. [CrossRef]

7. Antonia, M.; Georgieva, V. Spleen segmentation in MRI sequence images using template matching and active contours. Procedia
Comput. Sci. 2018, 131, 15–22.

8. Li, C.; Wang, X.; Eberl, S.; Fulham, M.; Yin, Y.; Chen, J.; Feng, D.D. A likelihood and local constraint level set model for liver
tumor segmentation from CT volumes. IEEE Trans. Biomed. Eng. 2013, 60, 2967–2977. [CrossRef]

9. Ijaz, M.F.; Alfian, G.; Syafrudin, M.; Rhee, J. Hybrid prediction model for type 2 diabetes and hypertension using DBSCAN-based
outlier detection, synthetic minority over sampling technique (SMOTE), and random forest. Appl. Sci. 2018, 8, 1325. [CrossRef]

10. Alfian, G.; Syafrudin, M.; Ijaz, M.F.; Syaekhoni, M.A.; Fitriyani, N.L.; Rhee, J. A personalized healthcare monitoring system for
diabetic patients by utilizing BLE-based sensors and real-time data processing. Sensors 2018, 18, 2183. [CrossRef]

11. Ijaz, M.F.; Attique, M.; Son, Y. Data-driven cervical cancer prediction model with outlier detection and over-sampling methods.
Sensors 2020, 50, 2809. [CrossRef] [PubMed]

12. Srinivasu, P.N.; SivaSai, J.G.; Ijaz, M.F.; Bhoi, A.K.; Kim, W.; Kang, J.J. Classification of skin disease using deep learning neural
networks with MobileNet V2 and LSTM. Sensors 2021, 21, 2852. [CrossRef] [PubMed]

13. Horie, Y.; Yoshio, T.; Aoyama, K.; Yoshimizu, S.; Horiuchi, Y.; Ishiyama, A.; Hirasawa, T.; Tsuchida, T.; Ozawa, T.; Ishihara, S.; et al.
Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointest. Endosc.
2019, 89, 25–32. [CrossRef] [PubMed]

14. Zhao, Y.-Y.; Xue, D.-X.; Wang, Y.-L.; Zhang, R.; Sun, B.; Cai, Y.-P.; Feng, H.; Cai, Y.; Xu, J.-M. Computer-assisted diagnosis of early
esophageal squamous cell carcinoma using narrow-band imaging magnifying endoscopy. Endoscopy 2019, 51, 333–341. [CrossRef]

15. Guo, L.; Xiao, X.; Wu, C.; Zeng, X.; Zhang, Y.; Du, J.; Bai, S.; Xie, J.; Zhang, Z.; Li, Y.; et al. Real-time automated diagnosis of
precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos). Gastrointest.
Endosc. 2019, 91, 41–51. [CrossRef]

16. Liu, G.; Hua, J.; Wu, Z.; Meng, T.; Sun, M.; Huang, P.; He, X.; Sun, W.; Li, X.; Chen, Y. Automatic classification of esophageal
lesions in endoscopic images using a convolutional neural network. Ann. Transl. Med. 2020, 8, 486. [CrossRef]

17. Du, W.; Rao, N.; Dong, C.; Wang, Y.; Hu, D.; Zhu, L.; Zeng, B.; Gan, T. Automatic classification of esophageal disease in
gas-troscopic images using an efficient channel attention deep dense convolutional neural network. Biomed. Opt. Express 2021, 12,
3066–3081. [CrossRef]

18. Wang, S.; Cong, Y.; Zhu, H.; Chen, X.; Qu, L.; Fan, H.; Zhang, Q.; Liu, M. Multi-scale context-guided deep network for automated
lesion segmentation with endoscopy images of gastrointestinal tract. IEEE J. Biomed. Health Inform. 2021, 25, 514–525. [CrossRef]

19. Liu, X.; Wang, C.; Bai, J.; Liao, G. Fine-tuning pre-trained convolutional neural networks for gastric precancerous disease
classification on magnification narrow-band imaging images. Neurocomputing 2020, 392, 253–267. [CrossRef]

http://doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/33538338
http://doi.org/10.1111/dote.12533
http://doi.org/10.1053/j.gastro.2011.08.007
http://www.ncbi.nlm.nih.gov/pubmed/21856268
http://doi.org/10.1159/000487470
http://www.ncbi.nlm.nih.gov/pubmed/30675503
http://doi.org/10.1016/j.media.2016.04.007
http://www.ncbi.nlm.nih.gov/pubmed/27236223
http://doi.org/10.1109/42.932744
http://doi.org/10.1109/tbme.2013.2267212
http://doi.org/10.3390/app8081325
http://doi.org/10.3390/s18072183
http://doi.org/10.3390/s20102809
http://www.ncbi.nlm.nih.gov/pubmed/32429090
http://doi.org/10.3390/s21082852
http://www.ncbi.nlm.nih.gov/pubmed/33919583
http://doi.org/10.1016/j.gie.2018.07.037
http://www.ncbi.nlm.nih.gov/pubmed/30120958
http://doi.org/10.1055/a-0756-8754
http://doi.org/10.1016/j.gie.2019.08.018
http://doi.org/10.21037/atm.2020.03.24
http://doi.org/10.1364/BOE.420935
http://doi.org/10.1109/JBHI.2020.2997760
http://doi.org/10.1016/j.neucom.2018.10.100


