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Abstract: In this paper, we investigate how to efficiently utilize channel bandwidth in heterogeneous
hybrid optical and acoustic underwater sensor networks, where sensor nodes adopt different Media
Access Control (MAC) protocols to transmit data packets to a common relay node on optical or acous-
tic channels. We propose a new MAC protocol based on deep reinforcement learning (DRL), referred
to as optical and acoustic dual-channel deep-reinforcement learning multiple access (OA-DLMA),
in which the sensor nodes utilizing the OA-DLMA protocol are called agents, and the remainder
are non-agents. The agents can learn the transmission patterns of coexisting non-agents and find
an optimal channel access strategy without any prior information. Moreover, in order to further
enhance network performance, we develop a differentiated reward policy that rewards specific
actions over optical and acoustic channels differently, with priority compensation being given to
the optical channel to achieve greater data transmission. Furthermore, we have derived the optimal
short-term sum throughput and channel utilization analytically and conducted extensive simulations
to evaluate the OA-DLMA protocol. Simulation results show that our protocol performs with near-
optimal performance and significantly outperforms other existing protocols in terms of short-term
sum throughput and channel utilization.

Keywords: Media Access Control (MAC) protocol; hybrid optical-acoustic underwater sensor
networks; heterogeneous networks; deep reinforcement learning

1. Introduction

As we all know, over 70% of the Earth’s surface is covered by the ocean [1]. With the
ever-greater exploitation of terrestrial resources, there is also an increasing demand for
new technologies to develop marine resources. With an extensive range of applications
including aided navigation [2], unmanned exploration [3], or surveillance [4], seismic
reconnaissance [5], and so forth, Underwater Sensor Networks (UWSNs) have been consid-
ered as one of the most promising approaches for efficiently exploring and observing the
ocean [6].

A stable, reliable, and effective marine development technology is regarded as essen-
tial to explore submarine resources. Due to the high attenuation of the electromagnetic
wave in water, the signal attenuation will be aggravated with the increase of frequency [7].
Although optical communication has an overwhelming advantage in speed, power con-
sumption, volume, and other aspects, its short communication distance restricts further
development [8]. The UWSN that relies on acoustic technologies, referred to as Underwater
Acoustic Sensor Network (UASN), has dominated underwater communication for decades
since the acoustic signal can provide relatively long-distance and stable communication [9].
Contrarily, the UASN is generally accompanied by inherent narrow bandwidth [10] and
non-negligible long propagation delay caused by the slow acoustic speed of 1500 m/s,
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resulting in low network throughput and channel utilization. Therefore, it is critical and
urgent for UASNs to improve the network throughput and channel utilization [11].

Media Access Control (MAC) protocol is one of the crucial technologies in the UWSNs
for sensor nodes to share the common underwater channels [12]. Since the MAC proto-
col can ultimately affect the performance of the underwater networks, it is fundamental
and significant to conceive a reliable MAC protocol [13] for achieving high performance.
Compared to the mature terrestrial wireless communication system, the UWSN is under
exploration and not systematic yet [14]. Due to the harsh underwater environment, the
terrestrial MAC protocols cannot be directly applied in the UWSNs. Over the past decades,
various specific MAC protocols have been proposed for UWSNs to elevate network perfor-
mance. Especially in recent years, numerous studies [8,15,16] have focused on the hybrid
MAC protocols to achieve a higher performance for Hybrid Optical and Acoustic UWSNs
(HOA-UWSNs) that combine the advantages of high-speed optical transmission and re-
liable long-range acoustic transmission. In the HOA-UWSNs, bulk data streaming and
instant messages tend to pass through the optical channel, and acoustic communication
carries short packages and non-instant messages [15]. Nodes equipped with optical and
acoustic transceivers can appropriately choose the available transmission mode accord-
ing to the Signal to Noise Ratio (SNR) value and channel conditions [8]. In fact, in the
HOA-UWSNs, the optical channel and acoustic channel can be treated as two disparate
channels with no interference.

Though the improved optical and acoustic MAC protocols indeed have promoted
the network performance, a common precondition of the series is that the global environ-
mental information (the propagation delay, the transmission methods, including channel
reservation, data forwarding, etc.) is supposed to be known among nodes [8,16]. In other
words, nodes should acquire the corresponding information through some operations,
such as control beacon exchanges, or the information is stored in the data message struc-
ture [16]. Undoubtedly, the underwater MAC design is severely burdened with those
related preliminary operations.

