
����������
�������

Citation: da Rocha, H.; Abrishambaf,

R.; Pereira, J.; Espirito Santo, A.

Integrating the IEEE 1451 and IEC

61499 Standards with the Industrial

Internet Reference Architecture.

Sensors 2022, 22, 1495. https://

doi.org/10.3390/s22041495

Academic Editor: Marco Picone

Received: 12 January 2022

Accepted: 13 February 2022

Published: 15 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Integrating the IEEE 1451 and IEC 61499 Standards with the
Industrial Internet Reference Architecture
Helbert da Rocha 1,2,* , Reza Abrishambaf 3 , João Pereira 1,2 and Antonio Espirito Santo 1,2

1 Department of Electromechanical Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal;
joao.luis.pereira@ubi.pt (J.P.); aes@ubi.pt (A.E.S.)

2 Instituto de Telecomunicações, Delegação da Covilhã, 1049-001 Lisboa, Portugal
3 Department of Engineering Technology, Miami University, Hamilton, OH 45011, USA; abrishr@miamioh.edu
* Correspondence: helbert.rocha@ubi.pt

Abstract: Industrial Internet of Things focuses on the manufacturing process and connects with other
associated concepts such as Industry 4.0, Cyber-Physical Systems, and Cyber-Physical Production
Systems. Because of the complexity of those components, it is necessary to define reference architec-
tures models to manage Industry 4.0 and the Industrial Internet of Things. The reference architecture
models aim to solve the interoperability problem enabling the syntactical and semantic levels of
interoperability. A reference architecture model provides a bottom/top view of an industrial process,
from the physical transducers at the physical layer to the business layer. The physical layer provides
access to a twin representation of a physical thing in the digital world, extending the functionalities
in the manufacturing process. This paper studies the syntactic interoperability between the IEEE
1451 and IEC 61499 in an industrial environment. The IEEE 1451 family of standards has the es-
sential characteristics to support the information exchange between smart transducers (sensors and
actuators), building the digital elements and meeting the Industry 4.0 requirements. The IEC 61499
standard enables industrial control and automation. These two standards combined at the syntactic
level solve an interoperability problem. The IEC 61499 also provides data to the framework layer,
supplying all the parameters defined for the communication layer specified by a reference architecture
model. This paper combines the IEEE 1451 with the IEC 61499, enabling data exchange in a reference
architecture model proposed for Industry 4.0. Network performance at the communication level of a
reference architecture model in a local network and an external network is evaluated for the proposed
application. The IEEE 1451 standard implementation and adoption to acquire data and communicate
it inside an industrial process allowed the IEC 61499 standard to control an industrial process. The
IEEE 1451 standard is implemented in a MSP430 low power microcontroller. A Raspberry Pi running
FORTE and 4diac in the USA and Portugal were used to test a local network in Portugal and an
external network in USA. Data related to network performance was obtained with Wireshark and
processed with MATLAB. Tests using the Message Queuing Transport Telemetry Transport and
Hypertext Transport Protocols verified the performance of these protocols, supported by the IEEE
1451 and IEC 61499 standards, showing that communication inside an Industry 4.0 environment
is possible. MQTT protocol is faster, has a small packet size, and consumes less bandwidth. The
HTTP protocol uses more bandwidth but is more reliable for real-time communication, essential for
Industry 4.0.

Keywords: interoperability IIoT and I4.0; reference architecture models; CPPS; CPS

1. Introduction

The need for a reference architecture appears once new initiatives are under develop-
ment to work toward a standardization architecture. The reference architecture enables in-
teroperability, simplifies development, and provides a straightforward implementation [1].
A reference architecture is a generic guideline from the requirements and functionalities,

Sensors 2022, 22, 1495. https://doi.org/10.3390/s22041495 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22041495
https://doi.org/10.3390/s22041495
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7736-5444
https://orcid.org/0000-0002-6046-497X
https://orcid.org/0000-0001-5057-0982
https://orcid.org/0000-0002-9540-8900
https://doi.org/10.3390/s22041495
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22041495?type=check_update&version=2

Sensors 2022, 22, 1495 2 of 19

relationships, principals, information structure, and mechanisms that do not necessarily
propose the specific detail about the actual implementation. The reference architecture
focuses on connectivity and communication, device management, data collection and
analyses, scalability, and security, which control the design and evolution [1,2].

Implementing a stable model of this architecture becomes a reference architecture
model. It is utilized and recommended to derive from a specified and concrete architecture,
playing an essential role in the system of an application area, describing the model’s struc-
ture, and is a departure from developing tools. This implementation results in a framework
that includes a minimal set of unifying concepts, axioms, and relationships responsible for
understanding the interactions between the interties inside an environment [2].

Two main objectives needed to be achieved to guarantee the Industry 4.0 compliant
integration: cross-layer structural connectivity and semantic interoperability between the
component and the systems. Aim achievement requires the use of a reference architecture
model, such as the Reference Architecture Model for Industry 4.0 (RAMI 4.0) or Industrial
Internet Reference Architecture (IIRA) [3]. The communication layer becomes a critical
piece of a reference architecture model [4]. However, the connection of smart devices,
developed to work together, becomes an interoperability problem [5].

The IEEE defines interoperability as the “degree to which two or more systems,
products or components can exchange information and use the information that has been
exchanged” [6]. Another way to address an interoperability problem is by adopting
standardizations [7]. Interoperability is divided into levels with different arrangements,
depending on the author. The authors of [7,8] propose a division into five categories: device,
network, syntactical, semantic, and platform.

A syntactical level of interoperability uses data formats and data structures to ex-
change messages between systems. Each schema requires interfaces such as REST APIs,
publish/subscribe, or client/server. The messages are encoded by the sender and decoded
by the receiver; however, if the receiver decoding rules are incompatible with the ones from
the sender, the message cannot be decoded [7].

Using the publish/subscribe pattern implemented in the Message Queue Message
Protocol (MQTT) it is possible to achieve a syntactical level of interoperability. MQTT is an
open messaging protocol developed to be lightweight, simple, and easy to implement [8].
With these characteristics, the MQTT is suitable for machine-to-machine (M2M) and IoT
operations [9]. Additionally, the Hypertext Transfer Protocol (HTTP) can be used to
communicate on the application layer inside an IoT context [10]. A middleware translates
from one data format to another, promoting interoperability [11].

Semantic level interoperability enables different agents, services, and applications to
exchange information with unambiguous meaning. It gives sense to the data presented
inside a syntactic structure [12].

Frameworks (e.g., oneM2M and OPC UA) provide a semantic level of interoperability
in Industry 4.0. The technical specifications are defined by the oneM2M, observing the
needs of a standard M2M Service Layer [13]. The Open Platform Communications Unified
Architecture (OPC UA) is a platform service-oriented to provide functionalities of an
OPC Classic, being an implementation of the IEC 62541. This framework is platform-
independent, secure, and extensible. OPC UA defines a series of specifications for the data
transportation and an interface between the clients and the server [14].

Independent workgroups achieved a syntactical level of interoperability using a semantic
gateway inside a service architecture. The proposed gateway provides the interoperability by
translation between the message protocols (e.g., XMPP, CoAP, and MQTT) combined with
W3Cs Semantic Sensor Network (SSN) ontology for semantic interoperability [15].

This paper implements the proposal of a syntactic interoperability between the IEEE
1451 family of standards and IEC 61499 inside a reference architecture model for validation
purposes. The results found application in real-time data acquisition in industrial automa-
tion environments. The MQTT and HTTP protocols allowed to evaluate and compare the
performance between a publish/subscribe method and a client/server method. Both IEEE

Sensors 2022, 22, 1495 3 of 19

1451 and IEC 61499 implement the MQTT and HTTP protocols inside the application layer
from ISO/OSI model. For a reference architecture model these protocols are inside the
Transport layer. The experimental setup, installed in two different geographic locals, was
used to collect the network’s data performance about latency estimation, packet size, packet
loss, and retransmission time from a local network at UBI-PT and an external network at
Miami-USA. A previous work achieved this level of interoperability and presented how
to compare both standards and share properties to improve communication [16]. The
semantic level is achieved by adopting a framework at a level of interoperability, resulting
in a concrete implementation of a communication layer defined by a reference architecture
model. The results showed that the adoption of publish/subscribe or client/server method
depends on the level of reliability that the communication process requires.

The remainder of this paper is structured as follows. Section 2 presents an overview of
the reference architecture model, IEEE 1451 family of standards, IEC 61499 standard, and
the related works. The proposed methodology is shown in Section 3. Section 4 describes
and discusses the implementation of the experimental test setup. Section 5 presents the
main discussion supported by the results and draws the conclusions.

2. Background
2.1. Industrial Internet Reference Architecture

The Industrial Internet Reference Architecture (IIRA), based on the ISO/IEC/IEEE
42010 [17], was developed in 2015 by the Industrial Internet Consortium (IIC) focused on
IIoT systems. The IIRA is a guidance for the IIoT architectures, business leaders, and users
of different levels, used to optimize and establish IIoT systems, enabling the conversion of
OT (Operational Technology) and IT (Information Technology). For communication applica-
tions, the IIRA defines the Industrial Internet Architecture Framework (IIAF) that specifies
the viewpoints and concerns during the development, documentation, and communication.

