Determination of Drugs in Clinical Trials: Current Status and Outlook
Abstract
:1. Introduction
1.1. Clinical Trials
1.2. Drug Classifications
2. Analytical Methods
2.1. Extraction Methods
2.1.1. Solid/Liquid Extraction (SLE)
2.1.2. Liquid/Liquid Extraction
2.1.3. Solid Phase Extraction (SPE)
2.2. Spectroscopic Methods
2.2.1. Ultraviolet-Visible (UV/Vis)
2.2.2. Raman Spectroscopy
2.2.3. Fluorescence Spectroscopy
2.2.4. Infrared (IR) and Fourier Transform Infrared (FTIR) Spectroscopy
2.2.5. Nuclear Magnetic Resonance (NMR) Spectroscopy
2.3. Chromatographic Methods
2.3.1. Continuous Column Chromatography (CC)
2.3.2. Ion-Exchange Chromatography (IEC)
2.3.3. Molecular Sieve or Gel-Permeation Chromatography (GPC)
2.3.4. Affinity Chromatography (AC)
2.3.5. Paper Chromatography (PC)
2.3.6. Thin-Layer Chromatography (TLC)
2.3.7. Gas Chromatography (GC)
2.3.8. Dye-Ligand Chromatography (DLC)
2.3.9. Hydrophobic Interaction Chromatography (HIC)
2.3.10. High-Performance Liquid Chromatography (HPLC)
2.4. Electrochemical Methods
2.4.1. Sensors and Biosensors Based on Potentiometry
2.4.2. Sensors and Biosensors Based on Voltammetry and Amperometry Methods
DC Polarography Voltammetry (PV)
Linear Sweep Voltammetry (LSV)
Pulse Voltammetry (PV)
Square Wave Voltammetry (SWV)
Differential Pulse Voltammetry (DPV)
Stripping Voltammetry (SV)
Cyclic Voltammetry (CV)
Hydrodynamic Voltammetry (HV)
2.4.3. MEMS Sensors and Biosensors Based on Conductometry and Capacity
2.4.4. MEMS Sensors and Biosensors Based on Electrochemical Impedance Spectroscopy (EIS)
2.4.5. MEMS Bioreceptor and Biosensor Recognition Elements
MEMS Antibodies Biosensors (MAB)
MEMS Enzyme Biosensors (MEB)
MEMS Aptamers Biosensors (MApB)
MEMS Molecular Imprinted Polymers Biosensors
3. Summary and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Imming, P.; Sinning, C.; Meyer, A. Drugs, their targets and the nature and number of drug targets. Nat. Rev. Drug Discov. 2006, 5, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration; HHS. Guidance for Industry and Review Staff on Labeling for Human Prescription Drug and Biological Products-Determining Established Pharmacologic Class for Use in the Highlights of Prescribing Information; Availability; Food and Drug Administration: Silver Spring, MD, USA, 2009; Volume 10, pp. 53507–53508.
- Azwanida, N.N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med. Aromat. Plants 2015, 4, 1000196. [Google Scholar]
- Carmel, L.; Levy, S.; Lancet, D.; Harel, D. A feature extraction method for chemical sensors in electronic noses. Sens. Actuators B Chem. 2003, 93, 67–76. [Google Scholar] [CrossRef]
- Sapkale, G.N.; Patil, S.M.; Surwase, U.S. Supercritical fluid extraction. Int. J. Chem. Sci. 2010, 8, 729–743. [Google Scholar]
- Lee, J.; Kim, H.; Kang, S.; Baik, N.; Hwang, I.; Chung, D.S. Applications of deep eutectic solvents to quantitative analyses of pharmaceuticals and pesticides in various matrices: A brief review. Arch. Pharmacal Res. 2020, 43, 900–919. [Google Scholar] [CrossRef] [PubMed]
- Hofstetter, R.; Fassauer, G.M.; Link, A. Supercritical fluid extraction (SFE) of ketamine metabolites from dried urine and on-line quantification by supercritical fluid chromatography and single mass detection (on-line SFE–SFC–MS). J. Chromatogr. B 2018, 1076, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Baldino, L.; Scognamiglio, M.; Reverchon, E. Supercritical fluid technologies applied to the extraction of compounds of industrial interest from Cannabis sativa L. and to their pharmaceutical formulations: A review. J. Supercrit. Fluids 2020, 165, 104960. [Google Scholar] [CrossRef]
- Chandrakant, K.K.; Pravin, D.J.; Dhonde, S.M.; Bharat, H.S.; Amol, K.P. An overview on supercritical fluid extraction for herbal drugs. Pharmacologyonline 2011, 2, 575–596. [Google Scholar]
- Donald, O.F.; White, R.E.; Trueger, E. Liquid-liquid extraction data. Ind. Eng. Chem. 1941, 33, 1240–1248. [Google Scholar]
- Hanson, C. Recent Advances in Liquid-Liquid Extraction; University of Bradford: Bradford, UK, 2013. [Google Scholar]
- Hidayah, N.N.; Abidin, S.Z. The evolution of mineral processing in extraction of rare earth elements using liquid-liquid extraction: A review. Miner. Eng. 2018, 121, 146–157. [Google Scholar] [CrossRef]
