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Abstract: An increasing number of people own dogs due to the emotional benefits they bring to
their owners. However, many owners are forced to leave their dogs at home alone, increasing the
risk of developing psychological disorders such as separation anxiety, typically accompanied by
complex behavioral symptoms including excessive vocalization and destructive behavior. Hence,
this work proposes a multi-level hierarchical early detection system for psychological Separation
Anxiety (SA) symptoms detection that automatically monitors home-alone dogs starting from the
most fundamental postures, followed by atomic behaviors, and then detecting separation anxiety-
related complex behaviors. Stacked Long Short-Term Memory (LSTM) is utilized at the lowest level
to recognize postures using time-series data from wearable sensors. Then, the recognized postures
are input into a Complex Event Processing (CEP) engine that relies on knowledge rules employing
fuzzy logic (Fuzzy-CEP) for atomic behaviors level and higher complex behaviors level identification.
The proposed method is evaluated utilizing data collected from eight dogs recruited based on clinical
inclusion criteria. The experimental results show that our system achieves approximately an F1-score
of 0.86, proving its efficiency in separation anxiety symptomatic complex behavior monitoring of a
home-alone dog.

Keywords: complex event processing (CEP); long short-term memory (LSTM); fuzzy logic; pattern
recognition; separation anxiety; animal–computer interaction (ACI); sensor

1. Introduction

The number of dogs raised as pets increased due to the beneficial impacts on the
owners’ mental health, which is more evident for owners living alone or with fewer family
members [1–3]. Unfortunately, despite owners being emotionally attached to their dogs,
it is practically unfeasible for them to constantly look after their dogs. Thus, owners are
forced to leave them at home alone in some cases, increasing the risks of dogs developing
psychological disorders such as Separation Anxiety (SA) [4,5]. The latter is considered
the most common dog psychiatric disorder, often accompanied by complex behavioral
symptoms, such as high-frequency destructive behavior, which damages their surrounding
environment, e.g., furniture and appliances, and excessive vocalization, which disturbs the
neighboring community [6–8]. In addition, these undesired complex behavioral symptoms
are the primary reasons forcing owners to relinquish their dogs [9,10]. In America alone,
nearly 670,000 dogs are euthanized each year, mainly due to behavioral problems related
to psychiatric disorders [11]. Therefore, to improve dogs’ welfare and prevent them from
developing separation anxiety, it is necessary to observe and monitor abnormal complex
behavioral symptoms in advance and treat them successfully [10]. However, since SA is
only triggered by the owner’s real or perceived absence [12], direct observation revealing
the dog’s behavioral symptoms can be disruptive. In the past 20 years, SA symptom
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observation in dogs was already studied utilizing subjective ratings such as interviewing
the owners [6,12] or relying on manual behavior recognition from recorded videos [4,6].
Nevertheless, these methods are laborious and inefficient, and they cannot automatically
detect the early psychological symptoms of SA.

Spurred by the deficiencies of current methods, this study aims to propose a novel
approach based on computer techniques, instead of manual methods, to automatically
monitor a cage-free dog’s early primary SA symptomatic complex behaviors identified as
‘Excessive destructive behavior’, ‘Excessive exploratory behavior’, and ‘Excessive vocal-
ization’. The current recording-based manual observation scheme first observes the dog’s
head and body postures (poses and motions) to identify the atomic behaviors and then
aggregate the latter into complex behaviors [6,8,13–15]. By summarizing these observation
methods, we created a taxonomy of the dog activities involving the three levels presented
in Table 1. Level-1 activities represent a dog’s body pose or motion at a specific time [16].
In this case, a set of head or body postures compose an atomic behavior. For example, the
‘Walking’ behavior comprises a set of ‘Walk’ postures. Accordingly, the Level-2 activities
represent the dog’s atomic behavior, a fundamental behavior [4,17]. Finally, the Level-3
activities represent the dog’s abnormal complex behavior, divisible and aggregated by a
set of high-frequency atomic behaviors [4,8]. For instance, the complex abnormal behav-
ior of ‘Excessive vocalization’ is aggregated by a set of high-frequency ‘Barking’ atomic
behaviors [8,10,18].

Table 1. Dog monitoring system hierarchy and activity definitions. (Types: (M)—Motion; (P)—Pose).

Level Category Name
(Type) Description

Related
Lower-Level

Activity

Observation
Time

Level 1

Head
posture

Up (P) Head is higher than the shoulders and body. -

1 s

Down (P) Head is lower than shoulders and body. -
Bark (M) Bark movement. -

Body
posture

Walk (M) Gait motion. -
Lie (P) Side of the dog is in contact with the ground. -

Sit (P) Haunches are on the ground, and elbows are not
in contact with the environment. -

Stand (P) All feet are on the ground without moving. -

Dig (M) Forelegs consecutively or concurrently move with
each other. -

Jump (M) Both of the dog’s forelegs or all legs leave
the ground. -

Level 2 Atomic
behavior

Sniffing Head downwards and close to the floor, while the
dog is walking or standing.

Walk, Stand,
Head down

2 s

Escaping Repetitive jumps represent an attempt of escape. Jump
Barking Repetitive barks. Bark
Walking Walk for more than 1 s. Walk

Lying Lie for more than 1 s. Lie
Sitting Sit for more than 1 s. Sit

Standing Stand for more than 1 s. Stand
Digging Dig for more than 1 s. Dig

Level 3
Symptomatic

complex
behavior

Excessive
destructive

behavior

The dog is digging at a high frequency, possibly
attempting to escape from exit points.

Escaping,
Digging

15 sExcessive
exploratory

behavior

The dog is walking around in the house, sniffing at
different objects, and nosing at and around the

door, with a high frequency.