The IIRA Volume G1: Reference Architecture [17] provides a generic description and
representation for the high levels of common industry characteristics, features, and patterns.
The Refence Architecture maximizes the value chain by implementing interoperability,
mapping, and guiding the application technologies; besides, the IIRA is an open architecture
for IIoT systems. The applicability’s scope of IIRA represents the incorporation of a generic
architecture framework, as a reference architecture inside a real-world scenario, by the
transformation and extension from an abstract architecture concept and models to a detailed
architecture that can be utilized inside the industry [17].

The definition of IIRA documentation employs business, usage, functional, and im-
plementation viewpoints, as shown in Figure 1. The Business viewpoint identifies the
stakeholders and their business vision, values, and objectives. The Usage viewpoint focuses
on the system usage and represents the sequence of activities involving the users to deliver
functionality to achieve the core of the system’s capabilities. The Functional viewpoint aims
at the functional components, their structures, interrelation, interfaces and interactions,
relation, and interactions of the systems with external elements in the environment, to
support the usage and activities of the overall system. The Implementation viewpoint concen-
trates on the technologies used to implement the Functional viewpoint, has special attention
to their communications schemes and life cycle procedures [17].

The functional viewpoint defines the architecture for the communication layer, func-
tional capabilities, and structure for the IIoT infrastructure inside the IIRA. Five functional
domains are defined: control, operations, information, application, and business. The main
domain for the communication aspect relevant for this paper is the control domain that
implements the control systems, composed of a collection of functions to implement the
industrial control and automation systems [17].

Sensors 2022, 22, 1495 4 of 19

Sensors 2022, 22, x FOR PEER REVIEW 4 of 20

Figure 1. IIRA viewpoints and communication layer of IICF [18].

The functional viewpoint defines the architecture for the communication layer, func-
tional capabilities, and structure for the IIoT infrastructure inside the IIRA. Five functional
domains are defined: control, operations, information, application, and business. The
main domain for the communication aspect relevant for this paper is the control domain
that implements the control systems, composed of a collection of functions to implement
the industrial control and automation systems [17].

The control domain comprises dedicated elements, such as sensing, actuation, com-
munication, entity abstraction, modeling, asset management, and task executor. A collec-
tion of functions is defined for sensing, reading data from the transducer, applying logic
rules, and writing data and controlling the signals over the physical system in the case of
an actuator. A device localized inside this domain can interact with another placed in a
geographically distributed arrangement.

Communication is responsible for connecting sensors, actuators, controllers, gate-
ways, and other systems, using, for example, network architectures and Quality of Ser-
vices (QoS). An entity abstraction enables the abstraction of sensors and actuators, con-
trollers, and systems and expresses the relationships between them. Modeling comprises
the states, conditions, and behavior of the systems. Asset management controls systems
including onboarding systems, configuration, policy, system, software/firmware updates,
and other lifecycle management operations. An ‘executor’ element executes the control
logic, understanding the systems’ states, conditions, and behavior using the pre-defined
control rules [17].

Another essential viewpoint for communication is the Implementation viewpoint. It de-
fines a technical representation and general architecture for an IIoT system, technologies,
and the requirement for the system components (e.g., interfaces, protocols, behaviors, and
properties). The Implementation viewpoint implements the activities and functions de-
scribed in the Functional viewpoint. It defines the topology used, technical description of
the components, implementation map of actions identified in the usage viewpoint to the
active components and its implementation [17].

2.2. IEEE 1451 Family of Standards
IEEE Instrumentation and Measurement Society supported the development of the

IEEE 1451 standard to meet industry requirements. The standard provides a standard in-
terface for smart transducers, ensuring the access of smart transducers through a commu-
nication network to support the data exchange between the network elements, allowing
the manufacturers to build an interoperable system. The standard defines the following
capacities to the smart transducers: identification, description, diagnosis, calibration, lo-
cation, time, data processing, reasoning, data fusion, alert notification, data formats, and
communication protocols [19].

The IEEE 1451 organizes itself as a family of standards. The IEEE 1451.0 defines a
common set of commands and functionalities that provide smart transducers with access
to the network and defines the Transducer Interface Module (TIM) that integrates with

DDSI-RPPS CoAP MQTT HTTP OPC UA
Bin

DDS oneM2M Web
Services OPC UA

UDP TCPTCP

Framework

Transport

Network Internet Protocol (IP)

Link

Physical

TSN/Ethernet
(802.1, 802.3)

Wireless
PAN

(802.15)

Wireless
LAN

(802.11
Wi-FI)

Wireless
2G/3G/LTE

(3GPP)

Wireless
Wide
Areas

(802.16)

Usage

Bussiness

Functional

Implementation

Viwepoints

Figure 1. IIRA viewpoints and communication layer of IICF [18].

The control domain comprises dedicated elements, such as sensing, actuation, commu-
nication, entity abstraction, modeling, asset management, and task executor. A collection of
functions is defined for sensing, reading data from the transducer, applying logic rules, and
writing data and controlling the signals over the physical system in the case of an actuator.
A device localized inside this domain can interact with another placed in a geographically
distributed arrangement.

Communication is responsible for connecting sensors, actuators, controllers, gateways,
and other systems, using, for example, network architectures and Quality of Services
(QoS). An entity abstraction enables the abstraction of sensors and actuators, controllers,
and systems and expresses the relationships between them. Modeling comprises the
states, conditions, and behavior of the systems. Asset management controls systems
including onboarding systems, configuration, policy, system, software/firmware updates,
and other lifecycle management operations. An ‘executor’ element executes the control
logic, understanding the systems’ states, conditions, and behavior using the pre-defined
control rules [17].

Another essential viewpoint for communication is the Implementation viewpoint. It
defines a technical representation and general architecture for an IIoT system, technologies,
and the requirement for the system components (e.g., interfaces, protocols, behaviors,
and properties). The Implementation viewpoint implements the activities and functions
described in the Functional viewpoint. It defines the topology used, technical description of
the components, implementation map of actions identified in the usage viewpoint to the
active components and its implementation [17].

2.2. IEEE 1451 Family of Standards

IEEE Instrumentation and Measurement Society supported the development of the
IEEE 1451 standard to meet industry requirements. The standard provides a standard
interface for smart transducers, ensuring the access of smart transducers through a commu-
nication network to support the data exchange between the network elements, allowing
the manufacturers to build an interoperable system. The standard defines the following
capacities to the smart transducers: identification, description, diagnosis, calibration, lo-
cation, time, data processing, reasoning, data fusion, alert notification, data formats, and
communication protocols [19].

The IEEE 1451 organizes itself as a family of standards. The IEEE 1451.0 defines a
common set of commands and functionalities that provide smart transducers with access
to the network and defines the Transducer Interface Module (TIM) that integrates with
sensors and actuators. The TIMs perform signal conditioning tasks, converting signal
domains from analogue to digital and digital to analogue. The Transducer Electronic Data

Sensors 2022, 22, 1495 5 of 19

Sheet (TEDS) describes TIM’s internal structure [20]. Several TEDS are embedded into
the smart transducer, storing information about it, such as manufacturing identification,
calibration, measurement, and accuracy [19].

The middleware communication between an application or network to the TIM is defined
by the IEEE 1451.1 Network Capable Network Processor (NCAP). The NCAP manages
communications over the user network using one of the following protocols: TCP/UDP, HTTP,
XMPP, SNMP, and MQTT [21]. The NCAP also defines the following services: discovery of
new a TIM, notification of events detected by sensors, and transducers management.

Internally the NCAP is organized by classes of objects with a network-neutral in-
terface. It is composed of blocks, services, and components for communicating with the
transducers [21]. The NCAP Block enables software interfaces and supports network
communication and system configuration. Base Transducer Block interfaces between the
transducer and application functions. The Function Block is responsible for the encap-
sulation of the application-specific functionalities [21]. The Function Block encapsulates
the application-specific functionalities [21] divided into physical and logical views. The
physical view deals with physical components (sensors and actuators) that compound
the smart transducers. A smart transducer interfaces with the users’ network, using an
adequate microprocessor or a controller. The logical view deals with logical components
grouped in an application to support the NCAP components (operating system, network
protocol, and transducer’s firmware) [21].

The remaining IEEE 1451 family of standards is composed of the IEEE 1451.5 standard
that defines the wireless communication between the NCAP and the TIM by one of the
following protocols: Wi-Fi, 6LoWPAN, Zigbee, and Bluetooth [22]. At the same time, the
IEEE 1451.2 standard specifies wired connections.

The IEEE 1451.0 defines an Application Programming Interface (API) using the HTTP
protocol to ensure communication with the smart sensors. The API allows to request data
from a sensor and send commands to an actuator [20]. Whereas, the IEEE 1451.1 species
the client/server and publish/subscribe patterns ensure the interoperability between the
smart transducer with the network. This family of standards addressed the characteristics
to meet Industry 4.0 requirements [23].