- Lan, K.; Jiang, X.; Li, Y.; Wang, L.; Zhou, J.; Jiang, Q.; Ye, L. Quantitative determination of rosuvastatin in human plasma by ion pair liquid–liquid extraction using liquid chromatography with electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal. 2007, 44, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Studzińska, S.; Cywoniuk, P.; Sobczak, K. Application of ion pair chromatography coupled with mass spectrometry to assess antisense oligonucleotides concentrations in living cells. Analyst 2019, 144, 622–633. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Zhang, W.; Yu, C.; Wen, Y. Recent advances in biological sample preparation methods coupled with chromatography, spectrometry and electrochemistry analysis techniques. TrAC Trends Anal. Chem. 2018, 102, 123–146. [Google Scholar] [CrossRef]
- Panganiban, K.; Peyton, J.; Everhart, E.T.; Tisdale, E.C.; Batki, E.L.; Mendelson, J.E.; Jones, R.T. Sulfonium salts as derivatizing agents. 3. Quantitation of the cocaine metabolite benzoylecgonine in urine using gas chromatography with ion-pair extraction/on-column alkylation. J. Anal. Toxicol. 1999, 23, 581–585. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Li, W.; Chen, Z. Solid phase microextraction with poly (deep eutectic solvent) monolithic column online coupled to HPLC for determination of non-steroidal anti-inflammatory drugs. Anal. Chim. Acta 2018, 1018, 111–118. [Google Scholar] [CrossRef]
- Mpupa, A.; Selahle, S.K.; Mizaikoff, B.; Nomngongo, P.N. Recent Advances in Solid-Phase Extraction (SPE) Based on Molecularly Imprinted Polymers (MIPs) for Analysis of Hormones. Chemosensors 2021, 9, 151. [Google Scholar] [CrossRef]
- Rygula, A.; Majzner, K.; Marzec, K.M.; Kaczor, A.; Pillarczyk, M.; Baranska, M. Raman spectroscopy of proteins: A review. J. Raman Spectrosc. 2013, 44, 1061–1076. [Google Scholar] [CrossRef]
- Verma, G.; Mishra, M. Development and optimization of UV-Vis spectroscopy–A review. World J. Pharm. Res. 2018, 7, 1170–1180. [Google Scholar]
- Scheeren, L.E.; Nogueira-Librelotto, D.R.; Fernandes, J.R.; Macedo, L.B.; Marcolino, A.I.P.; Vinardell, M.P.; Rolim, C.M.B. Comparative study of reversed-phase high-performance liquid chromatography and ultraviolet–visible spectrophotometry to determine doxorubicin in pH-sensitive nanoparticles. Anal. Lett. 2018, 51, 1445–1463. [Google Scholar] [CrossRef]
- Bulduk, İ. HPLC-UV method for quantification of favipiravir in pharmaceutical formulations. Acta Chromatogr. 2021, 33, 209–215. [Google Scholar] [CrossRef]
- Stanislaw, K.; Marczenko, Z.; Obarski, N. Derivative UV-VIS spectrophotometry in analytical chemistry. Chem. Anal. 1996, 41, 889–927. [Google Scholar]
- Fedick, P.W.; Schrader, R.L.; Ayrton, S.T.; Pulliam, C.J.; Cooks, R.G. Process Analytical Technology for Online Monitoring of Organic Reactions by Mass Spectrometry and UV–Vis Spectroscopy. J. Chem. Educ. 2018, 96, 124–131. [Google Scholar] [CrossRef]
- Das, R.S.; Agrawal, Y.K. Raman spectroscopy: Recent advancements, techniques and applications. Vib. Spectrosc. 2011, 57, 163–176. [Google Scholar] [CrossRef]
- Frosch, T.; Knebl, A.; Frosch, T. Recent advances in nano-photonic techniques for pharmaceutical drug monitoring with emphasis on Raman spectroscopy. Nanophotonics 2020, 9, 19–37. [Google Scholar] [CrossRef]
- Tanwar, S.; Paidi, S.K.; Prasad, R.; Pandey, R.; Barman, I. Advancing Raman spectroscopy from research to clinic: Translational potential and challenges. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 260, 119957. [Google Scholar] [CrossRef]
- Xi, X.; Liang, C. Perspective of future SERS clinical application based on current status of Raman spectroscopy clinical trials. Front. Chem. 2021, 9, 665841. [Google Scholar] [CrossRef]
- Riolo, D.; Piazza, A.; Cottini, C.; Serafini, M.; Lutero, E.; Cuoghi, E.; Gasparini, L.; Botturi, D.; Marino, I.G.; Aliatis, I.; et al. Raman spectroscopy as a PAT for pharmaceutical blending: Advantages and disadvantages. J. Pharm. Biomed. Anal. 2018, 149, 329–334. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Introduction to Fluorescence. In Principles of Fluorescence Spectroscopy; Springer: Boston, MA, USA, 1999; pp. 1–25. [Google Scholar]