Walking,
Sniffing

Excessive
vocalization

The dog is repetitively barking, howling, or
whining for a long time.

Multiple
barking

Various studies aiming to recognize and detect dog activities at different levels were
proposed, with Table 2 summarizing the most important ones [17,19–33]. Early research
focused on Level-1 dog posture recognition, leading to the initial and essential work
towards dog behavior recognition. Recent approaches focused on Level-2 dog behavior
recognition and started to detect abnormal behaviors related to a dog’s welfare. Despite the
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research proposing several methods, only a few recent studies managed a Level-2 atomic
behavior recognition accuracy of 90% [25,27,31]. However, recent studies are unable to
detect separation anxiety symptomatic behaviors for the following limitations:

1. Although some studies included potentially abnormal behaviors relevant to a dog’s
well-being, they mainly focused on Level-1 postures or Level-2 abnormal atomic
behaviors, e.g., ‘Barking’. Nevertheless, these techniques are insufficient to determine
the specific disorder that dogs might suffer from. For instance, the atomic behavior of
barking can be related to noise phobia and be triggered when the dog hears outside
noise, and the behavior is only considered a separation anxiety-related abnormal
behavior when its frequency is high. Hence, solely recognizing the potential abnormal
atomic behavior cannot be directly used to provide an accurate diagnosis of separation
anxiety symptoms.

2. To the best of our knowledge, only one separation anxiety reduction system [34]
includes Level-3 separation anxiety-related symptomatic complex behaviors. How-
ever, training this system requires the owner’s direct participation, e.g., the owner
labels the complex behaviors, such as ‘Destructive behavior’, using a smartphone.
Hence, this architecture is unable to monitor complex behavioral symptom scenarios
automatically.

3. The feasibility of implementing a dog automatic monitoring system related to psy-
chological separation anxiety symptoms has not been reported yet. Thus, the current
research gap increases the challenge of automatically inferring Level-3 complex be-
haviors from lower levels [35].

Table 2. Recent automatic recognition research of dog activities (published between 2009–2021).
(Types: (D)—Disease-related behavior).

Level Sensors Location Technique Target Ref.

1

Accelerometer Back Pose Estimation algorithm Body posture [19]
Camera Ceiling Semisupervised approach Body posture [20]

Accelerometer Neck, back Knowledge engineering approach Body posture [21]
Gyroscope Neck Rule-based approach Head posture [22]

2

Accelerometer Neck Neural Networks (NN), Instance-based learning
(IBk), Random Forest (RF) Atomic behavior [23]

Accelerometer,
gyroscope Body Decision Tree (DT), Hidden Markov

Model (HMM) Atomic behavior [24]

Accelerometer,
gyroscope Back Support Vector Machine (SVM) Atomic behavior [25]

Accelerometer,
gyroscope Neck Not specified Atomic behavior [26]

Camera, accelerometer,
angular velocity

Neck, back,
thigh, waist SVM Atomic behavior [27]

Accelerometer Neck Linear and quadratic discriminant analysis Atomic behavior [28]
Accelerometer Neck K-Nearest Neighbor (KNN) Atomic behavior (D) [17]
Accelerometer Neck Dynamic Time Warping (DTW) Atomic behavior (D) [29]
Accelerometer Neck Rule-based bio-inspired approach Pruritic behavior (D) [30]
Accelerometer,

gyroscope Neck, tail Artificial Neural Network (ANN), Naïve Bayes
(NB), RF, SVM, KNN

Atomic behavior and
emotion [31]

Microphone, camera Not specified Convolutional Neural Network (CNN) Reducing separation
anxiety (D) [32]

Accelerometer Neck Machine learning (Not specified) Atomic behavior (D) [33]

To address these limitations, this paper proposes an end-to-end, knowledge-based
multi-level hierarchical system, which automatically monitors a home-alone cage-free dog
starting from Level-1 (head and body postures), going through Level-2 (atomic behaviors),
and reaching Level-3 (separation anxiety-related symptomatic complex behaviors). At the
lowest level, we apply stacked Long Short-Term Memory (LSTM) models to recognize the
dog’s posture using preprocessed time-series data collected from head and body wearable
sensors. The stacked LSTM guarantees effective and stable performance for posture recog-
nition when using time-series data [36,37]. Then, based on the extracted head and body
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postures, we design a dog behaviors detection algorithm using Complex Event Processing
(CEP) with dog behavior knowledge-based pattern rules for Level-2 atomic behaviors and
Level-3 complex behaviors identification. The suggested CEP technology models the knowl-
edge hierarchy and automatically detects meaningful complex events [38,39]. However, it is
challenging to define ambiguous and uncertain psychological knowledge using CEP rules.
For instance, ‘Excessive vocalization’ cannot be quantified to build CEP numerical pattern
rules. To overcome the limitations of the basic CEP rules, we introduce fuzzy logic that
handles imprecision and effectively represents psychological knowledge [40,41], extending
the basic CEP rules for Level-3 symptomatic complex behavior monitoring. To evaluate
the proposed system, we develop a prototype system with real-world datasets that include
eight dogs’ daily routines and separation anxiety scenarios. The dogs were recruited based
on clinic separation anxiety inclusion criteria [42].

The remainder of this paper is structured as follows: Section 2 describes the proposed
method for automatically monitoring a freely moving dog’s separation anxiety symptomatic
complex behavior; Section 3 presents the experimental setup and analyzes the results;
finally, Section 4 concludes this paper.