2.3. IEC 61499 Standard

The IEC 61499 Function Block (FB) was proposed in 2005 by the Industrial-Process
Measurement and Control Systems (IPMCS). This standard adopts the Function Block
employed in the IEC 61131 standard for Programmable Logic Controller (P.L.C.) develop-
ment [24]. To overpass the lack of flexibility and reusability, the IEC 61131 was modified
and became the building block for the IEC 61499. Furthermore, the Distributed Control
Systems (DCS) adopted it also. The IEC 61499 is hardware-independent from the user’s
application to promote interoperability and reconfigurability between the devices. The
system inside of an IPMCS is composed of a collection of IEC 61499 Devices interconnected
by a network [25].

An IEC 61499 device is composed of at least an interface. The interfaces are divided
into Process and Communication. Process Interface maps the physical entities and research,
whereas the Communication Interface connects the resources for information exchange
using a network. An IEC 61499 Device can be composed, or not, by resources or FBs.
A Resource represents the functional unit inside a device, self-controlling its operation
behavior. A Resource receives data/events from other resources or physical devices through
a service interface. An Application can be a FB network or sub-applications connected
by data and event connections. A FB is a fundamental building block for the IEC 61499,
composed of input and output data and events, controlled by an Execution Control (EC)
in the head and one or more algorithms in the body. When an input event occurs, the
algorithm executes using the input data. After processing, an output event is generated.

The IEC 61499 is composed of the reaming standards: the IEC 61499-1 defines the
architectural model for a distributed system, the IEC 61499-2 presents the requirements for

Sensors 2022, 22, 1495 6 of 19

software tools to support the systems, the IEC 61499-3 specifies the programming languages,
and the IEC 61499-4 specifies the development rules for the compliance profiles [26].

2.4. Related Works

There are distinct methods (e.g., middleware, translators, mapping) to promote in-
teroperability between two different standards inside an IIoT and I4.0 environment and
implement a reference architecture model.

Saito and Nishi developed a conversion method that translates messages between the
MQTT, CoAP, XMPP, and SMTP using the IEEE 1451 standards [27]. Cruz et al. developed
a systematic review about middleware used inside the IoT and proposed a new reference
architecture for the IoT environment [11]. The author in [28] presented a conceptual data
layer model that enables interoperability across domains, organizations, and enterprises
focused on the Internet of Production (IoP). A syntactical level of interoperability was
achieved using the IEEE 1451 and IEC 61499 in [16].

Roffia et al. developed using the publish/subscribe paradigm a semantic model in-
spired by the Smart-M3 concept at the information interoperability level [29]. A service
orientated protocol that works on demand as a translator between the protocols CoAP,
HTTP, and MQTT was developed by Derhamy et al. [30]. An architecture to allow interoper-
ability between multiple platforms and standards was introduced by An et al. It promoted
the interoperability between the FIWARE and oneM2M. A discussion on how to implement
a semantic level of interoperability between the IEC 61499 and the IEEE 1451 is presented
in [31].

Syntactic and semantic levels of interoperability were implemented in a framework
described in [32]. This framework focuses on device discovery and interaction. Another
middleware proposed by the author in [10], named SymbIoT, was developed to achieve
syntactic and semantic levels of interoperability.

A comparison between MQTT and HTTP for the communication inside the IoT was
developed by Wukkadada et al. [33] and by Yokomi and Sasaki [34]. Naik developed
a paper comparing the protocols of the MQTT, CoAP, AMQP, and HTTP application
layers [35].

The authors in [36] presented a survey about the reference architecture model for
Industry 4.0 (RAMI 4.0) supported by a case study implementation of the RAMI 4.0 in a
test scenario.

3. Methodology

This section presents the methodology used to acquire data from a sensor. The
syntactical interoperability between two protocols enables the message to go through the
communication layer shown inside a reference architecture model. Figure 2 illustrates the
concepts, standards, and communication layer.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 20

the client/server method [21]. A framework is necessary to achieve semantic interopera-
bility.

The IEC 61499 has an FB that enables communication using the OPC UA framework
allowing all the structures required for a reference architecture model for communication
as presented in Figure 2, promoting data to the framework, such as OPC UA and oneM2M,
also to client applications.

Figure 2. Encapsulation of an Industry 4.0 communication layer.

One of the essential aspects of the IEC 61499 function block is the ability to allow
developers to pay attention to the application side more, rather than focusing on the hard-
ware. This particular property is achieved by adopting the Service Interface Function
Blocks (SIFBs). The publish/subscribe and client/server methods are particular types of
SIFB called Communication Interface Function Blocks (CIFBs), proposed for unidirec-
tional and bidirectional communication, respectively. The hardware vendors provide the
necessary communication functionalities, preventing developers from building these in-
terfaces. Both MQTT and HTTP applications use publish/subscribe and client/server
methods available in 4diac.

Case Study for Validation
The IEC 61499 has FB that enables communication using the OPC UA framework.

The IEC 61499 offers all the structures required by a reference architecture model to com-
municate. Figure 2 shows the encapsulation of an Industry 4.0 Communication layer.

The case study uses a car factory painting environment to test the communication
and interoperability between the IEEE 1451 family of standards and the IEC 61499 stand-
ard. The quality of painting work depends on room temperature, and it is necessary to
acquire temperature values from the painting sector and send them to the project partners.

The acquired data allows precise painting quality for the next step in the production
chain, located in another part of the world, for example, in the USA. The user’s case sce-
nario is shown in Figure 3 .

The IEEE 1451 standard interfaces with the transducers, getting data from a temper-
ature sensor connected to a TIM. At the same time, the IEC 61499 standard controls the
procedure that requests and receives the data. The case study objectives are:
− to combine the IEC 61499 and the IEEE 1451 and achieve a syntactical level of interop-

erability;
− to allow both standards to manage data in the reference architecture model. This case

uses the IIRA;
− to compare the publish/subscribe and client/server methods, highlighting the ad-

vantages and disadvantages of each one.

Reference
Architecture

Model

Communication
Stack Standards

Framework

Network

Link

Physical

MQTTHTTP

Transport

Industry 4.0

FORTE

Control

IEC 61499

TIM

Transducers

NCAP

IEEE 1451

Figure 2. Encapsulation of an Industry 4.0 communication layer.

Sensors 2022, 22, 1495 7 of 19

Inside the functional viewpoint presented in the IIRA reference architecture model is
the communication layer from the physical to the framework layer [18].

Both Standards IEEE 1451 and IEC 61499 support the MQTT and HTTP protocols
at the Transport level of a reference model and the Application level of the ISO/OSI
communication stack.

The IEEE 1451 family of standards own the characteristics that meet the Industry 4.0
requirements [23]. The IEEE 1451.1 (NCAP) allows syntactic interoperability with other
standards, as shown in [12,37]. The IEEE 1451.1-6 (under development) specifies communi-
cation by the MQTT protocols, whereas the IEEE 1451.1-2 specifies the connection by the
client/server method [21]. A framework is necessary to achieve semantic interoperability.

The IEC 61499 has an FB that enables communication using the OPC UA framework
allowing all the structures required for a reference architecture model for communication
as presented in Figure 2, promoting data to the framework, such as OPC UA and oneM2M,
also to client applications.

One of the essential aspects of the IEC 61499 function block is the ability to allow devel-
opers to pay attention to the application side more, rather than focusing on the hardware.
This particular property is achieved by adopting the Service Interface Function Blocks
(SIFBs). The publish/subscribe and client/server methods are particular types of SIFB
called Communication Interface Function Blocks (CIFBs), proposed for unidirectional and
bidirectional communication, respectively. The hardware vendors provide the necessary
communication functionalities, preventing developers from building these interfaces. Both
MQTT and HTTP applications use publish/subscribe and client/server methods available
in 4diac.

Case Study for Validation

The IEC 61499 has FB that enables communication using the OPC UA framework. The
IEC 61499 offers all the structures required by a reference architecture model to communi-
cate. Figure 2 shows the encapsulation of an Industry 4.0 Communication layer.

The case study uses a car factory painting environment to test the communication and
interoperability between the IEEE 1451 family of standards and the IEC 61499 standard.
The quality of painting work depends on room temperature, and it is necessary to acquire
temperature values from the painting sector and send them to the project partners.

The acquired data allows precise painting quality for the next step in the production
chain, located in another part of the world, for example, in the USA. The user’s case scenario
is shown in Figure 3.

The IEEE 1451 standard interfaces with the transducers, getting data from a temper-
ature sensor connected to a TIM. At the same time, the IEC 61499 standard controls the
procedure that requests and receives the data. The case study objectives are:

- to combine the IEC 61499 and the IEEE 1451 and achieve a syntactical level of interop-
erability;

- to allow both standards to manage data in the reference architecture model. This case
uses the IIRA;

- to compare the publish/subscribe and client/server methods, highlighting the advan-
tages and disadvantages of each one.

The IEC 61499 supports OPC UA in the framework layer, covering all the layers
present inside the communication layer of the IIRA, enabling the IEC 61499 to send data for
the upper layer of the communication present in IIRA, and finishing at the business layer.