Innovatively, the rise of intelligent algorithms provides a new method to cope with the
demand for preliminary information, while meanwhile network performance improvement
can also be achieved. The principal reason is that the intelligent algorithms are capable of
interacting with the environment and choosing the appropriate actions according to the
established objectives via learning and training [17]. A few works [18–20] have already
brought Deep Reinforcement Learning (DRL) algorithm or Q-learning in the MAC design.
Although enhanced network performance without global information can be fulfilled,
the mentioned protocols merely concentrated the homogeneous systems where all nodes
employ the same MAC protocol. The heterogeneous architecture in which nodes use
diverse MAC protocols assists network models and applications in approaching the real
world [21].

It has been demonstrated that Deep Q-Network (DQN) [22] can be adopted into het-
erogeneous underwater MAC protocols [19,23,24] as well to approach the complexity of
the real world and meanwhile elevate the network performance. However, the foregoing
DRL-based MAC protocols only roughly adapt to the heterogeneous underwater acoustic
networks [23,24]. Due to the complex networking and inherent different transmission char-
acteristics of underwater optical and acoustic communication, these existing DRL-based
acoustic protocols are not feasible for underwater hybrid optical and acoustic networks.
Meanwhile, as far as we know, there is little research concentrating on the heterogeneous
MAC protocol fusing optical and acoustic modes, which can make full use of the advantages
of optical and acoustic transmissions.

Motivated by the aforementioned considerations, in this paper we propose a new
MAC protocol for heterogeneous hybrid optical and acoustic underwater sensor networks,
referred to as optical and acoustic dual-channel deep-reinforcement learning multiple
access (OA-DLMA). In the HOA-UWSN, the underwater sensor nodes adopting the
OA-DLMA protocol are named agents, and the remaining nodes are non-agents that em-
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ploy other slotted MAC protocols. Our protocol enables the agent nodes equipped with
optical-acoustic transceivers to adaptively transmit data packets by optical or acoustic
channel towards the relay node. The agents can interact with the environment and learn
the optimal transmission strategy when coexisting with non-agent nodes from a series of
observations and actions to achieve the goal of performance optimization. In this way,
the agents can make full use of the available time slots on both the acoustic and optical
channels. Ultimately, the average channel utilization and short-term sum throughput will
be enhanced.

The main contributions of our work can be summarized as follows.

• To improve the network performance of UWSNs, we construct a heterogeneous un-
derwater sensor network framework that consists of hybrid optical and acoustic
substructures. In the hybrid framework, source nodes can fulfill information interac-
tion with the relay node via optical or acoustic channels. The two kinds of channels
are jointly liable for their respective transmissions. Namely, the transmissions on each
type of channel will not interfere with each other. As a result, the advantages of rapid
transmission and high bandwidth of the optical mode and the stable and long-range
transmission of the acoustic mode will be realized effectively.

• For the first time, we introduce the DRL technique into hybrid optical and acoustic
dual-channel MAC design and propose a DRL-based MAC protocol for the constructed
HOA-UWSN model, referred to as OA-DLMA, where a node applying the OA-DLMA
protocol is regarded as an agent and the agent can learn to find an optimal access policy
without preliminary knowledge of non-agent nodes. Consequently, the agent nodes
can be trained through an effective training mechanism to capture and utilize the
underutilized channels that are not entirely consumed by other nodes. It is revealed
that the OA-DLMA protocol performs well even without additional prior information
or handshake mechanism.

• To further improve the network performance, priority compensation for the optical
channel is encouraged since the optical channel possess more data transmission capa-
bility. We set a distinguishing reward policy to differentiate the feedback of specific
actions on optical and acoustic channels. Specifically, successful optical transmis-
sions will gain larger rewards, while successful acoustic transmissions will obtain
smaller rewards.

The rest of this paper is organized as follows. In Section 2, we comprehensively review
the related work. The fundamental knowledge of Q-learning and Deep Q-learning algo-
rithms are explained in Section 3. In Section 4, we introduce the system model of the overall
network. We describe the details of the OA-DLMA protocol in Section 5. In Section 6, we
give the performance analysis and simulation results in different heterogeneous environ-
ments. Finally, we conclude the paper in Section 7.

2. Related Work

As a promising technique to explore and observe the ocean, UWSNs have drawn
great attention from academia, industry, and governments over the past few years. Under-
water applications can be implemented through three typical communication techniques,
including acoustic, optical and radio frequency (RF) methods. It is widely known that
the hydroacoustic technique supports long-range communication among nodes, optical
wave guarantees high-speed transmission, while RF technique is seldom deployed in
the underwater environment since it suffers from serious attenuation and requires huge
antennas [9].