2. Proposed Method
2.1. System Structure

The proposed dog monitoring system architecture is illustrated in Figure 1, comprising
five layers: data collection, data preprocessing, dog posture recognition, dog behavior
monitoring, and application layer.
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Figure 1. Proposed dog monitoring system architecture detects separation anxiety symptomatic
complex behaviors and primarily focuses on ‘Excessive destructive behavior’, ‘Excessive exploratory
behaviors’, and ‘Excessive vocalization’.
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2.2. Data Collection Layer and Data Preprocessing Layer

As mentioned in Section 1, the Level-1 posture analysis is the first crucial step towards
understanding dog behavior and detecting a dog’s symptomatic complex behavior related
to separation anxiety [25]. Moreover, the symptomatic complex behaviors are not inde-
pendent of each other. For example, in most cases, dogs that present head posture-related
complex behavior ‘Excessive vocalization’, exhibit body posture-related complex behavior
‘Excessive destructive behavior’ simultaneously. Therefore, it is necessary to collect head
and body postures in dogs concurrently when monitoring their behavior. In this work, the
data collection layer relies on wearable devices with tri-axial accelerometers to automati-
cally collect a freely moving dog’s head and the body posture raw time-series data. The
wearable sensor is convenient for detecting postures and is practical for real-world situa-
tions as it does not require well-controlled environments [43]. Furthermore, accelerometers
already proved their measurement abilities for the pose and motion of a wide range of
species [25]. In prior works, head and body posture data collection explored various sensor
locations on a dog’s body. It concluded that back-mounted and neck-mounted devices
produced high-quality data for the head and body posture estimation [25,44], achieving a
recognition accuracy of approximately 90% [25,27,30]. Therefore, we use two dog wearable
devices with tri-axial accelerometers on the dog’s neck and back to collect the dog’s head
and body posture raw data, respectively.

The data preprocessing layer aims to dynamically segment, normalize, and format the
raw time-series data as an input stream to the LSTM-based model, guaranteeing continuous
dog posture recognition. Traditionally, sensor-based data segmentation method uses sliding
windows to detect the activity’s start and end time [45]. In this work, we set the sliding
window size as one second to ensure the system detects each posture’s central part. Besides,
due to the various dog sizes, the accelerometer data have different value ranges, with larger
values dominating the LSTM network training and ultimately imposing a natural bias [46].
Therefore, the min–max normalization method is utilized to normalize the time-series
data between the values 0 and 1 [47]. After normalization, the data are converted into
an appropriate format and input to the LSTM network as a 3D vector with the shape
(Samples)× (Timesteps)× (Features). In this study, ‘Timesteps’ is set to the value 50, which
corresponds to the sequence of data received from the sensor during one second, and the
‘Features’ are the accelerometer’s x-, y-, and z-axis.

2.3. Dog Posture Recognition Layer

The purpose of this layer is to classify the preprocessed dog’s motion data into an un-
derstandable head or body posture category. These postures are the hierarchy’s basic level
(Level 1) activities that are used to detect the higher-level atomic and complex behaviors.
For posture recognition, earlier methods using models such as SVM relied on hand-crafted
features extracted from the input data through fixed mathematical rules [21,22,46]. How-
ever, to engineer hand-crafted features, domain knowledge about the specific application is
required [48]. Recently, deep learning techniques were widely employed in several recog-
nition fields, automating the feature extraction process without requiring domain knowl-
edge [49–51]. One of the deep learning models, the stacked LSTMs, is a well-suited network
for recognizing sensor time-series data and enhancing the model’s accuracy [36,37,46,52,53].
Therefore, we employ stacked LSTMs as our system base analyzer to classify the Level-1
dog’s postures and motions.

The proposed stacked LSTM network structure for dog posture recognition is illus-
trated in Figure 2, where the two stacked LSTM networks for dog head and body posture
recognition are independent and parallel. Each stacked LSTM network comprises two
LSTM layers of 64 units each. The output layer is a softmax layer calculating the proba-
bility and classifying the data into one of the Level-1 postures presented in Table 1. The
head and body postures are then forwarded to the next layer to be used to detect higher
level behaviors.
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Figure 2. Structure of two parallel stacked Long Short-Term Memory (LSTM) networks for dog head
and body posture recognition.

2.4. Dog Behavior Monitoring Layer

This layer abstracts a multi-level knowledge-based hierarchical structure from the
previous manual recognition methods to recognize Level-2 and Level-3 dog behaviors
effectively. Based on the hierarchical structure, we utilize the Complex Event Processing
(CEP) technology with knowledge rules to automatically detect Level-2 and Level-3 dog
behaviors. The CEP combined with knowledge-based rules can automatically identify
causality patterns and detect meaningful complex events with time relationships. However,
while basic CEP rules are enough to detect level 2 atomic behaviors based on level 1
postures, it is challenging to employ them to effectively express the Level-3 psychological
separation anxiety-related behavioral information based on specific indicators. For example,
it is difficult to quantify the number of ‘Barking’ to detect the abnormal status ‘Excessive
vocalization’. Therefore, we introduce a fuzzy logic concept to extend the effectiveness of
the CEP rules, constituting a Fuzzy-CEP dog behavior monitoring system.