Sensors 2022, 22, 1495 8 of 19Sensors 2022, 22, x FOR PEER REVIEW 8 of 20

Figure 3. Case study representing a car painting line in a production plant.

The IEC 61499 supports OPC UA in the framework layer, covering all the layers pre-
sent inside the communication layer of the IIRA, enabling the IEC 61499 to send data for
the upper layer of the communication present in IIRA, and finishing at the business layer.

4. Implementation Evaluation
This section presents the testbench that implements the scenarios to test, followed by

the test steps. Test scenario 1 uses the MQTT protocol, and test scenario 2 uses the HTTP
protocol. Two different situations are evaluated in each of the scenarios. In the first situa-
tion, the communication starts in Portugal, ordering the data acquisition in Portugal, and
finishes in Portugal. In the second situation, the transmission begins in the USA for data
acquisition in Portugal and is sent to the USA.

4.1. Sensor Implementation
The sensor is implemented inside a TIM as defined by the IEEE 1451 standards. A

state machine manages the internal operation of a TIM. The TIM replies to particular com-
mands sent from the NCAP to the TIM at each state. There are three operating states: “TIM
Initialization”, “TIM Active”, and “Sleep”. The TIM Active state is composed of three
other states: “Transducer Initialization”, “Transducer Idle”, and “Transducer Operating”.
There is a specific command for each one of these states, also, commands for all states and
state groups. The “Reset” command is the unique command for all states; it can be trig-
gered at any time and places the TIM on the “TIM initialization” state [20].

The TIM initialization process starts at TIM’s power-up or after the execution of a
hardware reset. When the TIM starts, it goes to the “TIM Initialization State” to read all
the TEDS implemented inside the TIM, placing all the information and configuration data
in the TEDS at the RAM and enabling the “Common Commands to TIM and Trans-
ducerChannel”. After that, it finishes the initialization process.

When the TIM receives a command from the “Common Commands to TIM and
TransducerChannel”, the TIM changes to the “TIM Active” state. These commands con-
tain destination addresses to the TIM or a TransducerChannel inside it, command class,
and function.

The TIM on the “Transducer Idle” state enables the reception of commands to change
TIM’s operation defined previously inside the TEDSs and loaded to TIM’s RAM. The

Figure 3. Case study representing a car painting line in a production plant.

4. Implementation Evaluation

This section presents the testbench that implements the scenarios to test, followed
by the test steps. Test scenario 1 uses the MQTT protocol, and test scenario 2 uses the
HTTP protocol. Two different situations are evaluated in each of the scenarios. In the first
situation, the communication starts in Portugal, ordering the data acquisition in Portugal,
and finishes in Portugal. In the second situation, the transmission begins in the USA for
data acquisition in Portugal and is sent to the USA.

4.1. Sensor Implementation

The sensor is implemented inside a TIM as defined by the IEEE 1451 standards. A state
machine manages the internal operation of a TIM. The TIM replies to particular commands
sent from the NCAP to the TIM at each state. There are three operating states: “TIM
Initialization”, “TIM Active”, and “Sleep”. The TIM Active state is composed of three other
states: “Transducer Initialization”, “Transducer Idle”, and “Transducer Operating”. There
is a specific command for each one of these states, also, commands for all states and state
groups. The “Reset” command is the unique command for all states; it can be triggered at
any time and places the TIM on the “TIM initialization” state [20].

The TIM initialization process starts at TIM’s power-up or after the execution of a
hardware reset. When the TIM starts, it goes to the “TIM Initialization State” to read all the
TEDS implemented inside the TIM, placing all the information and configuration data in the
TEDS at the RAM and enabling the “Common Commands to TIM and TransducerChannel”.
After that, it finishes the initialization process.

When the TIM receives a command from the “Common Commands to TIM and
TransducerChannel”, the TIM changes to the “TIM Active” state. These commands contain
destination addresses to the TIM or a TransducerChannel inside it, command class, and
function.

The TIM on the “Transducer Idle” state enables the reception of commands to change
TIM’s operation defined previously inside the TEDSs and loaded to TIM’s RAM. The “Sam-
pling Mode”, “Data Transmission Mode”, and “Buffered state” are some of the operating
parameters that can be changed.

Sensors 2022, 22, 1495 9 of 19

At the “Transducer Operating” state, there are four commands that can be sent to the
TIM, these commands are: “Trigger”, “Trigger Abort”, “Read TransducerChannel date-set
segment”, and “Write TransducerChannel data-set segment”.

The Trigger command can be addressed to a transducer channel, a transducer channel
proxy, a group of addresses, or to all the transducer channels inside the TIM. The “Trigger
Abort” command ends when a command “Trigger Abort” is received, and the “Trigger”
command ends.

When the TIM receives a “Read TransducerChannel data-set segment” command from
the NCAP, the TIM verifies the “sampling mode” configured for the sensor. The sensor
starts to acquire the values and sends the answer to the NCAP. The IEEE 1451 standards
specify five “sample modes”: “Trigger-initiated”, “Free-running without pre-trigger”,
“Free-running with pre-trigger”, “Continuous sampling”, and “Immediate operation”. A
transducer configured with “Immediate operation” will immediately acquire values from
the sensor and answer the “Read TransducerChannel data-set segment”. The reception of
this will work as a trigger for the transducer.

The reception of a “Write TransducerChannel data-set segment” command from the
NCAP starts the digital to analogue conversion process, making the value available to the
actuator placing it on the transducer channel port.

Figure 4 graphically shows the machine state and state transitions inside the TIM. For
each state, the supported commands are also shown.

A suite of tools developed to help build a TIM is available online [38]. A transducer
channel connects the physical sensor to the TIM. A set of TEDS describes different aspects of
the TIM. The TEDS are accessible by the user’s network through the NCAP connected to the
TIM. The Meta TEDS provides the internal structure of the TIM. Each transducer channel
has its own TransducerChannel TEDS that stores all the details about its configuration
and operation. TEDS files were built using the “TIM TEDS Editor”. A project of a new
TIM is built using the TEDS with the “TIM Project Editor”. The generated project is then
imported by the Code Composer Studio [39] and, after functional coding, uploaded in an
MSP430F5529 board.

4.2. Equipment

The NCAP was coded using Python in a Raspberry Pi 3B+. The details about NCAP’s
implementation are available in [40]. The NCAP receives the messages from the user’s
application and interprets them as a command to send to the TIM using the UART connec-
tion. The implementation of the MQTT inside the NCAP uses Eclipse Paho MQTT [41]. For
the HTTP implementation, the Flask project was used [42]. An API receives the request
and answers with the data acquired by the sensor. The TIM was implemented using an
MSP430F5529 board. Details about TIM’s implementation can be found in [38].

The 4diac was installed on a computer with a Windows 10, Core i7, 8 GB RAM, CPU
2.6 GHz, and 1TB HDD, and FORTE was installed in a Raspberry PI 3B at Miami University
Ohio, USA. The second setup was installed in a computer with Windows 7 Ultimate, Intel
Core i5-4440 CPU 3.10 GHz, 4 GB RAM, and 1 TB HDD, and FORTE program was installed
in a Raspberry PI 3B+ at the University of Beira Interior (UBI), Portugal. The Wireshark
program [43] was installed with the FORTE program inside the Raspberry devices. Figure 5
presents the experimental setup.

The MQTT broker uses the Mosquitto broker [44] implementing the MQTT v3.1.1. The
HTTP server uses the Flask project implementing HTTP v1, which was installed into a
Raspberry Pi 3B+ at the University of Beira Interior, Portugal. This configuration is shown
in Figure 6.

Sensors 2022, 22, 1495 10 of 19Sensors 2022, 22, x FOR PEER REVIEW 2 of 2

Figure 4. The state machine inside a TIM.

Sensors 2022, 22, 1495 11 of 19

Sensors 2022, 22, x FOR PEER REVIEW 11 of 20

4.2. Equipment
The NCAP was coded using Python in a Raspberry Pi 3B+. The details about NCAP’s

implementation are available in [40]. The NCAP receives the messages from the user’s
application and interprets them as a command to send to the TIM using the UART con-
nection. The implementation of the MQTT inside the NCAP uses Eclipse Paho MQTT [41].
For the HTTP implementation, the Flask project was used [42]. An API receives the re-
quest and answers with the data acquired by the sensor. The TIM was implemented using
an MSP430F5529 board. Details about TIM’s implementation can be found in [38].

The 4diac was installed on a computer with a Windows 10, Core i7, 8 GB RAM, CPU
2.6 GHz, and 1TB HDD, and FORTE was installed in a Raspberry PI 3B at Miami Univer-
sity Ohio, USA. The second setup was installed in a computer with Windows 7 Ultimate,
Intel Core i5-4440 CPU 3.10 GHz, 4 GB RAM, and 1 TB HDD, and FORTE program was
installed in a Raspberry PI 3B+ at the University of Beira Interior (UBI), Portugal. The
Wireshark program [43] was installed with the FORTE program inside the Raspberry de-
vices. Figure 5 presents the experimental setup.