Associated with a particular transmission technique, MAC protocol design is vital
for UWSNs to effectively share the channel among diverse underwater nodes [12,25].
Generally, underwater acoustic MAC protocol has dominated the underwater MAC for
decades, which are roughly divided into two categories: contention-based and contention-
free [26]. Contention-free protocols allocate channel resources in a predefined way. This
group minimizes the conflicts at the cost of additional constraints [27], such as frequency
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division multiple access (FDMA), time division multiple access (TDMA), and code division
multiple access (CDMA) [28]. Those approaches stipulate that only one node can access the
channel in a regulated fixed segment, and no interference occurs among nodes. More efforts
have focused on the contention-based protocols of UWSNs, which access the channels more
dynamically and flexibly. Huge amounts of contention-based protocols have thus been
proposed, mainly including two classifications of random-access and handshake manner.
As a typical random-access protocol, ALOHA protocol [29] permits a node to simply start
its transmission whenever it has data ready for delivery. Slotted-ALOHA (S-ALOHA) [30]
is considered as a variant ALOHA protocol to address the frequent retransmission and
collisions caused by random behaviors of ALOHA. S-ALOHA has to send packets at the
beginning of each time slot and shares the same time synchronization in order to reduce the
collision, the backoff mechanism is employed at the same time. However, S-ALOHA may
exhibit the same deficient performance as ALOHA because of the presence of very high
delays [31]. With regard to the more prevalent handshake-based protocols that concentrate
on capturing the channel prior to message sending, Molins et al. proposed the slotted floor
acquisition multiple access (Slotted-FAMA) protocol [32] that uses a four-way handshake
mechanism (RTS/CTS/DATA/CTS) with slotted time to mitigate collisions. However,
Slotted-FAMA brings more propagation delay and multi-RTS attempt problems. As a
semblable Slotted-FAMA protocol, the T-lohi protocol [33] sends a short frame ahead
to compete for the channel, whereas only one node can transmit in the channel at the
current time.

As an attractive and feasible alternative, optical wireless communication has recently
attracted great interest. Optical signals support higher data rates at a low latency level
compared to acoustic counterparts because of its higher bandwidth [34]. Meanwhile,
seawater presents a reduced absorption window with wavelengths from 450 nm to 550 nm,
which corresponds to the blue–green light [35]. Unfortunately, the performance of optical
UWSNs is currently limited to short range [36]. As a result, a new trend that integrates the
two technologies has arisen, where optical technique demonstrates efficiency to compensate
for the shortcomings of acoustic transmission, and acoustic technique can also behave as a
substitute for optical mode to finish long-range transmission.

As early as 2010, researchers in Reference [37] started to develop an integrated un-
derwater optical acoustic communication system which complements and integrates with
existing acoustic systems. The hybrid mode contributes to offer high data rates and low
latency when within optical range, combined with long range and robustness of acoustics
when outside of optical range. The authors of Reference [38] also point out the common
trends that allow underwater devices to incorporate different physical communication
technologies. The supplementary technology shows the ability to compensate for existing
shortcomings through its advantages. In other words, the optical signal usually carries
the high-speed data information, and the acoustic signal is loaded with low-bandwidth
assistant control information and maintains the data transmission once the optical link
fails [16].

The authors in [8] put forward a novel Optical-Acoustic hybrid Underwater Wireless
Sensor Network (OA-UWSN), which exactly provides the preliminary knowledge of hybrid
transmissions. The design employs optical and acoustic communications for high-speed
transmission at close range and transmitting control commands and node localization,
respectively. Therewith, the authors in [39] formally propose a novel energy-efficient
contention-based MAC protocol for the optical-acoustic underwater wireless sensor net-
work, called OA-CMAC. OA-CMAC protocol transmits data after successful acoustic
and optical handshakes. It can effectively improve the network throughput and channel
utilization. Nevertheless, the handshake mechanism aiming at reserving channel and
reducing collisions is inescapably required before data transmission launches, and the
global propagation information is no exception.

