
����������
�������

Citation: Hou, X.; Bergmann, J.

HeadSLAM: Pedestrian SLAM with

Head-Mounted Sensors. Sensors 2022,

22, 1593. https://doi.org/10.3390/

s22041593

Academic Editor: Chris Rizos

Received: 12 January 2022

Accepted: 14 February 2022

Published: 18 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

HeadSLAM: Pedestrian SLAM with Head-Mounted Sensors
Xinyu Hou and Jeroen Bergmann *

Natural Interaction Lab, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK;
xinyu.hou@eng.ox.ac.uk
* Correspondence: jeroen.bergmann@eng.ox.ac.uk

Abstract: Research focused on human position tracking with wearable sensors has been developing
rapidly in recent years, and it has shown great potential for application within healthcare, smart
homes, sports, and emergency services. Pedestrian Dead Reckoning (PDR) with Inertial Measurement
Units (IMUs) is one of the most promising solutions within this domain, as it does not rely on any
additional infrastructure, whilst also being suitable for use in a diverse set of scenarios. However,
PDR is only accurate for a limited period of time before unbounded errors, due to drift, affect the
position estimate. Error correction can be difficult as there is often a lack of efficient methods for
calibration. HeadSLAM, a method specifically designed for head-mounted IMUs, is proposed to
improve the accuracy during longer tracking times (10 min). Research participants (n = 7) were
asked to walk in both indoor and outdoor environments wearing head-mounted sensors, and the
obtained HeadSLAM accuracy was subsequently compared to that of the PDR method. A significant
difference (p < 0.001) in the average root-mean-squared error and absolute error was found between
the two methods. HeadSLAM had a consist lower error across all scenarios and subjects in a 20 h
walking dataset. The findings of this study show how the HeadSLAM algorithm can provide a more
accurate long-term location service for head-mounted, low-cost sensors. The improved performance
can support inexpensive applications for infrastructureless navigation.

Keywords: simultaneous localisation and mapping (SLAM); wearable sensors; FootSLAM; pedestrian
navigation; inertial measurement unit

1. Introduction

In recent years, human position tracking technology has drastically changed modern
life by offering location information for a variety of scenarios. The field is still developing at
an incredible pace, with new insights continuously being reported. These Location-Based
Services (LBS) are able to provide accurate location tracking of people, and they have
started to be adopted in a range of different applications, such as smart environments,
healthcare [1], pedestrian navigation, and emergency services [2]. It has also facilitated
new ways of human–environment interaction, in which positional information could be
leveraged to create responsive systems. For example, smart homes can use information
from LBS to make better decisions on how to support those living in these spaces [3].
These responsive interactions might be particularly interesting for healthcare settings,
such as care homes. For example, services can be deployed to provide assistance to the
elderly by identifying their daily routines and establishing care plans that are specifically
developed around the patient, instead of the other way around. This could allow for more
personalised healthcare, by the integration of the mobility patterns of users and mapping
of their physical behavioural routines.

Another area of application for LBS is for those who are interested in monitoring
or optimising their physical performance during sports. Physical activity through sports
participation has become an essential part of ensuring healthy living in today’s world, and
key to this is the tracking of workload [4]. LBS provide a suitable method to determine the
external loading during sports activities. This can then subsequently be combined with
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objective measurements of internal loading to accurately provide a complete picture of an
athlete’s workload [5].

The technology used to offer LBS needs to take into account the constraints that are
set by the application. The Global Navigation Satellite System (GNSS) is widely used in
outdoor position tracking solutions. GNSS allows small electronic receivers to determine
their locations with high precision using time data transmitted along a line of sight by radio
signals from satellites. However, due to signal blockage or strong multipath propagation,
satellite signals such as the Global Positioning System (GPS) are often unavailable or de-
graded in critical environments, which include indoor, underground, or urban canyons [6].
To overcome the challenge of pedestrian position tracking in indoor environments, several
methods have been developed by researchers, which could be classified into building-
dependent and building-independent methods. Building-dependent methods include
techniques that require access to the building’s infrastructures such as WiFi [7], cellular,
or Bluetooth, as well as approaches requiring dedicated infrastructures, such as Radio
Frequency Identification (RFID) [8], Ultra-wideband (UWB) [9,10], infrared, radar [11,12],
ZigBee, Visible Light Communication (VLC), and acoustic signals. For example, Refer-
ence [13] utilised multi-source information from markers, optical flow, ultrasound, and
an inertial sensor to provide a tracking solution. Unfortunately, most of them thus rely
on external aiding signals, information, or infrastructures, which makes it impossible to
leverage them in places where these signals are severely affected or where there is no
specific infrastructure available.