- Lakowicz, J.R. Instrumentation for Fluorescence Spectroscopy. In Principles of Fluorescence Spectroscopy; Springer: Boston, MA, USA, 2006; pp. 27–59. [Google Scholar]
- Royer, C.A. Fluorescence Spectroscopy. In Protein Stability and Folding; Humana Press: Totowa, NY, USA, 1995; pp. 65–89. [Google Scholar]
- Qin, W.; Wang, K.; Xiao, K.; Hou, Y.; Lu, W.; Xu, H.; Wo, Y.; Feng, S.; Cui, D. Carcinoembryonic antigen detection with “Handing”-controlled fluorescence spectroscopy using a color matrix for point-of-care applications. Biosens. Bioelectron. 2017, 90, 508–515. [Google Scholar] [CrossRef]
- Xu, X.; Xu, G.; Wei, F.; Cen, Y.; Shi, M.; Cheng, X.; Chai, Y.; Sohail, M.; Hu, Q. Carbon dots coated with molecularly imprinted polymers: A facile bioprobe for fluorescent determination of caffeic acid. J. Colloid Interface Sci. 2018, 529, 568–574. [Google Scholar] [CrossRef]
- Moczko, E.; Mirkes, E.M.; Caceres, C.; Gorban, A.N.; Piletsky, S. Fluorescence-based assay as a new screening tool for toxic chemicals. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Berthomieu, C.; Hienerwadel, R. Fourier transform infrared (FTIR) spectroscopy. Photosynth. Res. 2009, 101, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.A.; Van de Voort, F.R.; Sedman, J. Fourier transform infrared spectroscopy: Principles and applications. Tech. Instrum. Anal. Chem. 1997, 18, 93–139. [Google Scholar]
- Dutta, A. Fourier Transform Infrared Spectroscopy. In Spectroscopic Methods for Nanomaterials Characterization; Elsevier: Amsterdam, The Netherlands, 2017; pp. 73–93. [Google Scholar]
- Essousi, H.; Barhoumi, H. Electroanalytical application of molecular imprinted polyaniline matrix for dapsone determination in real pharmaceutical samples. J. Electroanal. Chem. 2018, 818, 131–139. [Google Scholar] [CrossRef]
- Nosrati, H.; Salehiabar, M.; Manjili, H.K.; Danafar, H.; Daravan, S. Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications. Int. J. Biol. Macromol. 2018, 108, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Sala, A.; Anderson, D.J.; Brennan, P.M.; Butler, H.J.; Cameron, J.M.; Jenkinson, M.D.; Rinaldi, C.; Theakstone, A.G.; Baker, M.J. Biofluid diagnostics by FTIR spectroscopy: A platform technology for cancer detection. Cancer Lett. 2020, 477, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chen, J.; Huyan, Z.; Kou, Y.; Xu, L.; Yu, X.; Gao, J.M. Application of Fourier transform infrared spectroscopy for the quality and safety analysis of fats and oils: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3597–3611. [Google Scholar] [CrossRef]
- Cao, R.; Liu, X.; Zhai, X.; Cao, T.; Wang, A.; Qiu, J. Applications of nuclear magnetic resonance spectroscopy to the evaluation of complex food constituents. Food Chem. 2021, 342, 128258. [Google Scholar] [CrossRef]
- Jiménez, B.; Holmes, E.; Heude, C.; Tolson, R.F.; Harvey, N.; Lodge, S.L.; Chetwynd, A.J.; Cannet, C.; Fang, F.; Pearce, J.T.; et al. Quantitative lipoprotein subclass and low molecular weight metabolite analysis in human serum and plasma by 1H NMR spectroscopy in a multilaboratory trial. Anal. Chem. 2018, 90, 11962–11971. [Google Scholar] [CrossRef]
- De Castro, F.; Benedetti, M.; Del Coco, L.; Fanizzi, F.P. NMR-based metabolomics in metal-based drug research. Molecules 2019, 24, 2240. [Google Scholar] [CrossRef] [Green Version]
- Coskun, O. Separation techniques: Chromatography. North. Clin. Istanb. 2016, 3, 156. [Google Scholar]
- Cuatrecasas, P.; Wilchek, M.; Anfinsen, C.B. Selective enzyme purification by affinity chromatography. Proc. Natl. Acad. Sci. USA 1968, 61, 636. [Google Scholar] [CrossRef] [Green Version]
- Porath, J. From gel filtration to adsorptive size exclusion. J. Protein Chem. 1997, 16, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.C. Exploring Chemical Analysis; Macmillan Learning: New York, NY, USA, 2012. [Google Scholar]
- Moleirinho, M.G.; Silva, R.J.S.; Carrondo, M.J.T.; Alves, P.M.; Piexoto, C. Exosome-based therapeutics: Purification using semi-continuous multi-column chromatography. Sep. Purif. Technol. 2019, 224, 515–523. [Google Scholar] [CrossRef]