Both Reinforcement Learning (RL) [40] and Deep Reinforcement Learning (DRL) [41]
are intelligent algorithms which are capable of interacting with environments, learning the



Sensors 2022, 22, 1628 5 of 31

fast time-varying changes of environments, and choosing the appropriate actions. They
have been used frequently to enhance the network performance with more effectiveness
and lower complexity. Recently, the combination of underwater MAC protocols with
intelligent algorithms has also attracted great attention [18–20,23,24]. As a value-based RL
technique, Q-learning [42] is combined with a conventional MAC protocol in [43], where
higher channel utilization has been acquired through trial-and-error. Nevertheless, once
the Q-Table is deposited with overloaded Q values, Q-learning may learn and converge
tardily or even diverge. In order to address the inadequacies in training, Deep Q-network
(DQN) algorithm has been proposed in [22] by combining Q-leaning with Deep Neural
Network (DNN) [44]. To address the overload Q-Table, Q-learning supplies target values
for Deep Q-Neural Network. DQN fits the Q-values in Q-Table, and it solves the instability
as well as divergence of reinforcement learning in large state space and continuous action
space. Thus, DQN can learn successful policies from high-dimensional sensory inputs. Two
vital technologies, including Experience Replay and Fixed Target Network are involved to
better train models in the DQN model [45].

DQN has been widely exploited in [23,24] for the design of underwater MAC protocols
to improve the network performance. Most of the pre-existing MAC protocols are designed
for a homogeneous system in which all the network nodes adopt identical MAC protocols.
Few studies of the existing MAC protocols concentrate on heterogeneous networks, where
sensor nodes employ diverse MAC protocols. In reality, heterogeneous systems can reflect
the real underwater environment more closely, since the underwater environment may
consist of various Unmanned Aerial Vehicles (UAVs), submarines, Remotely Operated
Vehicles (ROVs), and so forth [46], where multiple source nodes may utilize different MAC
protocols. The introduction of heterogeneous architecture is of great and positive realistic
significance in UWSNs. Furthermore, it has the potential to promote the development and
application of Internet of Underwater Things (IoUT) [47].

The authors in [48] do not merely integrate the deep reinforcement learning algorithm
with conventional MAC protocols of Wireless Sensor Networks (WSNs); meanwhile, they
also introduce the heterogeneous network framework when constructing the Deep Rein-
forcement Learning Multiple Access (DLMA) network. Source nodes applying different
slotted MAC protocols attempt to transmit packets to the relay node, and the node using
the DLMA protocol is referred to as an agent node. Thanks to the existence of multiple
time-slotted protocols, time slot allocation can be readily implemented. Through a series of
observation–action rewards, the agent nodes can learn to take the proper actions to acquire
the idle time slots. Therefore, the agents can achieve near-optimal performance with respect
to the objective, even without knowing the detailed operating mechanisms of other coexist-
ing MAC protocols. It is demonstrated that sum throughput can be easily maximized by
combining deep reinforcement learning with MAC protocols in heterogeneous networks.

Even though DLMA is only applicable to heterogeneous Terrestrial Wireless Sensor
Networks (TWSNs), its exceptional performance in terrestrial areas has garnered consid-
erable attention in MAC design for acoustic UWSNs. Both [24] and [23] exploit the same
heterogeneous system model of acoustic UWSNs to design feasible DRL MAC protocols.
The sensor nodes using the two DRL-based protocols can fully capture the available time
slots caused by long latency or the free time slots unused by other nodes. Optimal network
throughput can thus be achieved without knowing the propagation delays and transmis-
sion strategies of non-agent nodes. However, the DR-DLMA protocol and the DRL-based
MAC in [24] merely consider the single acoustic channel for transmissions.

With the DRL algorithm, Reference [49] puts forward a multi-channel deep-reinforcement
learning multiple access protocol (MC-DLMA) for heterogeneous TWSNs, expediting
more efficient spectrum utilization. By learning the transmission modes of the existing
radio nodes, the MC-DLMA node can fully utilize underutilized spectrum resources and
maximize network throughput. However, this protocol cannot be directly adopted in
UWSNs without modification due to the harsh underwater environment.
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On balance, the introduction of the heterogeneous structure, where sources nodes use
different MAC protocols to communicate with a relay node, will initially assist UWSNs with
near-realistic underwater acoustic network models. In addition, the deep reinforcement
learning-based MAC protocols will guarantee performance enhancement for the hetero-
geneous system. Moreover, the alliance of optical and acoustic transmissions has been
demonstrated to effectively improve the network performance. Unfortunately, to our best
knowledge, this promising hybrid technology has not been applied to the heterogeneous
UWSNs to design corresponding MAC protocols.