2.4.1. Abstraction Hierarchy of Dog Separation Anxiety-Related Behaviors

As previously explained, existing manual observation methods of dog behavior high-
lighted that a set of understandable primitive postures compose an atomic behavior [13,15].
Additionally, a set of temporal and coherent atomic behaviors can be aggregated into a
dog’s symptomatic complex behavior [8]. Therefore, we exploit the hierarchy concept, an
effective method for expressing the aggregation or composition relationship between activ-
ities [43,54]. Figure 3 illustrates the proposed three-level hierarchy for primary complex
behavioral symptoms appropriate for separation anxiety detection. As a reminder, the
three levels defined in Table 1 include Level-1 (head and body postures), Level-2 (atomic
behaviors), and Level-3 (separation anxiety-related symptomatic complex behaviors). Com-
position C1 and C2 are the two types of relationships between Level-1 and Level-2. The C1
relationship represents that an atomic behavior comprises a set of identical postures during
the observation time, while the C2 relationship denotes that atomic behavior comprises var-
ious postures during the observation time. For instance, atomic behavior ‘Sniffing’ involves
body posture ‘Walk’ and head posture ‘Head down’. The Aggregation (A) is the relation-
ship between Level-2 and Level-3, representing complex behaviors aggregated by related
lower-level atomic behaviors that are more frequent than when the owner is at home [13].
For instance, the complex behavior ‘Excessive exploratory behavior’ is aggregated by
excessive and higher-frequency atomic behavior ‘Walking’ and atomic behavior ‘Sniffing’.



Sensors 2022, 22, 1556 7 of 20

Sensors 2022, 22, x FOR PEER REVIEW 7 of 21 
 

 

2.4. Dog Behavior Monitoring Layer 

This layer abstracts a multi-level knowledge-based hierarchical structure from the 

previous manual recognition methods to recognize Level-2 and Level-3 dog behaviors ef-

fectively. Based on the hierarchical structure, we utilize the Complex Event Processing 

(CEP) technology with knowledge rules to automatically detect Level-2 and Level-3 dog 

behaviors. The CEP combined with knowledge-based rules can automatically identify 

causality patterns and detect meaningful complex events with time relationships. How-

ever, while basic CEP rules are enough to detect level 2 atomic behaviors based on level 1 

postures, it is challenging to employ them to effectively express the Level-3 psychological 

separation anxiety-related behavioral information based on specific indicators. For exam-

ple, it is difficult to quantify the number of ‘Barking’ to detect the abnormal status ‘Exces-

sive vocalization’. Therefore, we introduce a fuzzy logic concept to extend the effective-

ness of the CEP rules, constituting a Fuzzy-CEP dog behavior monitoring system. 

2.4.1. Abstraction Hierarchy of Dog Separation Anxiety-Related Behaviors 

As previously explained, existing manual observation methods of dog behavior high-

lighted that a set of understandable primitive postures compose an atomic behavior 

[13,15]. Additionally, a set of temporal and coherent atomic behaviors can be aggregated 

into a dog’s symptomatic complex behavior [8]. Therefore, we exploit the hierarchy con-

cept, an effective method for expressing the aggregation or composition relationship be-

tween activities [43,54]. Figure 3 illustrates the proposed three-level hierarchy for primary 

complex behavioral symptoms appropriate for separation anxiety detection. As a re-

minder, the three levels defined in Table 1 include Level-1 (head and body postures), 

Level-2 (atomic behaviors), and Level-3 (separation anxiety-related symptomatic complex 

behaviors). Composition C1 and C2 are the two types of relationships between Level-1 and 

Level-2. The C1 relationship represents that an atomic behavior comprises a set of identical 

postures during the observation time, while the C2 relationship denotes that atomic be-

havior comprises various postures during the observation time. For instance, atomic be-

havior ‘Sniffing’ involves body posture ‘Walk’ and head posture ‘Head down’. The Ag-

gregation (A) is the relationship between Level-2 and Level-3, representing complex be-

haviors aggregated by related lower-level atomic behaviors that are more frequent than 

when the owner is at home [13]. For instance, the complex behavior ‘Excessive exploratory 

behavior’ is aggregated by excessive and higher-frequency atomic behavior ‘Walking’ and 

atomic behavior ‘Sniffing’. 

 

Figure 3. Abstraction hierarchy for dog separation anxiety-related complex behaviors detection. 

  

Figure 3. Abstraction hierarchy for dog separation anxiety-related complex behaviors detection.

2.4.2. Hierarchy Modeling for Dog Behavior Automatic Detection

The basic approach involves using the rule-based method to automatically monitor a
dog’s behavior based on the hierarchy presented in Figure 3 [55,56]. However, the latter
method is limited in using simple rules for dog behavior detection, and thus rule-based
techniques cannot infer the higher-level activity from a set of lower-level activities with time
relationships [57,58]. In this work, we exploit the complex event processing technology as
our primary method to address this issue. The CEP can simultaneously and automatically
identify meaningful events and generate higher-level events based on relationships, i.e.,
time and aggregation relationships [59,60]. Furthermore, CEP rules can be extended by
custom aggregate functions according to fundamental requirements [61].

Figure 4 shows how the CEP technology models a dog’s behavior based on hierarchy:
(1) the Level-1 head and body postures are input into event streams of the CEP hierarchy,
calculated by stacked LSTM networks that utilize the preprocessed sensor datasets; (2) the
Level-2 dog atomic behaviors are detected through the atomic behavior Event Processing
Network (EPN) that relies on the extracted postures; (3) the Level-3 complex behaviors are
then detected by the complex behavior EPN that exploits the related atomic behaviors. Each
network includes the event processing engines and the CEP rules; (4) the CEP engine selects
the lower-level events that satisfy the CEP pattern rules and generates higher-level events;
(5) the CEP rule is defined by events and event constructors, expressing the relationships
between the events [41]. In Figure 4, colored events represent the ones that compose a
pattern when a matching has occurred within the time window frame. Accordingly, events
using the same color correspond to a detected pattern. In this work, the events are the
activities of each layer modeled as presented next. Specifically, a posture event (P) is
denoted as:

P = E (id, s, p, t), (1)

where id is the dog’s subject ID, s is the sensor ID, p is the dog’s posture class, and t is the
posture’s timestamp. An atomic behavior event (A) is denoted as:

A = E (id, ab, ts, te), ts < te, (2)

where ab is the dog’s atomic behavior class, ts, te are the behavior event starting time and
ending time. te − ts is observation time interval. A complex behavior event (C) is denoted as:

C = E (id, cb, d, ts, te), ts < te, (3)

where cb is the dog’s complex behavior class, and d is the symptom state of complex behavior.
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Figure 4. Complex Event Processing (CEP) hierarchy structure for dog behavior monitoring.