- Matsuda, Y.; Kliman, M.; Mendelsohn, B.A. Application of Native Ion Exchange Mass Spectrometry to Intact and Subunit Analysis of Site-Specific Antibody–Drug Conjugates Produced by AJICAP First Generation Technology. J. Am. Soc. Mass. Spectrom. 2020, 31, 1706–1712. [Google Scholar] [CrossRef]
- Chen, Q.L.; Chen, Y.J.; Zhou, S.H.; Yip, K.M.; Xu, J.; Chen, H.B.; Zhen, Z. Laser microdissection hyphenated with high performance gel permeation chromatography-charged aerosol detector and ultra performance liquid chromatography-triple quadrupole mass spectrometry for histochemical analysis of polysaccharides in herbal medicine: Ginseng, a case study. Int. J. Biol. Macromol. 2018, 107, 332–342. [Google Scholar] [PubMed]
- Ohlson, S.; Duong-Thi, M.D. Fragment screening for drug leads by weak affinity chromatography (WAC-MS). Methods 2018, 146, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Vandersluis, M.; Stout, J.; Haupts, U.; Sanders, M.; Jacquemart, R. Affinity chromatography for vaccines manufacturing: Finally ready for prime time? Vaccine 2019, 37, 5491–5503. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Liu, X.; Ulrih, N.P.; Sengupta, P.K.; Xiao, J. Plasma protein binding of dietary polyphenols to human serum albumin: A high performance affinity chromatography approach. Food Chem. 2019, 270, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Nambiar, V.S.; Daniel, M.; Guin, P. Characterization of polyphenols from coriander leaves (Coriandrum sativum), red amaranthus (A. paniculatus) and green amaranthus (A. frumentaceus) using paper chromatography and their health implications. J. Herb. Med. Toxicol 2010, 4, 173–177. [Google Scholar]
- Hagen, M.; Baker, M. Skin penetration and tissue permeation after topical administration of diclofenac. Curr. Med. Res. Opin. 2017, 33, 1623–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Brettell, T.A.; Victoria, J.; Wood, M.R.; Starets, M. High performance thin-layer chromatography (HPTLC) analysis of cannabinoids in cannabis extracts. Forensic Chem. 2020, 19, 100249. [Google Scholar] [CrossRef]
- Chaumont, M.; Van De Borne, P.; Bernard, A.; Van Muylem, A.; Deprez, G.; Ullmo, J.; Starczewska, E.; Briki, R.; De Hemptinne, Q.; Zaher, W.; et al. Fourth generation e-cigarette vaping induces transient lung inflammation and gas exchange disturbances: Results from two randomized clinical trials. Am. J. Physiol. Lung Cell. Mol. Physiol. 2019, 316, L705–L719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilde, M.J.; Cordell, R.L.; Salman, D.; Zhao, B.; Ibrahim, W.; Bryant, L.; Ruszkiewicz, D.; Singapuri, A.; Free, R.C.; Gaillard, E.A.; et al. Breath analysis by two-dimensional gas chromatography with dual flame ionisation and mass spectrometric detection–method optimisation and integration within a large-scale clinical study. J. Chromatogr. A 2019, 1594, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Gallant, S.R.; Koppaka, V.; Zecherle, N. Dye ligand chromatography. In Affinity Chromatography; Humana Press: Totowa, NY, USA, 2008; pp. 61–70. [Google Scholar]
- Denizli, A.; Pişkin, E. Dye-ligand affinity systems. J. Biochem. Biophys. Methods 2001, 49, 391–416. [Google Scholar] [CrossRef]
- Bobály, B.; Fleury-Souverain, S.; Beck, A.; Veuthey, J.L.; Guillarme, D.; Fekete, S. Current possibilities of liquid chromatography for the characterization of antibody-drug conjugates. J. Pharm. Biomed. Anal. 2018, 147, 493–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queiroz, J.A.; Tomaz, C.T.; Cabral, J.M. Hydrophobic interaction chromatography of proteins. J. Biotechnol. 2001, 87, 143–159. [Google Scholar] [CrossRef]
- Bell, D.S. New Chromatography Columns and Accessories for 2018. LCGC N. Am. 2018, 36, 234–247. [Google Scholar]
- Saad, A.; Leon, N.; Duha, S. Determination of Height Equivalent to a Theoretical Plate and Van Deemter Constants for C8 and C18 Columns by using High Performance Liquid Chromatography. Res. J. Pharm. Technol. 2018, 11, 1603–1611. [Google Scholar]
- Xu, Q.; Yuan, A.J.; Zhang, R.; Bian, X.; Chen, D.; Hu, X. Application of Electrochemical Methods for Pharmaceutical and Drug Analysis. Curr. Pharm. Anal. 2009, 5, 144–155. [Google Scholar] [CrossRef]