In light of the analysis above, we propose a DRL-based hybrid optical and acoustic
dual-channel MAC protocol for a heterogeneous underwater framework. First, we provide
an efficient heterogeneous network model by integrating optical and acoustic transmissions,
which permits source nodes to send packets to the relay node with different slotted MAC
protocols. The alliance of optical and acoustic technologies can further enable nodes to
deliver packets in either optical or acoustic mode. The advantages of rapid transmission
and high bandwidth of the optical mode and the stable and long-range transmission of the
acoustic mode will be combined effectively. In addition, by joining with deep reinforcement
learning, the agent nodes can assist in capturing and compensating underutilized channels
that are not sufficiently occupied by the non-agent nodes. Furthermore, a distinct reward
policy has been adopted to distinguish between the transmissions of optical and acoustic
channels. Consequently, priority compensation can be applied to the optical channel
with a higher data transmission capability. Eventually, the objective of maximizing the
throughput and channel utilization will be achieved by the continuous learning and training
of the agents.

In Table 1, we summarize and compare our model with similar models proposed by
other authors.

Table 1. A comparison of different network models. (DR-DQN: Delayed-Reward Deep Q-Network,
HetNets: Heterogeneous Networks.).

Research Network Communication
Technique

Learning
Algorithm

Channel
Number Main Contributions

Wang et al. [39] UWSNs Optical/Acoustic N/A Single Channel
Proposes an underwater optical and

acoustic energy-efficient
MAC protocol.

Park et al. [18] UWSNs Acoustic RL Single Channel Proposes an underwater version of
ALOHA-Q protocol with Q learning.

Geng et al. [24] HetNets Acoustic DRL Single Channel

Proposes an underwater DRL based
MAC protocol and applies the

protocol to both the synchronous and
asynchronous time models.

Ye et al. [23] HetNets Acoustic DRL Single Channel
Provides a DR-DQN framework for

proposing an DRL based MAC
protocol for underwater HetNets.

Ye et al. [49] HetNets Radio DRL Multi-Channel Proposes a DRL multi-channel MAC
protocol for terrestrial HetNets.

Our study HetNets Optical/Acoustic DRL Dual Channel

Proposes a hybrid optical and
acoustic DRL based MAC for

underwater HetNets. To differentiate
between the specific actions on the

optical channel and the acoustic
channel, a distinct reward policy is

set for the two channels.
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3. Model of DQN

Since deep Q network derives from fundamental Q-learning, we first introduce the
Q-learning paradigm in this subsection. Next, the deep reinforcement learning that includes
the deep Q network will be explained. Moreover, the basic contents and learning processes
of deep reinforcement learning will be explained, which can lay the foundation for the
combination of deep reinforcement learning and data transmissions of the MAC protocol
in Section 4.

3.1. Fundamental Q-Learning Model

Q-learning [40] is a prevailing reinforcement learning algorithm with the main com-
ponents of <at,st,rt>, where at, st, rt are the set of the action taken at t, the environmental
state at t, and corresponding reward, respectively. The environmental state becomes st+1
after receiving the reward rt. Unlike the model-based algorithm with a priori knowledge of
the environment model, the transition probability matrix is not required in the model-free
Q-learning [50]. Moreover, this approach is an off-learning type which applies two control
strategies for choosing new actions and updating Q value function, respectively. The
action choosing policy is exactly the greedy algorithm explained in further detail below.
As illustrated in Figure 1, the agent is in the state s and executes the action a with a certain
probability according to the ε-greedy method. After that, the agent will get the reward r
and upgrade the environment state s into s′. ε-greedy algorithm is exploited to choose the
optimal action a′ and update the Q value function as follows:

Q(st, at)← Q(st, at) + α

[
rt+1 + γmax

a′
Q
(
st+1, a′

)
−Q(st, at)

]
(1)

Figure 1. Simple model of Q learning.

In Equation (1), α is the learning rate of the agent, and γ is the discount factor to
reward. The ε-greedy algorithm can be described as:

a =

{
argmaxa′Q(s, a′), with probability 1− ε
a random decision, with probability ε

(2)

In Equation (2), the behavior is selected by an ε-greedy policy that follows the greedy
policy with probability 1-ε and selects a random action with probability ε. The former
branch is usually applied to choosing actions on the premise of acquiring maximal Q value
according to the current state and getting the new action and reward after the current
execution. This step is called target policy. However, the maximal Q value does not always
result in the optimal action. ε-greedy can help to reduce the chances of taking the wrong
actions. The latter branch is applied to choosing actions randomly for exploration, which is
also called behavioral policy. As we can see, the ε-greedy is targeted at solving the balance
between exploration and exploitation, where ε is set to a larger value initially for abundant
exploration and it gradually decreases for sufficient exploitation.

