Integrating the IEEE 1451 and IEC 61499 Standards with the Industrial Internet Reference Architecture
Abstract
:1. Introduction
2. Background
2.1. Industrial Internet Reference Architecture
2.2. IEEE 1451 Family of Standards
2.3. IEC 61499 Standard
2.4. Related Works
3. Methodology
Case Study for Validation
- -
- to combine the IEC 61499 and the IEEE 1451 and achieve a syntactical level of interoperability;
- -
- to allow both standards to manage data in the reference architecture model. This case uses the IIRA;
- -
- to compare the publish/subscribe and client/server methods, highlighting the advantages and disadvantages of each one.
4. Implementation Evaluation
4.1. Sensor Implementation
4.2. Equipment
4.3. Proposed Test
- Start the FORT Program in a Raspberry Pi 3B+;
- Start Wireshark to capture the packets;
- Start the 4diac program;
- Using the MQTT protocol, the topic is subscripted to receive data, and starts to publish to the topic to request data every 10 min. Using the HTTP protocol, request the data using a URL every 10 min;
- Perform the test for five days~40 thousand messages;
- Stop Wireshark;
- Analyze results.
4.4. Data Processed and Results
4.5. Evaluation and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AMQP | Advanced Message Queuing Protocol |
API | Application Programming Interface |
CoAP | Constrained Application Protocol |
CIFB | Communication Interface Function Blocks |
CPS | Cyber-Physical Systems |
CPPS | Cyber-Physical Production Systems |
FB | Function Block |
HTTP | Hypertext Transfer Protocol |
I4.0 | Industry 4.0 |
IEC | International Electrotechnical Commission |
IEEE | Institute of Electrical and Electronics Engineers |
IIoT | Industrial Internet of Things |
IIRA | Industrial Internet Reference Architecture |
IoT | Internet of Things |
iRTT | Initial Retransmission Time |
ISO | International Organization for Standardization |
IT | Information Technology |
M2M | Machine to Machine |
MQTT | Message Queue Telemetry Transport |
ms | Milliseconds |
NCAP | Network Capable Application Processor |
OPC UA | Open Platform Communications Unified Architecture |
OSI | Open Systems Interconnection |
OT | Operational Technology |
PLC | Programmable Logic Controller |
PT | Portugal |
QoS | Quality of Service |
RAMI 4.0 | Reference Architecture Model for Industry 4.0 |
SIFB | Service Interface Function Blocks |
SMTP | Simple Mail Transfer Protocol |
SSN | Semantic Sensor Network |
TEDS | Transducer Electronic Data Sheet |
TCP | Transmission Control Protocol |
TIM | Transducer Interface Module |
UART | Universal Asynchronous Receiver-Transmitter |
UBI | University of Beira Interior |
URL | Uniform Resource Locator |
USA | United States of America |
XMPP | Extensible Messaging and Presence Protocol |
References
- Weyrich, M.; Ebert, C. Reference Architectures for the Internet of Things. IEEE Softw. 2016, 33, 112–116. [Google Scholar] [CrossRef]
- Pisching, M.A.; Pessoa, M.A.O.; Junqueira, F.; dos Santos Filho, D.J.; Miyagi, P.E. An Architecture Based on RAMI 4.0 to Discover Equipment to Process Operations Required by Products. Comput. Ind. Eng. 2018, 125, 574–591. [Google Scholar] [CrossRef]
- Givehchi, O.; Landsdorf, K.; Simoens, P.; Colombo, A.W. Interoperability for Industrial Cyber-Physical Systems: An Approach for Legacy Systems. IEEE Trans. Ind. Inform. 2017, 13, 3370–3378. [Google Scholar] [CrossRef]
- Wollschlaeger, M.; Debes, T.; Kalhoff, J.; Wickinger, J.; Dietz, H.; Feldmeier, G.; Michels, J.; Scholing, H.; Billmann, M. Communication in the Context of Industrie 4.0; ZVEI e. V.: Frankfurt, Germany, 2019. [Google Scholar]
- Nilsson, J.; Sandin, F. Semantic Interoperability in Industry 4.0: Survey of Recent Developments and Outlook. In Proceedings of the 2018 IEEE 16th International Conference on Industrial Informatics (INDIN), Porto, Portugal, 18–20 July 2018; pp. 127–132. [Google Scholar]
- ISO/IEC/IEEE 24765: 2017 (E); IEC/IEEE International Standard-Systems and Software Engineering–Vocabulary. IEEE: Geneva, Switzeland, 2017; pp. 1–541. [CrossRef]