- Parrilla, M.; Cuartero, M.; Crespo, G.A. Wearable potentiometric ion sensors. TrAC Trends Anal. Chem. 2019, 110, 303–320. [Google Scholar] [CrossRef]
- Cuartero, M.; Parrilla, M.; Crespo, G.A. Wearable potentiometric sensors for medical applications. Sensors 2019, 19, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elgendy, K.; Elmosallamy, M.A.F.; Soltan, M.K.; Amin, A.S.; Elshaprawy, D.S. Novel potentiometric methods for the estimation of bisoprolol and alverine in pharmaceutical forms and human serum. Rev. Anal. Chem. 2021, 40, 127–135. [Google Scholar] [CrossRef]
- Urbanowicz, M.; Pijanowska, D.G.; Jasinski, A.; Ekman, M.; Bochenska, M.K. A miniaturized solid-contact potentiometric multisensor platform for determination of ionic profiles in human saliva. J. Solid State Electrochem. 2019, 23, 3299–3308. [Google Scholar] [CrossRef] [Green Version]
- Karimi-Maleh, H.; Orooji, Y.; Karimi, F.; Alizadeh, M.; Baghayeri, M.; Rouhi, J.; Tajik, S.; Beitollahi, H.; Agarwal, S.; Gupta, V.K.; et al. A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens. Bioelectron. 2021, 184, 113252. [Google Scholar] [CrossRef]
- Brainina, K.; Tarasov, A.; Khamzina, E.; Kazakov, Y.; Stozhko, N. Disposable potentiometric sensory system for skin antioxidant activity evaluation. Sensors 2019, 19, 2586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bratovčić, A.; Odobašić, A.; Ćatić, S. The advantages of the use of ion-selective potentiometry in relation to UV/VIS spectroscopy. Agric. Conspec. Sci. 2009, 74, 139–142. [Google Scholar]
- Kounaves, S.P. Voltammetric techniques. In Handbook of Instrumental Techniques for Analytical Chemistry; Prentice Hall: Hoboken, NJ, USA, 1997; pp. 709–726. [Google Scholar]
- Bard, A.J.; Faulkner, L.R. Student Solutions Manual to accompany Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Nimmo, M. Encyclopedia of Analytical Science, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Nadjo, L.; Savéant, J.M. Linear sweep voltammetry: Kinetic control by charge transfer and/or secondary chemical reactions: I. Formal kinetics. J. Electroanal. Chem. Interfacial Electrochem. 1973, 48, 113–145. [Google Scholar] [CrossRef]
- Hui, J.; O’Dell, Z.J.; Rao, A.; Riley, K.R. In situ quantification of silver nanoparticle dissolution kinetics in simulated sweat using linear sweep stripping voltammetry. Environ. Sci. Technol. 2019, 53, 13117–13125. [Google Scholar] [CrossRef] [PubMed]
- Filik, H.; Avan, A.A. Dextran modified magnetic nanoparticles based solid phase extraction coupled with linear sweep voltammetry for the speciation of Cr (VI) and Cr (III) in tea, coffee, and mineral water samples. Food Chem. 2019, 292, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Labib, M.; Sargent, E.H.; Kelley, S.O. Electrochemical methods for the analysis of clinically relevant biomolecules. Chem. Rev. 2016, 116, 9001–9090. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Xu, Y.; Lin, L.; Li, Y.; Chen, W.; Chen, J.; Lei, Y.; Lin, L.; Liu, A.; Lin, X.; et al. Nanoporous gold electrode prepared from two-step square wave voltammetry (SWV) and its application for electrochemical DNA biosensing of lung resistance related protein (LRP) gene. J. Electroanal. Chem. 2019, 840, 165–173. [Google Scholar] [CrossRef]
- Yuen, J.; Goyal, A.; Rusheen, A.E.; Kouzani, A.Z.; Berk, M.; Kim, J.H.; Tye, S.J.; Blaha, C.D.; Bennet, K.E.; Jang, D.P.; et al. Cocaine-induced changes in tonic dopamine concentrations measured using. Front. Pharmacol. 2021, 12, 1710. [Google Scholar] [CrossRef]
- Crespi, F. Differential Pulse Voltammetry: Evolution of an In Vivo Methodology and New Chemical Entries, A Short Review. J. New Dev. Chem. 2020, 2, 20–28. [Google Scholar] [CrossRef]
- Teófilo, K.R.; Arantes, L.C.; Marinho, P.A.; Macedo, A.A.; Pimentel, D.M.; Rocha, D.P.; de Oliveira, A.C.; Richter, E.M.; Munoz, R.A.; dos Santos, W.T. Electrochemical detection of 3, 4-methylenedioxymethamphetamine (ecstasy) using a boron-doped diamond electrode with differential pulse voltammetry: Simple and fast screening method for application in forensic analysis. Microchem. J. 2020, 157, 105088. [Google Scholar] [CrossRef]