Considering the previous mentioned difficulties, building-independent self-contained
position tracking methods, such as Inertial Measurement Units (IMUs), become a more
suitable choice. IMUs are small, discreet, portable, energy efficient, and easy to implement
in everyday objects and can be acquired at a low cost. Many IMU solutions apply Pedestrian
Dead Reckoning (PDR) methods, which utilise the features of human locomotion to re-
calibrate the data [14,15]. For example, Foxlin leveraged the foot’s rest phase to inject Zero-
velocity Updates (ZUPTs), as pseudo measurements, into a filter to reduce the estimation
error [16]. However, these techniques are only accurate across a “short” time period, and
they become prone to drifting errors when the measurement time increases. The drift
error and the lack of a reliable calibration reference subsequently limits the utility of this
method. Thus, it is essential to find a pedestrian tracking method that has a lower error
when tracking is applied over longer periods of time (e.g., 10 min).

Simultaneous Localisation And Mapping (SLAM) is a computational problem of
constructing or updating a map of an unknown environment, while tracking the location
of the object at the same time [17]. Current SLAM methods can generate accurate location
tracking trajectories and environment maps by using reference landmarks to reduce errors.
These landmarks can be observed by exteroceptive sensors, such as cameras [18], laser range
finders [19], LiDAR [20], or sonar [21]. However, these extra sensors also come at an added
cost, and image-capturing devices face the problem of privacy or security threats when used
in a private environment. Michael Angermann and Patrick Robertson previously proposed
the FootSLAM algorithm, which only uses accelerometers and gyroscopes embedded in
a foot-mounted IMU. FootSLAM applies a Rao-Blackwellised particle filter to build a
probabilistic transition map. This approach was able to prevent unbounded error growth,
and they presented two subsequent extensions of this (PlaceSLAM and FeetSLAM) [22].
Susanna Kaiser and Estefania Munoz Diaz subsequently created PocketSLAM, which is a
combination of a pocket navigation system with a FootSLAM method [23]. They showed
that it was possible to reduce drift with this technique.

The SLAM methods provide an opportunity to leverage small IMUs to create useful
location data. This kind of hardware can easily be embedded into clothing or everyday
objects. A survey that asked potential users how a wearable device should look showed that
wearable sensor technologies were expected to be small, discreet, unobtrusive, and prefer-
ably incorporated into everyday objects [24], which indicates that the acceptability for an
embedded positional tracking system could be rather high.
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The selection of the location where this sensor system can be placed should take into
account the acceptability of the sensor placement. The head provides an interesting location
to attach sensors to, as there are several worn objects that could easily be adapted for
monitoring purposes. It also provides an opportunity for the integration of sensors in
everyday objects that would be acceptable for use in healthcare, sports, or work. Potential
objects that the sensor system could be integrated into are glasses, mouth guards, face
masks, helmets, earrings, earphones, hearing aids, or even caps.

In previous work, we proposed a PDR method especially for head-mounted IMUs
(HeadPDR) [25], which could generate accurate results for short trajectories, across brief
recording periods (<1 min). In this paper, SLAM was combined with the previously pro-
posed HeadPDR method to determine if this would yield lower position errors compared to
the application of the PDR method on its own. The aim was to test this for both indoor and
outdoor environments, which simulate a sports and healthcare setting. The contribution
of the work consists of proposing a SLAM method for head-mounted sensors, which only
requires low-cost portable IMU data and remains accurate over longer time periods. The
rest of the paper is organised as follows: Section 2 describes the PDR and HeadSLAM meth-
ods. Section 3 outlines the experimental conditions. The results are shown and analysed in
Section 4, whilst Sections 5 and 6 conclude the research and discuss the future applications.

2. Methods

The HeadSLAM method consists of two distinct stages: (i) PDR and (ii) SLAM.
The PDR estimates the heading direction and the length of each step based on raw ac-
celerometer and gyroscope data. This is then fed into SLAM to generate a suitable map.
The whole process is shown in Figure 1.

Figure 1. Overview of the HeadSLAM method. The Simultaneous Localisation And Mapping (SLAM)
step is performed after the Pedestrian Dead Reckoning (PDR) in order to create a map based on the
data collected from head-mounted inertial measurement units. The grey arrows show the sequence
of the flowchart. The dark blue arrows represents the data or the variables’ usage or update.