- Noura, M.; Atiquzzaman, M.; Gaedke, M. Interoperability in Internet of Things: Taxonomies and Open Challenges. Mob. Netw. Appl. 2019, 24, 796–809. [Google Scholar] [CrossRef] [Green Version]
- Banks, A.; Briggs, E.; Borgendale, K.; Gupta, R. MQTT Version 5.0. OASIS Stand. 2019, 1, 1–137. [Google Scholar]
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Žarko, I.P.; Mueller, S.; Płociennik, M.; Rajtar, T.; Jacoby, M.; Pardi, M.; Insolvibile, G.; Glykantzis, V.; Antonić, A.; Kušek, M.; et al. The SymbIoTe Solution for Semantic and Syntactic Interoperability of Cloud-Based IoT Platforms. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–6. [Google Scholar]
- Da Cruz, M.A.A.; Rodrigues, J.J.P.C.; Al-Muhtadi, J.; Korotaev, V.V.; de Albuquerque, V.H.C. A Reference Model for Internet of Things Middleware. IEEE Internet Things J. 2018, 5, 871–883. [Google Scholar] [CrossRef]
- Zaman, N. Wireless Sensor Networks and Energy Efficiency: Protocols, Routing and Management: Protocols, Routing and Management; Premier Reference Source; Information Science Reference; IGI Global: Hershey, PA, USA, 2012; ISBN 9781466601024. [Google Scholar]
- Alliance, O. Onem2m: Standards for M2M and the Internet of Things. Available online: https://www.onem2m.org (accessed on 28 October 2020).
- Mahnke, W.; Leitner, S.-H.; Damm, M. OPC Unified Architecture; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Desai, P.; Sheth, A.; Anantharam, P. Semantic Gateway as a Service Architecture for IoT Interoperability. In Proceedings of the 2015 IEEE International Conference on Mobile Services, New York, NY, USA, 27 June–2 July 2015; pp. 313–319. [Google Scholar]
- Abrishambaf, R.; Da Rocha, H.; Espirito-Santo, A. IEC 61499 and IEEE 1451 for Distributed Control and Measurement Systems. In Proceedings of the IECON Proceedings (Industrial Electronics Conference), Toronto, ON, Canada, 13–16 October 2021. [Google Scholar]
- The Industrial Internet of Things Volume G1: Reference Architecture; Industry IoT Consortium: Boston, MA, USA, 2019.
- Löwen, U.; Neubert, R.; Bachmann, G.; IIC, S.M.; Munz, H. Architecture Alignment and Interoperability; Industry IoT Consortium: Boston, MA, USA, 2017. [Google Scholar]
- Song, E.Y.; Lee, K. Understanding IEEE 1451-Networked Smart Transducer Interface Standard—What Is a Smart Transducer? IEEE Instrum. Meas. Mag. 2008, 11, 11–17. [Google Scholar] [CrossRef]
- IEEE Std 1451.0-2007; IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication Protocols, and Transducer Electronic Data Sheet (TEDS) Formats. IEEE: New York, NY, USA, 2007; pp. 1–335. [CrossRef]
- ISO/IEC/IEEE 21451-1:2010(E); ISO/IEC/IEEE Information Technology—Smart Transducer Interface for Sensors and Actuators—Part 1: Network Capable Application Processor (NCAP) Information Model. IEEE: New York, NY, USA, 2010; pp. 1–356. [CrossRef]
- IEEE Std 1451.5-2007; IEEE Standard for a Smart Transducer Interface for Sensors and Actuators Wireless Communication Protocols and Transducer Electronic Data Sheet (TEDS) Formats. IEEE: New York, NY, USA, 2007; p. C1-236. [CrossRef]
- Pinto, R.; Pereira, J.; da Rocha, H.; Martin, R.I.; Santo, A.E. A Discussion about the Implementation of a WSN to Industry 4.0 Based on the IEEE 1451 Standard. In Proceedings of the IEEE International Conference on Industrial Informatics (INDIN), Helsinki-Espoo, Finland, 22–25 July 2019; pp. 22–25. [Google Scholar]
- International Electrotechnical Commission. IEC 61499: Function Blocks, 1st ed.; International Electrotechnical Commission: Geneva, Switzerland, 2005. [Google Scholar]
- Abrishambaf, R.; Hashemipour, M.; Bal, M. Structural Modeling of Industrial Wireless Sensor and Actuator Networks for Reconfigurable Mechatronic Systems. Int. J. Adv. Manuf. Technol. 2013, 64, 793–811. [Google Scholar] [CrossRef]
- Christensen, J.H. IEC 61499 A Standard for Software Reuse in Embedded, Distributed Control Systems. HOLOBLOC Inc. Resour. New Gener. Autom. Control Softw. 2019. Available online: https://holobloc.com/ (accessed on 23 March 2021).