Figure 5. Experimental setup.

The MQTT broker uses the Mosquitto broker [44] implementing the MQTT v3.1.1.
The HTTP server uses the Flask project implementing HTTP v1, which was installed into
a Raspberry Pi 3B+ at the University of Beira Interior, Portugal. This configuration is
shown in Figure 6.

Figure 5. Experimental setup.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 20

Figure 6. HTTP and MQTT communication.

4.3. Proposed Test
A description of the communication process will be presented next. The main goal is

to illustrate the differences between the client/server and publish/subscribe communica-
tion methods to connect the IEEE 1451 and IEC 61499 standards. An NCAP at UBI labor-
atory connects a TIM to the network. The TIM implements a temperature sensor that ac-
quires the temperature value requested during the tests. The test steps to follow are:
1. Start the FORT Program in a Raspberry Pi 3B+;
2. Start Wireshark to capture the packets;
3. Start the 4diac program;
4. Using the MQTT protocol, the topic is subscripted to receive data, and starts to pub-

lish to the topic to request data every 10 min. Using the HTTP protocol, request the
data using a URL every 10 min;

5. Perform the test for five days~40 thousand messages;
6. Stop Wireshark;
7. Analyze results.

Tests results will help understand how to take advantage of each protocol’s charac-
teristics, depending on the application. The communication using the MQTT inside the
IEC 61499 4diac program uses a Subscribe and a Publish FB. In comparison, the commu-
nication with the HTTP protocol uses a single Client FB. Figure 7 illustrates the implemen-
tation procedure.

Local Network (UBI-Portugal)

HTTP Communication

FORTE
Request

Response
HTTP Server

Request

Response

Request

Response
NCAP

Response

Request

PortugalUSA

TIM
FORTE

HTTP Server

External Network (Miami-USA)

Response

Request

Response
NCAP

Request
TIM

Local Network (UBI-Portugal)

FORTE
Publisher

Subscriber
MQTT Broker

Publisher

Subscriber

Request

Response
NCAP

Subscriber

Publisher

PortugalUSA

TIM
FORTE

MQTT Broker

External Network (Miami-USA)

Subscriber

Request

Response
NCAP

Publisher
TIM

MQTT Communication

Figure 6. HTTP and MQTT communication.

Sensors 2022, 22, 1495 12 of 19

4.3. Proposed Test

A description of the communication process will be presented next. The main goal is to
illustrate the differences between the client/server and publish/subscribe communication
methods to connect the IEEE 1451 and IEC 61499 standards. An NCAP at UBI laboratory
connects a TIM to the network. The TIM implements a temperature sensor that acquires
the temperature value requested during the tests. The test steps to follow are:

1. Start the FORT Program in a Raspberry Pi 3B+;
2. Start Wireshark to capture the packets;
3. Start the 4diac program;
4. Using the MQTT protocol, the topic is subscripted to receive data, and starts to publish

to the topic to request data every 10 min. Using the HTTP protocol, request the data
using a URL every 10 min;

5. Perform the test for five days~40 thousand messages;
6. Stop Wireshark;
7. Analyze results.

Tests results will help understand how to take advantage of each protocol’s character-
istics, depending on the application. The communication using the MQTT inside the IEC
61499 4diac program uses a Subscribe and a Publish FB. In comparison, the communication
with the HTTP protocol uses a single Client FB. Figure 7 illustrates the implementation
procedure.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 20

Figure 7. 4diac MQTT and HTTP FBs.

4.4. Data Processed and Results
The Wireshark application captures packets during the communication process. The

parameters analyzed in the communication process include latency observed in the com-
munication process, packet loss, packet size, and initial retransmission time (iRTT) imple-
mented in both protocols at the TCP level.

The latency observed in the communication is shown in Figure 8. A message is pub-
lished using the MQTT protocol, as shown in Figure 6. The NCAP publishes the answer
to the broker. Both the publisher and subscriber used the QoS 0 supported by the 4diac
program. QoS 1 and QoS 2 are not supported at this moment. For the HTTP protocol, a
‘GET’ command is sent using a client inside the 4diac program. Figure 8 shows that even
publish/subscribe is not developed for request and answer methodology, and was faster
than client/server request and response.

MQTT MQTT HTTP HTTP

Protocols

0

200

400

600

800

1000

1200

1400

La
te

nc
y

in
 m

s

M ean of Latency D uring the C om m unication (R equest and R esponse)

1043.7862 1041.9215 1067.909

1265.0351
Miami University
University of Beira Interior

Figure 7. 4diac MQTT and HTTP FBs.

Sensors 2022, 22, 1495 13 of 19

4.4. Data Processed and Results

The Wireshark application captures packets during the communication process. The
parameters analyzed in the communication process include latency observed in the com-
munication process, packet loss, packet size, and initial retransmission time (iRTT) imple-
mented in both protocols at the TCP level.

The latency observed in the communication is shown in Figure 8. A message is
published using the MQTT protocol, as shown in Figure 6. The NCAP publishes the answer
to the broker. Both the publisher and subscriber used the QoS 0 supported by the 4diac
program. QoS 1 and QoS 2 are not supported at this moment. For the HTTP protocol, a
‘GET’ command is sent using a client inside the 4diac program. Figure 8 shows that even
publish/subscribe is not developed for request and answer methodology, and was faster
than client/server request and response.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 20

Figure 7. 4diac MQTT and HTTP FBs.

4.4. Data Processed and Results
The Wireshark application captures packets during the communication process. The

parameters analyzed in the communication process include latency observed in the com-
munication process, packet loss, packet size, and initial retransmission time (iRTT) imple-
mented in both protocols at the TCP level.

The latency observed in the communication is shown in Figure 8. A message is pub-
lished using the MQTT protocol, as shown in Figure 6. The NCAP publishes the answer
to the broker. Both the publisher and subscriber used the QoS 0 supported by the 4diac
program. QoS 1 and QoS 2 are not supported at this moment. For the HTTP protocol, a
‘GET’ command is sent using a client inside the 4diac program. Figure 8 shows that even
publish/subscribe is not developed for request and answer methodology, and was faster
than client/server request and response.

MQTT MQTT HTTP HTTP

Protocols

0

200

400

600

800

1000

1200

1400

La
te

nc
y

in
 m

s

M ean of Latency D uring the C om m unication (R equest and R esponse)

1043.7862 1041.9215 1067.909

1265.0351
Miami University
University of Beira Interior

Figure 8. Mean of latency request and response.

The latency time for an MQTT subscriber was two times faster than HTTP. Both
protocols have adequate performance, below 300 milliseconds that are expected for message
exchange between continents [45].

These results show that MQTT was faster even with an iRTT delay from the USA,
worse than the local connection in Portugal, as shown in Figure 9a.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 20

Figure 8. Mean of latency request and response.

The latency time for an MQTT subscriber was two times faster than HTTP. Both pro-
tocols have adequate performance, below 300 milliseconds that are expected for message
exchange between continents [45].

These results show that MQTT was faster even with an iRTT delay from the USA,
worse than the local connection in Portugal, as shown in Figure 9a.

The MQTT packet size was smaller than the HTTP package, as shown in Figure 9b.
The MQTT packet size for the publisher and the subscriber is 105 bytes, whereas the HTTP
packet size for request is 136 bytes and for response is 209 bytes. When the sensors get an
error in data acquisition, the error packet size for MQTT was 102 bytes, and the error
package for the HTTP was 504 bytes.

MQTT was faster and used less bandwidth for communication. However, more pack-
ets were lost using the MQTT communication, as shown in Figure 10.

(a) (b)

Figure 9. (a) Mean of iRTT delay; (b) packet size.

Figure 10. Packet loss.

The mean, standards deviation, median, minimum, and maximum values from the
communication time from the communication that starts in Portugal and finishes in Por-
tugal are presented in Table 1, and for communication that starts and ends in the USA are
shown in Table 2.

Table 1. Communication that starts and ends in Portugal.

Time in Milliseconds

PT HTTP Request

PT HTTP Respose

PT HTTP Respose Error

PT MQTT

USA HTTP Request

USA HTTP Respose

USA HTTP Respose Error

USA MQTT
0

20

40

60

80

100

120

140

160

180

200

Ti
m

e
in

 m
s

M ean of the iR TT D elay

3.264065 3.081285 5.150577

19.18179

183.3854 183.3993 183.2336 182.9504
Miami University
University of Beira Interior

PT HTTP Request

PT HTTP Respose

PT HTTP Respose Error

PT MQTT Publisher

PT MQTT Subscriber

PT MQTT Subscriber ERROR

USA HTTP Request

USA HTTP Respose

USA HTTP Respose Error

USA MQTT Publisher

USA MQTT Subscriber

USA MQTT Subscriber ERROR
0

100

200

300

400

500

600

By
te

s

P acket S ize

136

209

503

105 105 102
135

209

504

105 105 102

Miami University
University of Beira Interior

MQTT MQTT HTTP HTTP
Protocols

0

0.05

0.1

0.15

0.2

0.25

Pe
rc

en
ta

ge

P acket Loss

0.077894

 0.21975

0.018839
 0.0116

Miami University
University of Beira Interior

Figure 9. (a) Mean of iRTT delay; (b) packet size.