Sensors 2022, 22, 1593 4 of 11

2.1. PDR

A PDR algorithm designed for head-mounted sensors was proposed in [25] and was
adopted in this study. It uses Step-and-Heading Systems (SHSs). The SHSs output a series
of step vectors by detecting each step of the user, estimating the length and direction of
it. This information is then integrated across each step to obtain a complete trajectory.
The next position of the pedestrian could then be estimated with (1). The current position
after the kth step (xk, yk) is input into the equation. lk+1 and ϕk+1 represent the step length
in meters (m) and the forward direction of the next step given in degrees (◦). The iterative
process provides an updated estimate of the x and y positions, which reflect the 2D space
in which the person is moving.

xk+1 = xk + lk+1 × sin(ϕk+1)

yk+1 = yk + lk+1 × cos(ϕk+1)
(1)

2.1.1. Step Detection

The step detection is updated in a comparable manner to the method used in [25],
which also adopted a peak detection approach to identify a step at a heel strike. The vertical
acceleration (z-axis) is first filtered by applying a first-order Low-Pass Filter (LPF) with
a cut-off frequency set to 2 Hz to eliminate any high-frequency noise. This is sufficient
to capture the general walking motion of most users. Peaks and valleys in the filtered
signal are then identified. If the value difference between a peak and its subsequent valley
exceeds the predetermined threshold (0.5 m/s2), the time interval between the previous
and subsequent valley will be recognised as a step.

2.1.2. Step Length Estimation

Weinberg’s model [26] was used as the step estimator:

step_length = k · 4
√

amax − amin (2)

where k is a constant coefficient for unit conversion, whilst amax and amin (ms−2) indicate
the maximum and minimum acceleration measured in the z-direction for a single step. It
was proven to perform best for personalised sets of constants compared to 12 representative
step length estimation models [27].

2.1.3. Heading Estimation

A quaternion-based derivation of the explicit complementary filter proposed by Ma-
hony et al. [28] was adopted as the heading estimator, which considers the problem of
obtaining good attitude estimates from measurements obtained from typical low-cost
inertial measurement units.

The Mahony algorithm can also fuse the magnetometer data into the calculation. How-
ever, this study did not include any magnetometer data in the final estimation, because of
the unpredictable magnetic interference in indoor spaces, the noise in these low-cost sensors,
and the expectation for a longer battery life of the wearable devices [29–31].

2.2. HeadSLAM

The length and heading direction of each step (estimated by the PDR) are fed into the
SLAM for re-calibration. The output from this is subsequently used to build the map.

In the SLAM algorithm, the two-dimensional space is first divided into a grid of
adjacent hexagons of a given radius. The Rao-Blackwellised Particle Filter (RBPF), which
is applied in the FastSLAM algorithm [32], is then used. The SLAM problem was decom-
posed into a pedestrian localisation problem and a mapping problem conditioned on the
pedestrian’s position (pose). The posterior can be simplified as:

p(P0:k, M|Z1:k) = p(M|P0:k) · p(P0:k, Z1:k) (3)
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where P and M represent the pose and the map and Zk is a noisy measurement of the
difference between Pk−1 and Pk, which is the step vector estimated from the previous PDR
layer. The pose could be estimated recursively:

p(P0:k|Z1:k) ∝ p(Zk|Pk−1:k) · p(Pk|P0:k−1) · p(P0:k−1|Z1:k−1) (4)

p(Zk|Pk−1:k) is the likelihood function, which adopts a normal distribution to draw pos-
sible poses after each step. The pose transition function p(Pk|P0:k−1) is computed by
marginalizing over the map. Integrating it yields:

Ii ∝
N ẽ

h̃
+ αẽ

h̃
Nh̃ + αh̃

(5)

where N ẽ
h̃

is the number of times the i-th particle crossed edge ẽ and Nh̃ is the sum of
the crossed times of all edges of the hexagon in this particle’s map counters. αẽ

h̃
and

αh̃ = ∑5
e=0 αẽ

h̃
are the prior counts. The result is used in the particle weight update:

wi
k ∝ wi

k−1 · I
i (6)

where wi
k denotes the weight of the i-th particle at step k. If a particle crossed an edge that

has been crossed more frequently than the other edges of the previous hexagon, it tends to
have more weight. Thus, a consistent walking pattern would be generated.

Each particle contains information about the previous track and the probability of tran-
sitions from each hexagon to its adjacent hexagons, which is represented by a probabilistic
map. The final result is the best map based on the particle with the highest weight.