This work adapts the CEP event constructors for dog behavior detection presented in
Table 3. Additionally, we create a fuzzy function appropriate for the dog’s psychological
separation anxiety symptomatic complex behavior detection.

Table 3. Event constructors for dog behavior detection.

Constructor Symbol Expression Meaning

And ∧ E1 ∧ E2 Conjunction of events E1 and E2
Or ∨ E1 ∨ E2 Disjunction of events E1 and E2

Repeat
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The specific dog behavior detection rules are introduced in Table 4, which model the
C1 and C2 relationship combination of the atomic behaviors in the atomic behavior event
processing network. For instance, if the dog maintains posture ‘Dig’ without changing
within two seconds of observation, the atomic behavior ‘Digging’ will be generated. Besides,
if the body posture ‘Walk’ is detected followed by the head posture ‘Head down’ within
two seconds, the complex behavior network generates the atomic behavior ‘Sniffing’. In the
latter network, the CEP engine receives and calculates the total frequency of the complex
behavior-related atomic behaviors within an observation interval of 15 s. Then, the CEP
system uses fuzzy CEP rules to detect whether the total frequency is abnormal, i.e., if the
behavior happens more frequently when the owner is not at home [8,10,18]. Further details
on the fuzzy function are presented in Section 2.4.3.

Table 4. Event processing pattern rules expression for dog behavior detection.

EPN Rule Type CEP Rules Definition Example

Atomic
Behavior EPN

C1
In two-second observation time interval, the state maintains the

same postures P without any change. Digging:
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2.4.3. Fuzzy Function of Dog Monitoring System

Most of the dogs’ psychological separation anxiety knowledge is a natural language
originating from experts [6,8,14,15,18,62]. Therefore, it is challenging to effectively express
ambiguous and uncertain psychological knowledge using basic CEP rules. For instance,
the symptomatic complex behavior ‘Excessive vocalization’ cannot be quantified to build
pattern rules. To address this issue, we introduce fuzzy logic and expand the existing CEP
rules in the complex behavior EPN. As a common approach to solving imprecise and vague
problems, Fuzzy logic has a long history in automated clinical diagnosis [63,64]. Moreover,
it is easier for experts to map their expertise into fuzzy logic than sophisticated probabilistic
methods [40,41]. Figure 5 illustrates the fuzzy logic function structure of the proposed dog
monitoring system, with the main steps described as follows:
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1. Fuzzification: the fuzzifier applies the relevant membership functions to transform
the crisp variables to fuzzy linguistic variables, whose values are natural language
words instead of numerical values. This work utilizes domain knowledge [4,8,18,65],
and thus the input linguistic variable is the frequency ( f ) of each complex behavior (de-
structive behavior, exploratory behavior, and vocalization). Specifically,
F( f ) = {Seldom, Consistent, Most} is the set of decompositions for the linguistic
variable frequency, with each F(f) member covering a portion of the overall frequency
values. For example, in Figure 6a, the frequency is 30% (0.3) of the observation
time, classified as 50% ‘Seldom’ and 50% ‘Consistent’. The fuzzifier transforms the
crisp frequency input using the trapezoidal and triangular membership functions
illustrated in Figure 6a. Similarly, the output linguistic variables are the symptom
diagnosis indices involving two linguistic variables, i.e., {Normal, Abnormal}, with
the trapezoidal membership function illustrated in Figure 6b.
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2. Fuzzy rules and inference: based on the domain knowledge, the dog separation anxiety-
detection fuzzy matrix is presented in Table 5. For instance, if the ‘Exploratory behavior’
is ‘Consistent’ or ‘Most’, the separation anxiety symptom state is ‘Abnormal’ [10].
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Table 5. Fuzzy matrix for dog psychological separation anxiety symptoms monitoring.

Diagnosis Index Seldom Consistent Most

Destructive Behavior Normal Abnormal Abnormal
Exploratory Behavior Normal Abnormal Abnormal

Vocalization Normal Abnormal Abnormal

3. Defuzzification: this stage utilizes the center of gravity [66], one of the most common
defuzzifiers, to obtain the shape’s centroid generated by superimposing the fuzzy
rules shapes.

4. Threshold Decision: based on the defuzzification result, a heuristic decision threshold
is employed depending on the domain knowledge [4,18,65], which ultimately pro-
duces a final binary classification (normal or abnormal behavior). If the result exceeds
a threshold, the complex behavior is diagnosed as the abnormal status ‘Excessive’ [67].
Further details on the fuzzy logic description can be found in [66–68].

The overall CEP-based dog behavior detection system is described in Algorithm 1.
Specifically, the input event stream involves the posture events (L1) and the output of
the separation anxiety-related atomic behaviors (L2) and complex behaviors (L3). Initially,
the predefined rules in each event-processing network, linguistic variables, membership
functions, and fuzzy logic rules are initialized (line 3). The overall system is defined by the
event types: L1 posture, L2 atomic behavior, and L3 complex behavior events (lines 4–6).
The upper case represents the event type, and the lower case represents the event instance.
The fuzzy function is defined in lines 8–16. When the CEP system keeps receiving and
creating events of different levels, the algorithm searches within the observation time for
events satisfying the predefined rules of different level networks (lines 17–27). Once the
events satisfy the rules, the CEP algorithm creates a behavior event and publishes the event
to the event channel. Then, the system will return the detected Level-2 (L2) and Level-3
(L3) behaviors (line 28). For completeness, pi, pj−1, and pj are the postures to be detected in
the atomic behavior network rules, and L2m and L2k denote the Level-2 stream, where each
steam has the same type of atomic behaviors, with m 6= k.