Sensors 2022, 22, 1495 14 of 19

The MQTT packet size was smaller than the HTTP package, as shown in Figure 9b.
The MQTT packet size for the publisher and the subscriber is 105 bytes, whereas the HTTP
packet size for request is 136 bytes and for response is 209 bytes. When the sensors get
an error in data acquisition, the error packet size for MQTT was 102 bytes, and the error
package for the HTTP was 504 bytes.

MQTT was faster and used less bandwidth for communication. However, more
packets were lost using the MQTT communication, as shown in Figure 10.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 20

Figure 8. Mean of latency request and response.

The latency time for an MQTT subscriber was two times faster than HTTP. Both pro-
tocols have adequate performance, below 300 milliseconds that are expected for message
exchange between continents [45].

These results show that MQTT was faster even with an iRTT delay from the USA,
worse than the local connection in Portugal, as shown in Figure 9a.

The MQTT packet size was smaller than the HTTP package, as shown in Figure 9b.
The MQTT packet size for the publisher and the subscriber is 105 bytes, whereas the HTTP
packet size for request is 136 bytes and for response is 209 bytes. When the sensors get an
error in data acquisition, the error packet size for MQTT was 102 bytes, and the error
package for the HTTP was 504 bytes.

MQTT was faster and used less bandwidth for communication. However, more pack-
ets were lost using the MQTT communication, as shown in Figure 10.

(a) (b)

Figure 9. (a) Mean of iRTT delay; (b) packet size.

Figure 10. Packet loss.

The mean, standards deviation, median, minimum, and maximum values from the
communication time from the communication that starts in Portugal and finishes in Por-
tugal are presented in Table 1, and for communication that starts and ends in the USA are
shown in Table 2.

Table 1. Communication that starts and ends in Portugal.

Time in Milliseconds

PT HTTP Request

PT HTTP Respose

PT HTTP Respose Error

PT MQTT

USA HTTP Request

USA HTTP Respose

USA HTTP Respose Error

USA MQTT
0

20

40

60

80

100

120

140

160

180

200

Ti
m

e
in

 m
s

M ean of the iR TT D elay

3.264065 3.081285 5.150577

19.18179

183.3854 183.3993 183.2336 182.9504
Miami University
University of Beira Interior

PT HTTP Request

PT HTTP Respose

PT HTTP Respose Error

PT MQTT Publisher

PT MQTT Subscriber

PT MQTT Subscriber ERROR

USA HTTP Request

USA HTTP Respose

USA HTTP Respose Error

USA MQTT Publisher

USA MQTT Subscriber

USA MQTT Subscriber ERROR
0

100

200

300

400

500

600

By
te

s

P acket S ize

136

209

503

105 105 102
135

209

504

105 105 102

Miami University
University of Beira Interior

MQTT MQTT HTTP HTTP
Protocols

0

0.05

0.1

0.15

0.2

0.25

Pe
rc

en
ta

ge

P acket Loss

0.077894

 0.21975

0.018839
 0.0116

Miami University
University of Beira Interior

Figure 10. Packet loss.

The mean, standards deviation, median, minimum, and maximum values from the
communication time from the communication that starts in Portugal and finishes in Portu-
gal are presented in Table 1, and for communication that starts and ends in the USA are
shown in Table 2.

Table 1. Communication that starts and ends in Portugal.

Starts in Portugal
Time in Milliseconds

Mean Std. Deviation Median Minimum Maximum

MQTT 1043.78 68.00 1035.85 0.0859 8030.33
MQTT With Error 1016.80 59.22 1016.80 23.273 1844.56

HTTP 1067.90 44.35 1062.10 108.566 4555.97
HTTP With Error 2056.31 193.09 2069.34 50.254 3299.96

Table 2. Communication that starts and ends in the USA.

Starts in the USA
Time in Milliseconds

Mean Std. Deviation Median Minimum Maximum

MQTT 1041.92 48.55 1038.60 0 4121.90
MQTT With Error 1024.01 42.07 1019.66 25.226 1560.68

HTTP 1265.03 693.42 1245.54 278.988 66107.82
HTTP With Error 2259.56 1099.64 2251.10 220.87 67149.64

4.5. Evaluation and Discussion

Interoperability problems arrive from vendors offering different platforms to access
data acquired in Industry 4.0 vendors, such as architectures, protocols, and semantics [46].
Two or more systems can exchange information and collaborate following diverse standards
and architectures. Interoperability and reference architecture models can benefit from
standardization, for example, the IIRA, as this work implemented. The IEEE 1451 family
of standards was used to implement the device that acquires data, and the IEC 61499 was

Sensors 2022, 22, 1495 15 of 19

followed in the implementation of the control and monetarization system. Those standards
are implemented inside the IIRA Function layer. Addressing interoperability was pursued
using two paradigms: publish/subscribe and client/server.

For Industry 4.0, this paper studied characteristics such as the acquisition of data
in real-time, communication, and monitoring. Two experimental setups were built and
connected to a local network located at UBI, Portugal and an external network located
at Miami, USA. Both universities had identical implementations for publish/subscribe
and client/server methods. The IEEE 1451 family of standards and the IEC 61499 stan-
dard promote a syntactical level of interoperability using the application protocols MQTT
and HTTP.

Latencies of data requests with origin in local and external networks using the MQTT
and HTTP protocols are compared in Figure 8. Latency measures the elapsed time that goes
from a MQTT publisher to publish a request to the corresponding topic inside the MQTT
broker to the receiving of the requested information by the MQTT subscriber. Whereas,
with the HTTP protocol, the latency is measured from the HTTP client sending the request
to the HTTP server answer. For both cases, the IEC 61499 FORTE is the agent that always
sends the requests. Data is collected by Wireshark and processed using MATLAB. From
Figure 8, it is possible to conclude that even for MQTT, the local publisher/subscriber
machine at UBI and MQTT external publisher/subscriber at Miami have similar answering
times. It should be noticed that the sensor requires at least one second to acquire the
temperature. The latency measured using the MQTT protocol for the local network was
43 ms and for the external network was 41 ms.

In contrast, retrieving data from the HTTP server, located at UBI, from a HTTP client
located in an external network requires more time, precisely 265 ms. In comparison, it
takes less time to retrieve the data for a client located in the local network. In [47] the
author estimates the latency for an IIoT network in the same continent as 50 ms and
between different continents as 300 ms. Both protocols, in local or external networks, had
an excellent performance. The author in [48] establishes the latency for scale reading as
100 ms, making the MQTT and HTTP protocols, in a local network, adequate for Industry
4.0 reading data. In comparison, external requests to the HTTP server located at UBI takes
longer to receive the data.

The communication packet size is compared in Figure 9b. It can be observed that they
have similar sizes in the local and external networks. It is also possible to observe that a
HTTP packet is almost twice as large as a MQTT packet, resulting in lower communication
performance, as presented in Figure 8. However, when a sensor generates an error, the
packet size for HTTP is bigger than the MQTT package because the HTTP server sends the
page error, whereas the MQTT subscribers receive an empty message. In [48] the author
requires a packet size of 512 bytes for scale reading systems, and the results present a packet
size lower than the requirement.

Packet losses during the communication are shown in Figure 10. One of the main
characteristics of a real-time industrial environment is communication reliability. The
MQTT protocol is faster and lighter. However, both in local and external networks, packet
loss is higher when compared with the HTTP protocol. The HTTP performance in external
networks is the best, similar to local networks. Figure 10 concludes that the HTTP protocol
is more reliable at the moment with the implementation of IEC 61499 for measurement and
control, whereas the MQTT is fast and lighter and can be used for an industrial application
that does not need high reliability.

Some limitations can be identified in the MQTT protocols since it has three Qualities
of Service (QoS). The IEC 61499 FORTE only implements the QoS 0 with no confirmation
message. In the future, if FORTE implements QoS 1 and QoS 2, the reliability of MQTT can
increase. For the author in [48], the reliability for scale reading is 99%, which is achieved by
the HTTP local and external networks. Whereas, the MQTT local network had a reliability
of 93% and MQTT external network had 79%.

Sensors 2022, 22, 1495 16 of 19

The better protocol solution when reliability is not the focus is the MQTT, which is
faster, lighter, and consumes less bandwidth. The HTTP protocol is better for reliable
communication. The MQTT protocol opens a connection and sends all the messages inside
of it. In contrast, HTTP opens a connection for every request. However, the HTTP can wait
for the request for longer periods of time, as presented in the maximum latency time in an
external network, as presented in Table 2, that affects the mean latency network.

Both protocols can be used for the IIRA communication layer and promote a syntactical
level of interoperability between the IEEE 1451 and IEC 61499.