3. Experimental Conditions
3.1. Data Collection Site

The data collection was conducted in two environments, consisting of an indoor and
outdoor setting. Indoor tests took place in a building with a known floor plan, whilst the
outdoor experiments were conducted using a basketball court, in order to have an exact
measurement for the reference map. These maps were used as ground truths to allow for a
direct comparison with the PDR and HeadSLAM outcomes.

3.2. Participants

There were 5 volunteers for the indoor data collection session and 5 volunteers for the
outdoor data session with 2 people participating in both. The demographic information
of the participants is given in Table 1. All participants signed a consent form before the
data collection started, and they were given the opportunity to ask any questions before
deciding to be involved in this study. Ethical approval was obtained from the University
Ethics Committee, and this experiment was part of a larger study (R70833/RE001).

Table 1. Demographics of the participants.

Subjects 1 2 3 4 5 6 7

Age 25 20 23 24 49 46 47
Height (m) 1.80 1.81 1.77 1.66 1.60 1.75 1.60
Weight (kg) 80 74 61 58 55 89 62

Gender M M F F F M F

Indoor tests X X X X X
Outdoor tests X X X X X
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3.3. Devices

The sensor adopted in the experiments was the SensorTile Microcontroller Unit (MCU)
module (STEVAL-STLCS01V1) from STMicroelectronics (Geneva, Switzerland), which
includes a low-power 3D accelerometer and 3D gyroscope (LSM6DSM), an ultra-low-power
3D magnetometer (LSM303AGR), a Bluetooth low energy network processor (BlueNRG-
MS), a 32 bit ultra-low-power MCU with Cortex®M4F (STM32L476JG), and a 100 mAh
lithium-ion polymer battery. Data were collected at 20 Hz and transferred to a mobile
phone by Bluetooth. Two modules were used for each sessions with different placements.
One was firmly attached to a pair of glasses, whilst the other was connected to a cap.
The placement is shown in Figures 2 and 3.

(a) (b)

Figure 2. Placement of sensor modules (a) on the glasses (b) on the cap.

Figure 3. A subject wearing the devices.

3.4. Experimental Setup

Before the experiments, participants were asked to put on the cap and wear the glasses
with the sensors on them. They were requested to place these on their head in such
a way that they remained comfortably in contact with the head during walking. Each
volunteer was asked to complete the test, for a given environment, six times. Each test
took around 10 min. In the first three tests, subjects were requested to walk the same
predetermined trajectories. The last three tests consisted of volunteers walking randomly
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in the indoor space or randomly on the lines of the basketball court (outdoor). In all the
tests, participants were instructed to walk at a normal and constant speed whilst keeping
their head facing the walking direction. A total of 60 datasets were collected across all
experiments. Each dataset contained both the data from the instrumented glasses, as well
as from the instrumented cap.

3.5. Statistical Analysis

A total of 3 error measurements were computed by comparing the positional out-
comes from the algorithms with the known reference map or path. These error measure-
ments consisted of the Root-Mean-Squared Error (RMSE), average absolute error, and
max absolute error. All errors were computed across the whole trajectory and in me-
ters. A Kolmogorov–Smirnov test was applied to determine if the data were normally
distributed. The Kolmogorov–Smirnov test showed they were not normally distributed,
which was confirmed further by visual inspection of the histograms. The errors obtained
by the PDR were therefore compared with those of the HeadSLAM using the Wilcoxon
signed-rank test. A p-value of less than 0.05 was considered significant. All data analysis
was conducted in MATLAB (R2020a, Mathworks, Natick, MA, USA).

4. Results

An example of the indoor test results is shown in Figure 4, and for the outdoor test
results, an example is shown in Figure 5. The results for all subjects across all tests can be
found in Supplementary Materials.

(a) PDR (b) HeadSLAM

(c) Map

Figure 4. Indoor test results’ example. The light blue shape is the passable area extracted from the
floor plan and acts as a reference for the outcomes generated by the PDR and HeadSLAM. Red lines
in (a) represent the trajectory estimated by the PDR method. Blue lines in (b) show the trajectory
of the particle with the highest weight in SLAM. Red hexagons in (c) represent the trajectory map
generated by HeadSLAM, with darker shades representing those with a higher visiting frequency.
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(a) PDR (b) HeadSLAM

(c) Map

Figure 5. Outdoor test results’ example. Participants were asked to walk the outline of a basketball
court. Red lines in (a) represent the trajectory estimated by the PDR method. Blue lines in (b) show
the trajectory of the particle with the highest weight in SLAM. Red hexagons in (c) represent the
trajectory map generated by HeadSLAM, with darker shades representing those with a higher
visiting frequency.