Sensors 2022, 22, 1492 13 of 13

20. Igarashi, S.; Sasaki, Y.; Mikami, T.; Sakuraba, H.; Fukuda, S. Anatomical classification of upper gastrointestinal organs under
various image capture conditions using AlexNet. Comput. Biol. Med. 2020, 124, 103950. [CrossRef]

21. Kumagai, Y.; Takubo, K.; Kawada, K.; Aoyama, K.; Endo, Y.; Ozawa, T.; Hirasawa, T.; Yoshio, T.; Ishihara, S.; Fujishiro, M.; et al.
Diagnosis using deep-learning artificial intelligence based on the endocytoscopic observation of the esophagus. Esophagus 2019,
16, 180–187. [CrossRef] [PubMed]

22. Zhu, Y.; Wang, Q.-C.; Xu, M.-D.; Zhang, Z.; Cheng, J.; Zhong, Y.-S.; Zhang, Y.-Q.; Chen, W.-F.; Yao, L.-Q.; Zhou, P.-H.; et al.
Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional
endoscopy. Gastrointest. Endosc. 2019, 89, 806–815.e1. [CrossRef] [PubMed]

23. Huang, G.; Zhu, J.; Li, J.; Wang, Z.; Cheng, L.; Liu, L.; Li, H.; Zhou, J. Channel-attention U-net: Channel attention mechanism for
semantic segmentation of esophagus and esophageal cancer. IEEE Access 2020, 8, 122798–122810. [CrossRef]

24. Chen, S.; Yang, H.; Fu, J.; Mei, W.; Ren, S.; Liu, Y.; Zhu, Z.; Liu, L.; Li, H.; Chen, H. U-net plus: Deep semantic segmentation for
esophagus and esophageal cancer in computed tomography images. IEEE Access 2019, 7, 82867–82877. [CrossRef]

25. Zhou, D.; Huang, G.; Li, J.; Zhu, S.; Wang, Z.; Ling, W.; Pun, C.; Cheng, L.; Cai, X.; Zhou, J. Eso-net: A novel 2.5D segmentation
network with the multi-structure response filter for the cancerous esophagus. IEEE Access 2020, 8, 155548–155562. [CrossRef]

26. Yousefi, S.; Sokooti, H.; Elmahdy, M.S.; Lips, I.M.; Shalmani, M.T.M.; Zinkstok, R.T.; Dankers, F.J.W.M.; Staring, M. Esophageal
tumor segmentation in CT images using a dilated dense attention Unet (DDAUnet). IEEE Access 2021, 9, 99235–99248. [CrossRef]

27. Li, Y.; Zhang, X.; Chen, D. CSRNet: Dilated convolutional neural networks for understanding the highly congested scenes.
In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–23 June 2018.

28. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
29. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convo-

lutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [CrossRef]
30. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19
June 2020; pp. 11531–11539.

31. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the In-
ternational Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015.

32. Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al.
Attention U-Net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999.

33. Gu, Z.; Cheng, J.; Fu, H.; Zhou, K.; Hao, H.; Zhao, Y.; Zhang, T.; Gao, S.; Liu, J. CE-Net: Context encoder network for 2D medical
image segmentation. IEEE Trans. Med. Imaging 2019, 38, 2281–2292. [CrossRef]

34. Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep high-resolution
representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3349–3364. [CrossRef] [PubMed]

35. Jha, D.; Ali, S.; Tomar, N.K.; Johansen, H.D.; Johansen, D.; Rittscher, J.; Riegler, M.A.; Halvorsen, P. Real-time polyp detection,
localization and segmentation in colonoscopy using deep learning. IEEE Access 2021, 9, 40496–40510. [CrossRef] [PubMed]

36. Takenaka, R.; Kawahara, Y.; Okada, H.; Hori, K.; Inoue, M.; Kawano, S.; Tanioka, D.; Tsuzuki, T.; Uemura, M.; Ohara, N.; et al.
Narrow-band imaging provides reliable screening for esophageal malignancy in patients with head and neck cancers. Am. J.
Gastroenterol. 2009, 104, 2942–2948. [CrossRef] [PubMed]