5. Conclusions

Communication has an essential role inside the Industry 4.0 environment. The ref-
erence architecture models were developed to specify how the communication needs to
occur. The IIRA inside of this functional viewpoint presents the communication layer. For
the transport layer of reference architecture models, MQTT and HTTP can be used. From
the ISO/OSI, MQTT and HTTP are inside the Application layer. It enables the syntactical
level of interoperability between the standards used inside of Industry 4.0.

The IEEE 1451 family of standards provides what is necessary to work with trans-
ducers, from data acquisition to data conversion, sharing data with other infrastructures
implemented with other standards, using one of the application protocols. Whereas the
IEC 61499 can be used to control and manage the sensors, also, it provides a framework
layer of IIRA by the implementation of OPC UA, promoting semantic interoperability. The
joining of the IEEE 1451 and IEC 61499 complete the requirements for the IIRA commu-
nication layer. Consequently, both protocols can be used for communication inside an
I4.0 environment.

Both standards support the MQTT and HTTP protocols. The tests showed that MQTT
protocol has a better performance when the message size and latency is the main point for
communication. The HTTP has a better performance when a reliable connection is needed.

Some limitations can be identified in the setup. The IEEE 1451 family of standards
and the IEC 61499 standard can only interoperate using the MQTT and HTTP. IEEE 1451.1
enables TCP/UDP, HTTP, WebServices, XMPP, and MQTT communication protocols. The
IEC 61499 supports OPC UA, HTTP, ROS, MQTT, FMI, TSN, FBDK/IP, Modbus, OPC DA,
OpenPOWERLINK, and Arrowhead. Even IEEE 1451 and IEC 61499 do not support other
protocols that can commonly be used by Industry 4.0, such as CoAP and AMPQ.

Another limitation identified was that the MQTT developed inside the IEC 6499
FORTE only supports QoS 0. The IEEE 1451.1 MQTT supports QoS 0, QoS 1, and QoS 2.
This limitation can influence message delivery once QoS 1 and QoS 2 have a confirmation
message. Sending a message with QoS 1 from IEEE 1451.1 NCAP, the IEC 61499 only was
allowed to receive QoS 0 messages from the broker. The same occurs for HTTP that the
tools only support HTTP/1.0, and it interferes with the reliability of the message delivery.

Future research will focus on eliminating the framework layer of the IIRA and pro-
moting semantic interoperability directly from the IEEE 1451 standard.

Author Contributions: Conceptualization, H.d.R. and R.A.; methodology, H.d.R.; software, H.d.R.,
R.A. and J.P.; validation, H.d.R., R.A. and A.E.S.; formal analysis, H.d.R.; investigation, H.d.R. and
R.A.; resources, R.A. and A.E.S.; data curation, H.d.R.; writing—original draft preparation, H.d.R.;
writing—review and editing, R.A., J.P. and A.E.S.; visualization, H.d.R.; supervision, R.A. and A.E.S.;
project administration, A.E.S.; funding acquisition, A.E.S. All authors have read and agreed to the
published version of the manuscript.

Funding: Helbert da Rocha, João Pereira, and Antonio Espirito Santo were funded by the Project
“INDTECH 4.0—Novas Tecnologias para Fabricação Inteligente”, project grant No. POCI-01-0247-
FEDER-026653.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Sensors 2022, 22, 1495 17 of 19

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AMQP Advanced Message Queuing Protocol
API Application Programming Interface
CoAP Constrained Application Protocol
CIFB Communication Interface Function Blocks
CPS Cyber-Physical Systems
CPPS Cyber-Physical Production Systems
FB Function Block
HTTP Hypertext Transfer Protocol
I4.0 Industry 4.0
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IIoT Industrial Internet of Things
IIRA Industrial Internet Reference Architecture
IoT Internet of Things
iRTT Initial Retransmission Time
ISO International Organization for Standardization
IT Information Technology
M2M Machine to Machine
MQTT Message Queue Telemetry Transport
ms Milliseconds
NCAP Network Capable Application Processor
OPC UA Open Platform Communications Unified Architecture
OSI Open Systems Interconnection
OT Operational Technology
PLC Programmable Logic Controller
PT Portugal
QoS Quality of Service
RAMI 4.0 Reference Architecture Model for Industry 4.0
SIFB Service Interface Function Blocks
SMTP Simple Mail Transfer Protocol
SSN Semantic Sensor Network
TEDS Transducer Electronic Data Sheet
TCP Transmission Control Protocol
TIM Transducer Interface Module
UART Universal Asynchronous Receiver-Transmitter
UBI University of Beira Interior
URL Uniform Resource Locator
USA United States of America
XMPP Extensible Messaging and Presence Protocol

References
1. Weyrich, M.; Ebert, C. Reference Architectures for the Internet of Things. IEEE Softw. 2016, 33, 112–116. [CrossRef]
2. Pisching, M.A.; Pessoa, M.A.O.; Junqueira, F.; dos Santos Filho, D.J.; Miyagi, P.E. An Architecture Based on RAMI 4.0 to Discover

Equipment to Process Operations Required by Products. Comput. Ind. Eng. 2018, 125, 574–591. [CrossRef]
3. Givehchi, O.; Landsdorf, K.; Simoens, P.; Colombo, A.W. Interoperability for Industrial Cyber-Physical Systems: An Approach for

Legacy Systems. IEEE Trans. Ind. Inform. 2017, 13, 3370–3378. [CrossRef]
4. Wollschlaeger, M.; Debes, T.; Kalhoff, J.; Wickinger, J.; Dietz, H.; Feldmeier, G.; Michels, J.; Scholing, H.; Billmann, M. Communica-

tion in the Context of Industrie 4.0; ZVEI e. V.: Frankfurt, Germany, 2019.
5. Nilsson, J.; Sandin, F. Semantic Interoperability in Industry 4.0: Survey of Recent Developments and Outlook. In Proceedings of

the 2018 IEEE 16th International Conference on Industrial Informatics (INDIN), Porto, Portugal, 18–20 July 2018; pp. 127–132.
6. ISO/IEC/IEEE 24765: 2017 (E); IEC/IEEE International Standard-Systems and Software Engineering–Vocabulary. IEEE: Geneva,

Switzeland, 2017; 1–541. [CrossRef]

http://doi.org/10.1109/MS.2016.20
http://doi.org/10.1016/j.cie.2017.12.029
http://doi.org/10.1109/TII.2017.2740434
http://doi.org/10.1109/IEEESTD.2017.8016712

Sensors 2022, 22, 1495 18 of 19

7. Noura, M.; Atiquzzaman, M.; Gaedke, M. Interoperability in Internet of Things: Taxonomies and Open Challenges. Mob. Netw.
Appl. 2019, 24, 796–809. [CrossRef]

8. Banks, A.; Briggs, E.; Borgendale, K.; Gupta, R. MQTT Version 5.0. OASIS Stand. 2019, 1, 1–137.
9. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies,

Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [CrossRef]
10. Žarko, I.P.; Mueller, S.; Płociennik, M.; Rajtar, T.; Jacoby, M.; Pardi, M.; Insolvibile, G.; Glykantzis, V.; Antonić, A.; Kušek, M.; et al.

The SymbIoTe Solution for Semantic and Syntactic Interoperability of Cloud-Based IoT Platforms. In Proceedings of the 2019
Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–6.

11. Da Cruz, M.A.A.; Rodrigues, J.J.P.C.; Al-Muhtadi, J.; Korotaev, V.V.; de Albuquerque, V.H.C. A Reference Model for Internet of
Things Middleware. IEEE Internet Things J. 2018, 5, 871–883. [CrossRef]

12. Zaman, N. Wireless Sensor Networks and Energy Efficiency: Protocols, Routing and Management: Protocols, Routing and Management;
Premier Reference Source; Information Science Reference; IGI Global: Hershey, PA, USA, 2012; ISBN 9781466601024.

13. Alliance, O. Onem2m: Standards for M2M and the Internet of Things. Available online: https://www.onem2m.org (accessed on
28 October 2020).

14. Mahnke, W.; Leitner, S.-H.; Damm, M. OPC Unified Architecture; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 2009.

15. Desai, P.; Sheth, A.; Anantharam, P. Semantic Gateway as a Service Architecture for IoT Interoperability. In Proceedings of the
2015 IEEE International Conference on Mobile Services, New York, NY, USA, 27 June–2 July 2015; pp. 313–319.

16. Abrishambaf, R.; Da Rocha, H.; Espirito-Santo, A. IEC 61499 and IEEE 1451 for Distributed Control and Measurement Systems.
In Proceedings of the IECON Proceedings (Industrial Electronics Conference), Toronto, ON, Canada, 13–16 October 2021.

17. The Industrial Internet of Things Volume G1: Reference Architecture; Industry IoT Consortium: Boston, MA, USA, 2019.
18. Löwen, U.; Neubert, R.; Bachmann, G.; IIC, S.M.; Munz, H. Architecture Alignment and Interoperability; Industry IoT Consortium:

Boston, MA, USA, 2017.
19. Song, E.Y.; Lee, K. Understanding IEEE 1451-Networked Smart Transducer Interface Standard—What Is a Smart Transducer?