- Bonazza, G.; Tartaggia, S.; Toffoli, G.; Polo, F.; Daniele, S. A fast method for the detection of irinotecan in plasma samples by combining solid phase extraction and differential pulse voltammetry. Anal. Bioanal. Chem. 2020, 412, 1585–1595. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Niu, W.; Wu, J.; Wang, Y.; Li, C.; Qiu, j.; Xue, J. A triple-amplification differential pulse voltammetry for sensitive detection of DNA based on exonuclease III, strand displacement reaction and terminal deoxynucleotidyl transferase. Biosens. Bioelectron. 2019, 143, 111609. [Google Scholar] [CrossRef] [PubMed]
- Mirceski, V.; Skrzypek, S.; Leon, S. Square-wave voltammetry. ChemTexts 2018, 4, 1–14. [Google Scholar] [CrossRef]
- Herzog, G.; Beni, V. Stripping voltammetry at micro-interface arrays: A review. Anal. Chim. Acta 2013, 769, 10–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghoneim, M.M.; Beltagi, A.M. Adsorptive stripping voltammetric determination of the anti-inflammatory drug celecoxib in pharmaceutical formulation and human serum. Talanta 2003, 60, 911–921. [Google Scholar] [CrossRef]
- Jain, R.; Gupta, V.K.; Jadon, N.; Radhapyari, K. Voltammetric determination of cefixime in pharmaceuticals and biological fluids. Anal. Biochem. 2010, 407, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Parnsubsakul, A.; Safitri, R.E.; Rijiravanich, P.; Surareungchai, W. Electrochemical assay of proteolytically active prostate specific antigen based on anodic stripping voltammetry of silver enhanced gold nanoparticle labels. J. Electroanal. Chem. 2017, 785, 125–130. [Google Scholar] [CrossRef]
- Xu, H.; Zeng, L.; Huang, D.; Xian, Y.; Jin, L. A Nafion-coated bismuth film electrode for the determination of heavy metals in vegetable using differential pulse anodic stripping voltammetry: An alternative to mercury-based electrodes. Food Chem. 2008, 109, 834–839. [Google Scholar] [CrossRef] [PubMed]
- Kissinger, P.T.; Heineman, W.R. Cyclic voltammetry. J. Chem. Educ. 1983, 60, 702. [Google Scholar] [CrossRef]
- Nikbakht, M.; Pakbin, B.; Nikbakht Brujeni, G. Evaluation of a new lymphocyte proliferation assay based on cyclic voltammetry; an alternative method. Sci. Rep. 2019, 9, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saylor, R.A.; Hersey, M.; West, A.; Buchanan, A.M.; Berger, S.N.; Nijhout, H.F.; Reed, M.C.; Best, J.; Hashemi, P. In vivo hippocampal serotonin dynamics in male and female mice: Determining effects of acute escitalopram using fast scan cyclic voltammetry. Front. Neurosci. 2019, 13, 362. [Google Scholar] [CrossRef]
- Mohamed, M.A.; El-Gendy, D.M.; Ahmed, N.; Banks, C.E.; Allam, N.K. 3D spongy graphene-modified screen-printed sensors for the voltammetric determination of the narcotic drug codeine. Biosens. Bioelectron. 2018, 101, 90–95. [Google Scholar] [CrossRef]
- Chooto, P. Cyclic voltammetry and its applications. In Voltammetry; IntechOpen: London, UK, 2019; Volume 1. [Google Scholar]
- Carmona-Orbezo, A.; Dryfe, R.A. Understanding the performance of flow-electrodes for capacitive deionization through hydrodynamic voltammetry. Chem. Eng. J. 2021, 406, 126826. [Google Scholar] [CrossRef]
- Belli, S.; Rossi, M.; Molasky, N.; Middleton, L.; Caldwell, C.; Bartow-McKenney, C.; Duong, M.; Chiu, J.; Gibbs, E.; Caldwell, A.; et al. Effective and Novel Application of Hydrodynamic Voltammetry to the Study of Superoxide Radical Scavenging by Natural Phenolic Antioxidants. Antioxidants 2019, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Bashir, W.; Basharat, R. Study of Rapid Iodination of Uracil and Cytosine Nucleobases by Molecular Iodine in Aqueous Medium by Hydrodynamic Voltammetry. Int. J. Basic Appl. Biol. 2019, 6, 157–159. [Google Scholar]
- Perera, G.S.; Ahmed, T.; Heiss, L.; Walia, S.; Bhaskaran, M.; Sriram, S. Rapid and Selective Biomarker Detection with Conductometric Sensors. Small 2021, 17, 2005582. [Google Scholar] [CrossRef]
- Saiapina, O.; Vronska, Y.; Dzyadevych, S.; Jaffrezic-Renault, N. Clinoptilolite-based Conductometric Sensors for Detection of Ammonium in Aqueous Solutions. Electroanalysis 2020, 32, 1993–2001. [Google Scholar] [CrossRef]
- Khan, N.I.; Song, E. Detection of an IL-6 Biomarker Using a GFET Platform Developed with a Facile Organic Solvent-Free Aptamer Immobilization Approach. Sensors 2021, 21, 1335. [Google Scholar] [CrossRef] [PubMed]