- Saito, K.; Nishi, H. Application Protocol Conversion Corresponding to Various IoT Protocols. In Proceedings of the IECON 2020 the 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 19–21 October 2020; pp. 5219–5225. [Google Scholar]
- Gleim, L.; Pennekamp, J.; Liebenberg, M.; Buchsbaum, M.; Niemietz, P.; Knape, S.; Epple, A.; Storms, S.; Trauth, D.; Bergs, T.; et al. FactDAG: Formalizing Data Interoperability in an Internet of Production. IEEE Internet Things J. 2020, 7, 3243–3253. [Google Scholar] [CrossRef]
- Roffia, L.; Morandi, F.; Kiljander, J.; D’Elia, A.; Vergari, F.; Viola, F.; Bononi, L.; Salmon Cinotti, T. A Semantic Publish-Subscribe Architecture for the Internet of Things. IEEE Internet Things J. 2016, 3, 1274–1296. [Google Scholar] [CrossRef]
- Derhamy, H.; Eliasson, J.; Delsing, J. IoT Interoperability—On-Demand and Low Latency Transparent Multiprotocol Translator. IEEE Internet Things J. 2017, 4, 1754–1763. [Google Scholar] [CrossRef]
- Da Rocha, H.; Espirito-Santo, A.; Abrishambaf, R. Semantic Interoperability in the Industry 4.0 Using the IEEE 1451 Standard. In Proceedings of the IECON Proceedings (Industrial Electronics Conference), Singapore, 18–21 October 2020. [Google Scholar]
- Xiao, G.; Guo, J.; Da Xu, L.; Gong, Z. User Interoperability with Heterogeneous IoT Devices through Transformation. IEEE Trans. Ind. Inform. 2014, 10, 1486–1496. [Google Scholar] [CrossRef]
- Wukkadada, B.; Wankhede, K.; Nambiar, R.; Nair, A. Comparison with HTTP and MQTT in Internet of Things (IoT). In Proceedings of the 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 11–12 July 2018; pp. 249–253. [Google Scholar]
- Yokotani, T.; Sasaki, Y. Comparison with HTTP and MQTT on Required Network Resources for IoT. In Proceedings of the 2016 international conference on control, electronics, renewable energy and communications (ICCEREC), Bandung, Indonesia, 13–15 September 2016; pp. 1–6. [Google Scholar]
- Naik, N. Choice of Effective Messaging Protocols for IoT Systems: MQTT, CoAP, AMQP and HTTP. In Proceedings of the 2017 IEEE international systems engineering symposium (ISSE), Vienna, Austria, 11–13 October 2017; pp. 1–7. [Google Scholar]
- Yli-Ojanperä, M.; Sierla, S.; Papakonstantinou, N.; Vyatkin, V. Adapting an Agile Manufacturing Concept to the Reference Architecture Model Industry 4.0: A Survey and Case Study. J. Ind. Inf. Integr. 2018, 15, 147–160. [Google Scholar] [CrossRef]
- Higuera, J.; Polo, J. Interoperability in wireless sensor networks based on IEEE 1451 standard. In Wireless Sensor Networks and Energy Efficiency: Protocols, Routing and Management; IGI Global: Hershey, PA, USA, 2012; pp. 47–69. ISBN 9781466601017. [Google Scholar] [CrossRef]
- Pereira, J.; da Rocha, H.; Espírito Santo, A. A Platform for IEEE 1451 Standard’s Education, Development and Validation for Industry 4.0. In Proceedings of the 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (I2MTC 2020), Dubrovnik, Croatia, 25–28 May 2020. [Google Scholar]
- Studio, C.C. Getting Started Guide; Texas Instruments: Dallas, TX, USA, 2006. [Google Scholar]
- Lee, K.B.; Song, E.Y. Object-Oriented Application Framework for IEEE 1451.1 Standard. IEEE Trans. Instrum. Meas. 2005, 54, 1527–1533. [Google Scholar] [CrossRef]
- Eclipse Paho Paho MQTT and MQTT-SN. Available online: https://www.eclipse.org/paho/ (accessed on 10 January 2021).