Algorithm 1. Complex Behavior Detection for SA.

1 Input: L1 = {p1, p2, . . . , pi, . . . , pj, . . . , pn}
2 Output: L2 = {a1, a2, . . . , ai, . . . , aj, . . . , an}, L3 = {c1, c2, . . . , ci, . . . , cn}
3 Initialize: Pre-defined CEP rules, pre-defined linguistic variables, membership functions and fuzzy rules
4 Define Posture event type = P (id, s, posture, t)
5 Define Atomic behavior event type = A (id, atomic behavior, ts, te)
6 Define Complex behavior event type = C (id, complex behavior, d, ts, te)
7 //Fuzzy function
8 Function F(frequent)
9 Convert frequent to fuzzy values by membership functions
10 Evaluate the rules in the rule base
11 Combine the results of each rule
12 results = Center of gravity calculation
13 If results > Threshold
14 Then classification result = Abnormal
15 Else classification result = Normal
16 Return classification result
17 //Level 2 dog atomic behavior detection
18 If select * from L1
19 where repeat pi. posture more than two times ∧ win (2 s)
20 Then create ai (id, related atomic behavior, tn, tn+1)
21 If select * from L1
22 where pj−1. posture→ pj. posture ∧ win (2 s)
23 Then create aj (id, related atomic behavior, tn, tn+1)
24 //Level 3 dog complex behavior detection
25 If select * from L2
26 where F(C(L2m, L2k)) ∧Win (15 s) = Normal or Abnormal
27 Then create ci (id, related complex behavior, classification result of symptoms, ts, te)
28 Return L2, L3
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2.5. Dog Application Layer

In this layer, a web application is designed to report and analyze the monitoring results
of separation anxiety-related complex behaviors in dogs. Upon automatically identifying
the complex behaviors related to separation anxiety, the system sends the monitoring
results to the owner or scientist.

3. Results
3.1. Data Collection and Datasets

The performance of the proposed detection monitoring system was evaluated using
raw activity sensor data and video recordings of eight dogs recruited based on separa-
tion anxiety clinic criteria defined in [42]. Table 6 presents the basic information of the
eight dogs.

Table 6. Basic information of subject dogs.

Serial Size Name Breed Age

1 Small Kimi Maltese 0.5
2 Small Prince Papillon 9
3 Small Doudou Mix 1
4 Small Tufei Mix 1.5
5 Small Lili Papillon 7
6 Medium Coco Mix 4
7 Medium Puding Mix 0.5
8 Large Coffee Mix 7

The data were collected either in the owner’s premises or in the laboratory as shown
in the examples in Figure 7. A red bounding box was used in Figure 7 to help identify
the location of the dog in every example. The data collection procedure was conducted in
three phases. (1) Preparation: mounting two lightweight motion sensors (LPMS-B2, size:
39 × 39 × 8 mm, weight: 12 g, sample rate: 50 Hz) on the dog’s neck and back to collect its
head and body tri-axial accelerometer data. At this stage, a camera was set to record the
dog’s activity with video and sound to use during the labeling and ensure the accuracy
of the sensor data labels. (2) Synchronization: sensor synchronization by connecting the
sensor to a computer via Low Energy Bluetooth. Sensor activation ensures uninterrupted
video camera recording. (3) Activity recording: each dog is left to move for 5–15 min
naturally and freely while its posture and movements are being recorded by the sensors
and a video camera. The data received from the sensor contains six columns, namely sensor
ID, frame number, timestamp, and three-axis accelerometer (x-axis, y-axis, z-axis). Figure 8
shows examples of raw time-series data of dog postures. The total duration of each activity
is shown in Table 7. The dataset does not contain any missing values, and the data were
chosen and classified (as ground truth) with the help of animal behavior researchers.
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Table 7. Total duration of each activity.

Level Category Total Duration

Level 1

Head posture
Bark 10.7 min

Head down 18.4 min
Head up 33.8 min

Body posture

Dig 13.3 min
Jump 11.5 min
Lay 12.0 min
Sit 11.0 min

Stand 18.9 min
Walk 20.4 min

Level 2 Atomic behavior

Sniffing 10.0 min
Escaping 8.5 min
Barking 8.4 min
Walking 12.3 min

Lying 8 min
Sitting 6.8 min

Standing 12.3 min
Digging 9.3 min

Level 3
Symptomatic

complex behavior

Destructive behavior 48.5 min
Exploratory behavior 72.3 min

Vocalization 25 min

3.2. Implementation

The prototype system was implemented using a computer running an Intel i7 CPU
with 64 GB RAM utilizing Windows 10 and a GTX 1080 Ti GPU. The system used OpenMAT
software [69] to capture the tri-axial accelerometer signals. Figure 9 depicts a screenshot of
OpenMAT software. The LSTM-based network was trained using TensorFlow library [70],
and the CEP network was implemented using the Esper library as it provides a CEP
engine and integrated tools for modeling CEP rules [71]. The web application based on the
database was designed using Plotly and Dash Python libraries [72].
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3.3. Evaluation
3.3.1. Metrics

The recognition performance of each activity level is evaluated employing the Preci-
sion, Recall, and F1-score metrics [73]:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 score =
2× Precision × Recall

Precision + Recall
(6)

where true positive (TP) is the number of dog activities that are actually positive and
classified as positive, False Positives (FP) is the number of dog activities that are actually
negative and classified as positive, and False Negatives (FN) is the number of dog activities
that are actually positive and classified as negative.