The obtained errors are shown in Table 2 for the two different environments. The
ground truths consisted of the floor plan for the indoor environment and the lines on the
basketball court for the outdoor environment. The data were split further between the
PDR and HeadSLAM methods. The Kolmogorov–Smirnov test showed that a significant
difference was present between the PDR and HeadSLAM methods (across all three error
measurements) for both the indoor and outdoor environment.

Table 2. Errors in meters (m) are given for the indoor and outdoor environments for both the PDR
and HeadSLAM methods. RMSE is the Root-Mean-Squared Error. A significant difference based on
the Wilcoxon signed-rank test (p-value 1.63 · 10−11) was found for all six direct comparisons between
the PDR and HeadSLAM outcomes.

Environment Algorithm RMSE Average Absolute Error Max Absolute Error

Indoor PDR 2.2943 1.4108 8.2473
HeadSLAM 0.3399 0.1610 1.6597

Outdoor PDR 2.4358 1.7712 7.6218
HeadSLAM 0.8343 0.6400 2.8368

5. Discussion

The results showed that HeadSLAM performed better then the PDR across all vol-
unteers and environments. This increase in performance was likely due to HeadSLAM’s
efficient calibration approach. However, the effectiveness of HeadSLAM only existed when
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trajectories on a confined path were repeated and overlapped, such as walking in the
corridor for several laps. The overlaps allowed for re-calibration and provided updates to
the probability map that was being generated. HeadSLAM is thus applicable for scenarios
in which people cover the same path multiple times.

Our dataset, containing around 20 h of walking data (2 devices · 5 subjects · 2 scenarios
· 6 repeats · 10 min walking), was much larger than previous studies. Reference [23] used
one subject to test indoors and outdoors once with 17 min of walking in total. Reference [22]
used one subject to test three times with 30 min of walking in total. A larger dataset is
essential to validate the robustness of these systems and provides a better way to ensure
they perform across different movement behaviours.

It should be noted that the current approach still requires parameter optimisation. This
is currently not conducted in an automated manner. Automatically tuning the parameter is
one of the key issues that needs to be solved before a practical application can be considered.
Since there are internal drift errors in low-cost sensors and because of external factors that
influence the sensors such as temperature, the optimal parameters in Mahony algorithms
and the particle filter will be different in each test. FootSLAM could solve this problem
by calculating them based on the data collected at the beginning when the foot is kept
still. For example, Reference [33] used an adaptive threshold in the ZUPT. However, it
is impossible to leverage this technique in HeadSLAM, because the head cannot be kept
completely still when the participant is in the standing pose. Fixing the head during a
calibration period does not provide a minimally obtrusive method of tracking. This is
something that should be explored in further research.

It should also be noted that other parameters also vary between people. The k in the
step length estimation will differ between individuals. In this study, these parameters were
adjusted manually. If a plug-and-play system is required for a better user experience, then
all these parameters should be set automatically. Itzik Klein and Omri Asraf proposed
a method that uses deep learning to estimate the Weinberg gain [34]. This could be an
interesting way of solving some of these issues.

The HeadSLAM approach presented here can be useful for human tracking at scale. It
only requires low-cost IMUs, whilst other infrastructure solutions for positional tracking
can be expensive to set up and maintain. It is also not prone to privacy issues, which could
arise when cameras are used. More importantly, the system can be fully self-contained,
creating possibilities for very secure tracking. Although HeadSLAM could work without
external infrastructures or previously known information, there is also a possibility to
combine it with other methods to create a more accurate and robust system. Switching
between HeadSLAM and approaches that require infrastructure can also solve the loss of
position estimation whenever, for example, there is a temporarily weak or a loss of the
WiFi/GPS signal.

6. Conclusions

HeadSLAM could reach an average RMSE of 0.34 m indoors and 0.83 m outdoors
during a 10 min walk, which shows a significant improvement compared to the PDR
method. It shows the potential of longer-term location services based on head-mounted
low-cost sensors, which allow for possible inexpensive applications in healthcare, sports, or
emergency services. The particle filter in the HeadSLAM approach smooths out small errors
that are due to head motions. However, further research will need to conducted to deal with
the problem of unexpected (larger) head movements during walking. These kinds of unique
problems need to be addressed to generate real-world impact for head-mounted sensors.

Supplementary Materials: The following are available online at https://doi.org/10.5281/zenodo.
5562364, Results of all datasets.
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