- Pemberton, R.M.; Cox, T.; Tuffin, R.; Drago, G.A.; Griffiths, J.; Pittson, R.; Johnson, G.; Xu, J.; Sage, I.C.; Davies, R.; et al. Fabrication and evaluation of a micro (bio) sensor array chip for multiple parallel measurements of important cell biomarkers. Sensors 2014, 14, 20519–20532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korotcenkov, G. Current trends in nanomaterials for metal oxide-based conductometric gas sensors: Advantages and limitations. Part 1: 1D and 2D nanostructures. Nanomaterials 2020, 10, 1392. [Google Scholar] [CrossRef] [PubMed]
- Abdollah Pour, H. Application of Electrochemical Impedance Spectroscopy (EIS) as an NDT Method in Corrosion Monitoring and Analysis. NDT Technol. 2020, 2, 44–59. [Google Scholar]
- Gazze, A.; Ademefun, R.; Conlan, R.S.; Teixeira, S.R. Electrochemical impedence spectroscopy enabled CA125 detection; toward early ovarian cancer diagnosis using graphene biosensors. J. Interdiscip. Nanomed. 2018, 3, 82–88. [Google Scholar] [CrossRef]
- Bertok, T.; Lorencova, L.; Chocholova, E.; Jane, E.; Vikartovska, A.; Kasak, P.; Tkac, J. Electrochemical impedance spectroscopy based biosensors: Mechanistic principles, analytical examples and challenges towards commercialization for assays of protein cancer biomarkers. ChemElectroChem 2019, 6, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Chambers, J.P.; Arulanandam, B.P.; Matta, L.L.; Weis, A.; Valdes, J.J. Biosensor recognition elements. Curr. Issues Mol. Biol. 2008, 10, 1–12. [Google Scholar]
- The Editors of Encyclopaedia. Antibody. In Encyclopedia Britannica; Encyclopædia Britannica, Inc.: Chicago, IL, USA, 2021. [Google Scholar]
- Chalklen, T.; Jing, Q.; Kar-Narayan, S. Biosensors Based on Mechanical and electrical detection techniques. Sensors 2020, 20, 5605. [Google Scholar] [CrossRef]
- Peña-Bahamonde, J.; Nguyen, H.N.; Fanourakis, S.K.; Rodrigues, D.F. Recent advances in graphene-based biosensor technology with applications in life sciences. J. Nanobiotechnol. 2018, 16, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Zhou, J. Application of biosensors to detection of epidemic diseases in animals. Res. Vet. Sci. 2018, 118, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Lee, J.; Seo, J.; Shin, H. Development of a sensitive electrochemical enzymatic reaction-based cholesterol biosensor using nano-sized carbon interdigitated electrodes decorated with gold nanoparticles. Sensors 2017, 17, 2128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulchandani, A. Principles of enzyme biosensors. In Enzyme and Microbial Biosensors; Humana Press: Totowa, NJ, USA, 1998; pp. 3–14. [Google Scholar]
- Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized enzymes in biosensor applications. Materials 2019, 12, 121. [Google Scholar] [CrossRef] [Green Version]
- Asal, M.; Özen, Ö.; Şahinler, M.; Polatoğlu, I. Recent developments in enzyme, DNA and immuno-based biosensors. Sensors 2018, 18, 1924. [Google Scholar] [CrossRef] [Green Version]
- Alvarado-Ramírez, L.; Rostro-Alanis, M.; Rodríguez-Rodríguez, J.; Sosa-Hernández, J.E.; Melchor-Martínez, E.M.; Iqbal, H.; Parra-Saldívar, R. Enzyme (Single and Multiple) and Nanozyme Biosensors: Recent Developments and Their Novel Applications in the Water-Food-Health Nexus. Biosensors 2021, 11, 410. [Google Scholar] [CrossRef]
- Qian, L.; Durairaj, S.; Prins, S.; Chen, A. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens. Bioelectron. 2021, 175, 112836. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Bruno, J.G.; Kumar, A.; Sharma, T.K. Aptamers in the therapeutics and diagnostics pipelines. Theranostics 2018, 8, 4016. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Huang, P.J.J.; Ding, J.; Liu, J. Aptamer-based biosensors for biomedical diagnostics. Analyst 2014, 139, 2627–2640. [Google Scholar] [CrossRef] [Green Version]
- Idili, A.; Parolo, C.; Ortega, G.; Plaxco, K.W. Calibration-free measurement of phenylalanine levels in the blood using an electrochemical aptamer-based sensor suitable for point-of-care applications. ACS Sens. 2019, 4, 3227–3233. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, M.; Jiang, J. The potential of aptamers for cancer research. Anal. Biochem. 2018, 549, 91–95. [Google Scholar] [CrossRef]