3.3.2. Posture Monitoring Results (Level-1 Classification)

The first experiment was conducted to confirm the effectiveness of the stacked LSTM
models proposed in this paper, and the second experiment to compare its performance with
other models. The data used in the first and second experiments contained 4500 time-series
samples. We made sure the data are balanced by using exactly 500 samples of data for
each class. The division of training and testing data happens through the 5-fold cross-
validation where a different fold containing 900 samples is used in every iteration. Hence,
the data are divided for training and testing using a 8:2 ratio in every iteration, i.e., 3600 and
900 samples, respectively. Both stacked LSTM networks used for head and body posture
recognition were trained using cross-entropy loss [46] and Adam Optimizer [74] with decay
rates β1 of 0.9 and β2 of 0.999 and a learning rate of 0.0025. The batch size was 25, trained
for 50 epochs.
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The results of the first experiment, i.e., Level-1 head and body posture classification,
using our proposed method obtained an average F1-score of 0.947 presented in Table 8,
proving that it can accurately identify the dog’s head and body postures. Concerning
the ‘Bark’ and ‘Head up’ postures, the accuracy of the model is relatively lower as some
barks were not loud enough, which increased the difficulty to differentiate between the
‘Bark’ and ‘Head up’ postures. Additionally, high-intensity panting causes the dog’s head
and body to move constantly, which adds noise to the signal. Similarly, some dog’s body
postures such as ‘Stand’ or ‘Dig’ moved slightly, leading our model to predict ‘Walk’ or
‘Jump’ postures falsely. Moreover, some transactions between two postures exist during
recognition, reducing the recognition effect.

Table 8. Overall precision, recall, and F1-score of Level-1 postures.

Level
Two-Layer Stacked LSTM

Category Precision Recall F1-Score

Level 1

Head
posture

Bark 0.944 0.904 0.922
Head down 0.996 0.998 0.997

Head up 0.914 0.946 0.929

Body
posture

Dig 0.894 0.889 0.889
Jump 0.879 0.878 0.876

Lie 0.990 0.991 0.990
Sit 0.988 0.994 0.992

Stand 0.963 0.967 0.975
Walk 0.962 0.947 0.954

Average 0.948 0.946 0.947

In the second experiment, we compared the LSTM approach with two current dog
activity classifiers [25,27,31], i.e., Naïve Bayes (NB) and Support Vector Machine (SVM).
We employed the same training and testing datasets for all methods with five-fold cross-
validation to guarantee a fair and accurate comparison, and statistical features (min, max,
mean, standard deviation) were used to train the SVM and NB models. Table 9 shows
the performance results using the F1-score and confirms that the stacked LSTM networks
outperform current classifiers.

Table 9. Comparison of Level-1 posture identification performance.

Category
F1-Score

Proposed Method SVM NB

Head posture
Bark 0.922 0.856 0.665

Head down 0.997 0.853 0.719
Head up 0.929 0.990 0.978

Body posture

Dig 0.889 0.969 0.935
Jump 0.876 0.950 0.919

Lie 0.990 0.996 0.996
Sit 0.992 0.678 0.644

Stand 0.975 0.746 0.674
Walk 0.954 0.976 0.970

Average 0.947 0.890 0.833

3.3.3. Atomic Behavior Monitoring Results (Level-2 Classification)

Based on the results of Level-1 detection, we performed a Level-2 atomic behaviors
identification experiment. This experiment considers 1070 dog atomic behavior data
for Level-2 activity detection. Window slicing was used in this experiment for the data
augmentation of some abnormal atomic behaviors that are exploited to detect the Level-3
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behaviors [75,76]. Thus, the slicing window of 100-sample width and 50% overlap moved
backward to augment ‘Escaping’ behaviors by 17 sequences and ‘Barking’ behaviors by
10 sequences. Then, an experiment was conducted to compare the recognition performance
of Level-2 activities.

The first experimental results are presented in Table 10, revealing that the proposed
system’s average detection accuracy approached 0.915. As summarized in Table 9, most
dog atomic behaviors are correctly detected, confirming that the proposed method achieves
good performance for Level-2 dog atomic behavior recognition.

Table 10. Overall precision, recall, and F1-score of Level-2 atomic behaviors.

Level
Stacked LSTM + CEP

Category Num. Precision Recall F1-Score

Level 2

Sniffing 152 0.909 0.921 0.915
Escaping 105 0.920 0.981 0.949
Barking 101 0.876 0.842 0.859
Walking 220 0.980 0.891 0.933

Lying 90 0.987 0.844 0.910
Sitting 55 0.981 0.946 0.963

Standing 218 0.906 0.844 0.874
Digging 129 1.000 0.822 0.902

Average 0.945 0.886 0.915

In the second experiment, we compared our proposed method with SVM, Decision
Tree (DT) and NB classifiers used in previous studies [24,25,27,31]. Similarly, in this
experiment, the statistical features (min, max, mean and standard deviation) were used to
train the SVM, DT, and NB models. As shown in Table 11, the proposed method (stacked
LSTM + CEP) used the hierarchical structure achieved better performance results. SVM,
DT and NB falsely recognized some of the ‘Sniffing’ behavior. This is because the activity is
associated with head posture. It is relatively hard to distinguish the ‘Standing’ and ‘Sniffing’
only using a body sensor. Additionally, high-intensity panting ultimately increased atomic
behaviors recognition error.