- Pallets Flask Web Development, One Drop at a Time. Available online: https://palletsprojects.com/p/flask/ (accessed on 12 February 2021).
- Foundation, W. Wireshark. Available online: https://www.wireshark.org (accessed on 20 February 2021).
- Light, R.A. Mosquitto: Server and Client Implementation of the MQTT Protocol. J. Open Source Softw. 2017, 2, 1–265. [Google Scholar] [CrossRef]
- Silva, D.R.C.; Oliveira, G.M.B.; Silva, I.; Ferrari, P.; Sisinni, E. Latency Evaluation for MQTT and WebSocket Protocols: An Industry 4.0 Perspective. In Proceedings of the 2018 IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil, 25–28 June 2018; pp. 1233–1238. [Google Scholar]
- Bröring, A.; Schmid, S.; Schindhelm, C.-K.; Khelil, A.; Käbisch, S.; Kramer, D.; Le Phuoc, D.; Mitic, J.; Anicic, D.; Teniente, E. Enabling IoT Ecosystems through Platform Interoperability. IEEE Softw. 2017, 34, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, P.; Sisinni, E.; Brandão, D.; Rocha, M. Evaluation of Communication Latency in Industrial IoT Applications. In Proceedings of the 2017 IEEE International Workshop on Measurement and Networking (M N), Naples, Italy, 27–29 September 2017; pp. 1–6. [Google Scholar]
- Kalør, A.E.; Guillaume, R.; Nielsen, J.J.; Mueller, A.; Popovski, P. Network Slicing in Industry 4.0 Applications: Abstraction Methods and End-to-End Analysis. IEEE Trans. Ind. Inform. 2018, 14, 5419–5427. [Google Scholar] [CrossRef]
Starts in Portugal | Time in Milliseconds | ||||
---|---|---|---|---|---|
Mean | Std. Deviation | Median | Minimum | Maximum | |
MQTT | 1043.78 | 68.00 | 1035.85 | 0.0859 | 8030.33 |
MQTT With Error | 1016.80 | 59.22 | 1016.80 | 23.273 | 1844.56 |
HTTP | 1067.90 | 44.35 | 1062.10 | 108.566 | 4555.97 |
HTTP With Error | 2056.31 | 193.09 | 2069.34 | 50.254 | 3299.96 |
Starts in the USA | Time in Milliseconds | ||||
---|---|---|---|---|---|
Mean | Std. Deviation | Median | Minimum | Maximum | |
MQTT | 1041.92 | 48.55 | 1038.60 | 0 | 4121.90 |
MQTT With Error | 1024.01 | 42.07 | 1019.66 | 25.226 | 1560.68 |
HTTP | 1265.03 | 693.42 | 1245.54 | 278.988 | 66107.82 |
HTTP With Error | 2259.56 | 1099.64 | 2251.10 | 220.87 | 67149.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Rocha, H.; Abrishambaf, R.; Pereira, J.; Espirito Santo, A. Integrating the IEEE 1451 and IEC 61499 Standards with the Industrial Internet Reference Architecture. Sensors 2022, 22, 1495. https://doi.org/10.3390/s22041495
da Rocha H, Abrishambaf R, Pereira J, Espirito Santo A. Integrating the IEEE 1451 and IEC 61499 Standards with the Industrial Internet Reference Architecture. Sensors. 2022; 22(4):1495. https://doi.org/10.3390/s22041495
Chicago/Turabian Styleda Rocha, Helbert, Reza Abrishambaf, João Pereira, and Antonio Espirito Santo. 2022. "Integrating the IEEE 1451 and IEC 61499 Standards with the Industrial Internet Reference Architecture" Sensors 22, no. 4: 1495. https://doi.org/10.3390/s22041495
APA Styleda Rocha, H., Abrishambaf, R., Pereira, J., & Espirito Santo, A. (2022). Integrating the IEEE 1451 and IEC 61499 Standards with the Industrial Internet Reference Architecture. Sensors, 22(4), 1495. https://doi.org/10.3390/s22041495