- Stevenson, D. Molecular imprinted polymers for solid-phase extraction. TrAC Trends Anal. Chem. 1999, 18, 154–158. [Google Scholar] [CrossRef]
- Feroz, M.; Vadgama, P. Molecular Imprinted Polymer Modified Electrochemical Sensors for Small Drug Analysis: Progress to Practical Application. Electroanalysis 2020, 32, 2361–2386. [Google Scholar] [CrossRef]
- Nahhas, A.F.; Webster, T.J. The promising use of nano-molecular imprinted templates for improved SARS-CoV-2 detection, drug delivery and research. J. Nanobiotechnol. 2021, 19, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Chacón, A.; Cetó, X.; Del Valle, M. Molecularly imprinted polymers-towards electrochemical sensors and electronic tongues. Anal. Bioanal. Chem. 2021, 413, 6117–6140. [Google Scholar] [CrossRef] [PubMed]
- Khosrokhavar, R.; Motaharian, A.; Hosseini, M.R.M.; Mohammadsadegh, S. Screen-printed carbon electrode (SPCE) modified by molecularly imprinted polymer (MIP) nanoparticles and graphene nanosheets for determination of sertraline antidepressant drug. Microchem. J. 2020, 159, 105348. [Google Scholar] [CrossRef]
- Martinez, S. Development of Molecularly Imprinted Polymers for Forensic Applications. Master’s Thesis, University of Central Florida, Orlando, FL, USA, 2016. [Google Scholar]
Method | Separation Basis | Advantages | Disadvantages | Separatable Compounds | Ref. | |
---|---|---|---|---|---|---|
PC | Different rates of separation across paper | Cheap, simple, and user-friendly method | Separate low number of samples, no quantitative analysis | Complex and volatile compounds | [56] | |
CC | Size, polarity, or hydrophobicity | Compatible with most complex mixtures, user friendly method | Expensive, time consuming, no quantitative analysis | Nanovesicles | [50] | |
GPC | Sieving molecules based on their size | Simple and reliable method | Limitation in volume of sample, low capacity for separation | Proteins, polysaccharides, enzymes, and polymers | [52] | |
TLC | Capillary force | Simple, cheap, and user friendly | Limitation for volatile samples and low accuracy and pression | Non-volatile pharmaceutical compounds | [57,58] | |
AC | Reversible interaction between analyte and specific ligand | High reliability, great sensitivity and specificity | Complicated maintenance, costly | Purification of enzymes, protein and analyzing vaccines | [53,54,55] | |
DLC | Reversible interaction between analyte and specific DYE ligand | Inexpensive and user-friendly | Limitation in selectivity of dye legends | Proteins, enzymes, coenzymes, cofactors, antibodies, and amino acids | [61,62] | |
HIC | Interacts with the hydrophobic ligand | High efficiency and sensitivity | Costly buffer (salt) | Separate proteins | [63,64] | |
GC | Vaporise samples and sperate through column | Fast and very high efficiency | Only compatible for volatile and thermally stable analytes | Volatile and thermally stable analytes | [59,60] | |
IEC | Charge of chemical and biological groups | Efficient and cheap in column price | Costly buffer | Proteins, enzymes, peptides, amino acids, and antibodies | [51] | |
RP-HPLC | Pressurising the mixture of mobile phase and sample through the column | Fast, reproducible, and efficient method with high accuracy and precision | Costly and complicated maintenance | Most pharmaceutical compounds | [65,66] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavana, B.; Chen, A. Determination of Drugs in Clinical Trials: Current Status and Outlook. Sensors 2022, 22, 1592. https://doi.org/10.3390/s22041592
Tavana B, Chen A. Determination of Drugs in Clinical Trials: Current Status and Outlook. Sensors. 2022; 22(4):1592. https://doi.org/10.3390/s22041592
Chicago/Turabian StyleTavana, Babak, and Aicheng Chen. 2022. "Determination of Drugs in Clinical Trials: Current Status and Outlook" Sensors 22, no. 4: 1592. https://doi.org/10.3390/s22041592
APA StyleTavana, B., & Chen, A. (2022). Determination of Drugs in Clinical Trials: Current Status and Outlook. Sensors, 22(4), 1592. https://doi.org/10.3390/s22041592