Table 11. Comparison of Level-2 atomic behaviors identification performance.

Category
F1-Score

Proposed Method SVM DT NB

Sniffing 0.915 0.794 0.869 0.757
Escaping 0.949 0.824 0.821 0.667
Barking 0.859 0.833 0.745 0.672
Walking 0.933 0.951 0.948 0.914

Lying 0.910 0.909 0.953 0.931
Sitting 0.963 0.672 0.931 0.657

Standing 0.874 0.721 0.926 0.564
Digging 0.902 0.907 0.917 0.919

Average 0.915 0.827 0.889 0.760

3.3.4. Complex Behavior Monitoring Results (Level-3 Classification)

Two experiments were conducted to confirm the performance of Level-3 dog sep-
aration anxiety symptomatic complex behaviors detection. The first experiment used
152 destructive behavior samples, 84 vocalization samples, and 231 exploratory behavior
samples. Fifty-six destructive behaviors were added through data augmentation using
a slicing window of 750-sample width and 86.7% overlap. Likewise, 47 additional vo-
calization sequences and 122 exploratory behavior sequences were generated with data
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augmentation. The heuristic decision threshold for vocalization is 1.0, and the heuristic de-
cision threshold for destructive and exploratory behaviors is 1.5. Similarly, this experiment
used previous Level-2 activities experiment results as input data sent to the Fuzzy-CEP
system to evaluate the performance of Level-3 complex behaviors detection.

Table 12 depicts the results of the first experiment, measuring the precision, recall,
and F1-score metrics. The results revealed that our approach achieved an F1-score of
0.86 for symptomatic complex behaviors, highlighting that the hierarchical structure em-
ployed achieved an appealing performance. Based on the appealing performance, we
conclude that the proposed CEP-based monitoring method is promising for detecting the
dogs’ separation anxiety signs. The performance decline of Level-3 is primarily due to
continuous false recognitions of the Level-1 to the Level-2 activities such as ‘Vocalization
Behavior’. Hence, exploiting more sensors, e.g., a sound sensor, would further enhance our
method’s performance.

Table 12. Overall precision, recall, and F1-score of Level-3 complex behaviors.

Level
Stacked LSTM + Fuzzy-CEP

Category Num. Precision Recall F1-Score

Level 3

Destructive Behavior
Abnormal 91 0.888 0.868 0.878

Normal 61 0.810 0.836 0.823

Exploratory Behavior Abnormal 168 0.940 0.929 0.934
Normal 63 0.815 0.841 0.828

Vocalization Behavior
Abnormal 54 0.891 0.907 0.899

Normal 30 0.828 0.800 0.814

Average 0.862 0.864 0.863

The second experiment compared our proposed method with SVM, DT, and Random
Forest (RF) classifiers for Level-3 complex behaviors. The experiment exploited several
statistical features (min, max, mean, and standard deviation) to train the SVM, RF, and DT
models. As shown in Table 13, the proposed method (stacked LSTM + Fuzzy-CEP) used the
hierarchical structure combined with two sensors and achieved better performance results.

Table 13. Comparison of Level-3 complex behaviors identification performance.

Level Category
F1-Score

Proposed Method SVM DT RF

Level-3

Destructive
Behavior

Abnormal 0.878 0.859 0.878 0.882
Normal 0.823 0.736 0.748 0.760

Exploratory
Behavior

Abnormal 0.934 0.706 0.630 0.561
Normal 0.828 0.523 0.537 0.500

Vocalization
Behavior

Abnormal 0.899 0.493 0.667 0.608
Normal 0.814 0.611 0.690 0.652

Average 0.863 0.655 0.692 0.660

3.3.5. Dog Monitoring System Web Application

We designed a web application to report and analyze the detected dogs’ separation
anxiety-related complex behavior. Figure 10 depicts a snapshot of our web application,
including a live video stream to check the dogs’ activities, an alarm table, a time scatter
chart showing the dog’s normal/abnormal status, and a pie chart analyzing the detected
complex behaviors.
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4. Conclusions

Owners leave their dogs at home alone, potentially causing psychological disorders
such as separation anxiety, often accompanied by complex behavioral symptoms like
excessive destructive behavior, excessive exploratory behavior, and excessive vocalization.
In particular, those undesired complex behavioral symptoms are the main reason for the
relinquishment of dogs. Thus, we present an appropriate monitoring method by developing
a multi-level hierarchical system that automatically monitors freely moving home-alone
dogs. The multi-level hierarchical system starts from Level-1 (fundamental head and body
postures), goes through Level-2 (atomic behaviors), and reaches Level-3 (separation anxiety-
related symptomatic complex behaviors). Regarding Level-1, we apply the stacked LSTM
model to recognize the dog’s head and body postures using the time-series data extracted
from wearable sensors. Then, based on the extracted postures, the CEP engine uses dog
behavior knowledge-based pattern rules for Level-2 atomic behavior and Level-3 complex
behavior identification. To overcome the limitations of basic CEP rules, this work proposes
a Fuzzy-CEP, as fuzzy rules can handle the imprecision and vagueness represented through
psychological knowledge. Our experiments evaluated the proposed approach using data
collected from eight dogs recruited based on clinical inclusion criteria. The experimental
results demonstrate that our system achieves approximately an F1-score of 0.86, affording
an appealing dog symptomatic complex behavior monitoring scheme appropriate for a real-
world environment. Furthermore, the experiments reveal that our approach can provide
a feasible way to describe complex behaviors related to psychiatric symptoms and help
promote the implementation of artificial intelligence technology in the veterinary field. Our
subsequent study intends to develop a robust dog behavior monitoring system to monitor
separation anxiety symptoms by combining sensor, video, and sound data.
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