IEEE Instrum. Meas. Mag. 2008, 11, 11–17. [CrossRef]
20. IEEE Std 1451.0-2007; IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communi-

cation Protocols, and Transducer Electronic Data Sheet (TEDS) Formats. IEEE: New York, NY, USA, 2007; 1–335. [CrossRef]
21. ISO/IEC/IEEE 21451-1:2010(E); ISO/IEC/IEEE Information Technology—Smart Transducer Interface for Sensors and Actuators—

Part 1: Network Capable Application Processor (NCAP) Information Model. IEEE: New York, NY, USA, 2010; 1–356. [CrossRef]
22. IEEE Std 1451.5-2007; IEEE Standard for a Smart Transducer Interface for Sensors and Actuators Wireless Communication

Protocols and Transducer Electronic Data Sheet (TEDS) Formats. IEEE: New York, NY, USA, 2007; C1-236. [CrossRef]
23. Pinto, R.; Pereira, J.; da Rocha, H.; Martin, R.I.; Santo, A.E. A Discussion about the Implementation of a WSN to Industry 4.0

Based on the IEEE 1451 Standard. In Proceedings of the IEEE International Conference on Industrial Informatics (INDIN),
Helsinki-Espoo, Finland, 22–25 July 2019; pp. 22–25.

24. International Electrotechnical Commission. IEC 61499: Function Blocks, 1st ed.; International Electrotechnical Commission:
Geneva, Switzerland, 2005.

25. Abrishambaf, R.; Hashemipour, M.; Bal, M. Structural Modeling of Industrial Wireless Sensor and Actuator Networks for
Reconfigurable Mechatronic Systems. Int. J. Adv. Manuf. Technol. 2013, 64, 793–811. [CrossRef]

26. Christensen, J.H. IEC 61499 A Standard for Software Reuse in Embedded, Distributed Control Systems. HOLOBLOC Inc. Resour.
New Gener. Autom. Control Softw.. 2019. Available online: https://holobloc.com/ (accessed on 23 March 2021).

27. Saito, K.; Nishi, H. Application Protocol Conversion Corresponding to Various IoT Protocols. In Proceedings of the IECON 2020
the 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 19–21 October 2020; pp. 5219–5225.

28. Gleim, L.; Pennekamp, J.; Liebenberg, M.; Buchsbaum, M.; Niemietz, P.; Knape, S.; Epple, A.; Storms, S.; Trauth, D.; Bergs, T.; et al.
FactDAG: Formalizing Data Interoperability in an Internet of Production. IEEE Internet Things J. 2020, 7, 3243–3253. [CrossRef]

29. Roffia, L.; Morandi, F.; Kiljander, J.; D’Elia, A.; Vergari, F.; Viola, F.; Bononi, L.; Salmon Cinotti, T. A Semantic Publish-Subscribe
Architecture for the Internet of Things. IEEE Internet Things J. 2016, 3, 1274–1296. [CrossRef]

30. Derhamy, H.; Eliasson, J.; Delsing, J. IoT Interoperability—On-Demand and Low Latency Transparent Multiprotocol Translator.
IEEE Internet Things J. 2017, 4, 1754–1763. [CrossRef]

31. Da Rocha, H.; Espirito-Santo, A.; Abrishambaf, R. Semantic Interoperability in the Industry 4.0 Using the IEEE 1451 Standard. In
Proceedings of the IECON Proceedings (Industrial Electronics Conference), Singapore, 18–21 October 2020.

32. Xiao, G.; Guo, J.; Da Xu, L.; Gong, Z. User Interoperability with Heterogeneous IoT Devices through Transformation. IEEE Trans.
Ind. Inform. 2014, 10, 1486–1496. [CrossRef]

33. Wukkadada, B.; Wankhede, K.; Nambiar, R.; Nair, A. Comparison with HTTP and MQTT in Internet of Things (IoT). In
Proceedings of the 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India,
11–12 July 2018; pp. 249–253.

34. Yokotani, T.; Sasaki, Y. Comparison with HTTP and MQTT on Required Network Resources for IoT. In Proceedings of the 2016
international conference on control, electronics, renewable energy and communications (ICCEREC), Bandung, Indonesia, 13–15
September 2016; pp. 1–6.

http://doi.org/10.1007/s11036-018-1089-9
http://doi.org/10.1109/COMST.2015.2444095
http://doi.org/10.1109/JIOT.2018.2796561
https://www.onem2m.org
http://doi.org/10.1109/MIM.2008.4483728
http://doi.org/10.1109/IEEESTD.2007.4338161
http://doi.org/10.1109/IEEESTD.2010.5668469
http://doi.org/10.1109/IEEESTD.2007.4346346
http://doi.org/10.1007/s00170-012-4070-y
https://holobloc.com/
http://doi.org/10.1109/JIOT.2020.2966402
http://doi.org/10.1109/JIOT.2016.2587380
http://doi.org/10.1109/JIOT.2017.2697718
http://doi.org/10.1109/TII.2014.2306772

Sensors 2022, 22, 1495 19 of 19

35. Naik, N. Choice of Effective Messaging Protocols for IoT Systems: MQTT, CoAP, AMQP and HTTP. In Proceedings of the 2017
IEEE international systems engineering symposium (ISSE), Vienna, Austria, 11–13 October 2017; pp. 1–7.

36. Yli-Ojanperä, M.; Sierla, S.; Papakonstantinou, N.; Vyatkin, V. Adapting an Agile Manufacturing Concept to the Reference
Architecture Model Industry 4.0: A Survey and Case Study. J. Ind. Inf. Integr. 2018, 15, 147–160. [CrossRef]

37. Higuera, J.; Polo, J. Interoperability in wireless sensor networks based on IEEE 1451 standard. In Wireless Sensor Networks and
Energy Efficiency: Protocols, Routing and Management; IGI Global: Hershey, PA, USA, 2012; pp. 47–69. ISBN 9781466601017.
[CrossRef]

38. Pereira, J.; da Rocha, H.; Espírito Santo, A. A Platform for IEEE 1451 Standard’s Education, Development and Validation for
Industry 4.0. In Proceedings of the 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
(I2MTC 2020), Dubrovnik, Croatia, 25–28 May 2020.

39. Studio, C.C. Getting Started Guide; Texas Instruments: Dallas, TX, USA, 2006.
40. Lee, K.B.; Song, E.Y. Object-Oriented Application Framework for IEEE 1451.1 Standard. IEEE Trans. Instrum. Meas. 2005, 54,

1527–1533. [CrossRef]
41. Eclipse Paho Paho MQTT and MQTT-SN. Available online: https://www.eclipse.org/paho/ (accessed on 10 January 2021).
42. Pallets Flask Web Development, One Drop at a Time. Available online: https://palletsprojects.com/p/flask/ (accessed on 12

February 2021).
43. Foundation, W. Wireshark. Available online: https://www.wireshark.org (accessed on 20 February 2021).
44. Light, R.A. Mosquitto: Server and Client Implementation of the MQTT Protocol. J. Open Source Softw. 2017, 2, 1–265. [CrossRef]
45. Silva, D.R.C.; Oliveira, G.M.B.; Silva, I.; Ferrari, P.; Sisinni, E. Latency Evaluation for MQTT and WebSocket Protocols: An Industry

4.0 Perspective. In Proceedings of the 2018 IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil, 25–28
June 2018; pp. 1233–1238.

46. Bröring, A.; Schmid, S.; Schindhelm, C.-K.; Khelil, A.; Käbisch, S.; Kramer, D.; Le Phuoc, D.; Mitic, J.; Anicic, D.; Teniente, E.
Enabling IoT Ecosystems through Platform Interoperability. IEEE Softw. 2017, 34, 54–61. [CrossRef]

47. Ferrari, P.; Sisinni, E.; Brandão, D.; Rocha, M. Evaluation of Communication Latency in Industrial IoT Applications. In Proceedings
of the 2017 IEEE International Workshop on Measurement and Networking (M N), Naples, Italy, 27–29 September 2017; pp. 1–6.

48. Kalør, A.E.; Guillaume, R.; Nielsen, J.J.; Mueller, A.; Popovski, P. Network Slicing in Industry 4.0 Applications: Abstraction
Methods and End-to-End Analysis. IEEE Trans. Ind. Inform. 2018, 14, 5419–5427. [CrossRef]

http://doi.org/10.1016/j.jii.2018.12.002
http://doi.org/10.4018/978-1-4666-0101-7.ch004
http://doi.org/10.1109/TIM.2005.851225
https://www.eclipse.org/paho/
https://palletsprojects.com/p/flask/
https://www.wireshark.org
http://doi.org/10.21105/joss.00265
http://doi.org/10.1109/MS.2017.2
http://doi.org/10.1109/TII.2018.2839721

	Introduction
	Background
	Industrial Internet Reference Architecture
	IEEE 1451 Family of Standards
	IEC 61499 Standard
	Related Works

	Methodology
	Implementation Evaluation
	Sensor Implementation
	Equipment
	Proposed Test
	Data Processed and Results
	Evaluation and Discussion

	Conclusions
	References