37. Nagami, Y.; Tominaga, K.; Machida, H.; Nakatani, M.; Kameda, N.; Sugimori, S.; Okazaki, H.; Tanigawa, T.; Yamagami, H.; Kubo,
N.; et al. Usefulness of non-magnifying narrow-band imaging in screening of early esophageal squamous cell carcinoma: A
prospective comparative study using propensity score matching. Am. J. Gastroenterol. 2014, 109, 845–854. [CrossRef] [PubMed]

38. Li, J.; Xu, R.; Liu, M.; Cai, H.; Cao, C.; Liu, F.; Li, F.; Guo, C.; Pan, Y.; He, Z.; et al. Lugol chromoendoscopy detects esophageal
dysplasia with low levels of sensitivity in a high-risk region of China. Clin. Gastroenterol. Hepatol. 2018, 16, 1585–1592. [CrossRef]
[PubMed]

39. Cotton, P.B. Quality endoscopists and quality endoscopy units. J. Interv. Gastroenterol. 2011, 1, 83–87. [CrossRef]
40. Zhang, F.; Song, Y.; Cai, W.D.; Lee, M.Z.; Zhou, Y.; Huang, H.; Shan, S.; Fulham, M.J.; Feng, D.D. Lung nodule classification with

multi-level patch-based context analysis. IEEE Trans. Biomed. Eng. 2014, 61, 1155–1166. [CrossRef]
41. Zhao, Q.; Okada, K.; Rosenbaum, K.; Kehoe, L.; Zand, D.J.; Sze, R.; Summar, M.; Linguraru, M.G. Digital facial dysmorphology

for genetic screening: Hierarchical constrained local model using ICA. Med. Image Anal. 2012, 18, 699–710. [CrossRef]
42. Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.S.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al.

Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018, 172, 1122–1131.e9. [CrossRef]
43. Ciresan, D.; Giusti, A.; Gambardella, L.M. Schmidhuber, J. Deep neural networks segment neuronal membranes in electron

microscopy images. Adv. Neural Inf. Process. Syst. 2012, 25, 2843–2851.
44. Shelhamer, E.; Long, J.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell.

2017, 39, 640–651. [CrossRef] [PubMed]
45. Skourt, B.A.; El Hassani, A.; Majda, A. Lung CT image segmentation using deep neural networks. Procedia Comput. Sci. 2018, 127,

109–113. [CrossRef]
46. Lou, X.; Zhu, Y.; Punithakumar, K.; Le, L.H.; Li, B. Esophagus segmentation in computed tomography images using a U-Net

neural network with a semiautomatic labeling method. IEEE Access 2020, 8, 202459–202468. [CrossRef]

http://doi.org/10.1016/j.compbiomed.2020.103950
http://doi.org/10.1007/s10388-018-0651-7
http://www.ncbi.nlm.nih.gov/pubmed/30547352
http://doi.org/10.1016/j.gie.2018.11.011
http://www.ncbi.nlm.nih.gov/pubmed/30452913
http://doi.org/10.1109/ACCESS.2020.3007719
http://doi.org/10.1109/ACCESS.2019.2923760
http://doi.org/10.1109/ACCESS.2020.3019518
http://doi.org/10.1109/ACCESS.2021.3096270
http://doi.org/10.1109/TPAMI.2017.2699184
http://doi.org/10.1109/TMI.2019.2903562
http://doi.org/10.1109/TPAMI.2020.2983686
http://www.ncbi.nlm.nih.gov/pubmed/32248092
http://doi.org/10.1109/ACCESS.2021.3063716
http://www.ncbi.nlm.nih.gov/pubmed/33747684
http://doi.org/10.1038/ajg.2009.426
http://www.ncbi.nlm.nih.gov/pubmed/19623169
http://doi.org/10.1038/ajg.2014.94
http://www.ncbi.nlm.nih.gov/pubmed/24751580
http://doi.org/10.1016/j.cgh.2017.11.031
http://www.ncbi.nlm.nih.gov/pubmed/29174712
http://doi.org/10.4161/jig.1.2.15048
http://doi.org/10.1109/TBME.2013.2295593
http://doi.org/10.1016/j.media.2014.04.002
http://doi.org/10.1016/j.cell.2018.02.010
http://doi.org/10.1109/TPAMI.2016.2572683
http://www.ncbi.nlm.nih.gov/pubmed/27244717
http://doi.org/10.1016/j.procs.2018.01.104
http://doi.org/10.1109/ACCESS.2020.3035772

	Introduction 
	Materials and Methods 
	Training and Validation Sets 
	Development of the MTCS Model 
	Design of ELCNet and ELSNet 
	Evaluation Metric of ELCNet and ELSNet 


	Experiments and Results 
	Comparison of the MTCS Model and Other Methods 
	Comparison between the MTCS Model and Endoscopists 
	Ablation Studies 

	Discussion 
	Conclusions 
	References