Q Table is created to store Q(s, a) of each state s and action a, where values of rows
represent state space and values of columns represent action space. Initially, a primal
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Q Table is set according to Equation (3), where all the Q values are 0, because the whole
system is at initialization. We set this initial Q-Table to briefly describe the basic components
of Q-Table.

Q(s, a) = s

[
0 0
0 0

]a

(3)

At each time-step, the first state is initialized randomly. Next, a corresponding action
a will be executed on the basis of Q Table in current state s with ε-greedy. After performing
action a, the model can get a state s′ and current reward value r, following by the updating
of Q(s, a) and sequential loops. The whole algorithm of Q-learning determines an optimal
policy to obtain a higher cumulative discount reward in a step-by-step iteration manner [51].

When the action space is finite, Q learning usually performs efficiently in finding a
policy by learning the optimal value function implicitly because action optimization can be
done by exhaustive enumeration method [52]. By contrast, in problems with continuous
and large-scale action spaces, performance of Q learning may be greatly reduced and even
diverge. Therefore, Deep Q Learning (DQL) is proposed in [22] to deal with emerged
problems of Q learning.

3.2. Deep Q Learning

Deep Q learning exploits Q learning with continuation and extension, in which a
nonlinear function approximator (i.e., the deep neural network) is used to approximate
Q value function instead of Q Table [22]. The function approximator with weights θ is
described as Q-network: Q(s, a) = Q(s, a; θ). To obtain an unbiased estimator of the
mean-squared Bellman error while training the Q-network [53], the target Q-network is
utilized to update the values of the primary Q-network periodically and slowly in order
to figure out the instabilities in training process [54]. It is almost identical to the original
Q-network structure, except for the parameter θ. The target network does not interact with
the environment, and it does not renew in each time-step immediately either. The target
network is actually synchronized with the Q-network after a certain number of iterations
(F time slots) by replacing θ− with θ. The Q-network and loss function defined in Equation
(4) updates continuously in DQN update training, until the loss function converges to a
minimum value. Loss function is used to minimize the mean-squared Bellman error with
respect to the old parameter θ− at each update irritation. The current parameters θ are
updated by a Stochastic Gradient Descent (SGD) algorithm [55].

L(θ) = E

(r + γmaxQ
(
s′, a′; θ−

)
−Q(s, a; θ)

a′

)2
 (4)

Another key technique for achieving stability in update processes is experience replay,
because samples in deep learning are required to be mutually independent and uniformly
distributed to each other, while the observations of original Q learning are correlated with
each other and do not satisfy this condition. Experience replay [56] helps the training
process to achieve stability and break the temporal dependency among the observations,
which are employed to train the deep neural network. The key idea of experience replay is
to train the agent with the transitions sampled from the buffer of previously experienced
transitions [57]. At each time-step t, after the agent interacts with the environment, it stores
the corresponding experience tuple et = (at,st,rt,st+1) into the replay memory, where at, st, rt,
st+1 are the set of the state input at time t, the action selected at time t, corresponding re-
ceived reward, and the next state transited from st after taking at at time (t + 1), respectively.
The replay memory D consists of multiple experience tuples, i.e., D = {e1,e2, . . . ,eM}, where
M is the state history size [58]. At each iteration of DQN, a mini-batch of states, actions,
rewards, and next states are sampled from the replay memory as observations to train
the Q-network, which approximates the action–value function [53], and DQN adopts the
ε-greedy strategy to generate experiences. In addition, the original experience tuple will be
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deleted as long as the replay memory becomes saturated, and the latest experience tuple
will store in the replay memory.

4. System Model

The heterogeneous UWSN architecture with hybrid optical and acoustic dual channels
considered in this paper is illustrated in Figure 2, which is mainly formed from underwater
sensor nodes (i.e., multiple source nodes and one relay node), underwater uplink acoustic
and optical channels, and several water surface bacons. The relay node is equipped with an
acoustic–optical transceiver. Source nodes are randomly scattered around the relay node’s
maximum one-hop communication coverage and send data packets towards the relay node
via optical or acoustic channels. There is at least one sensor node adopting our proposed
OA-DLMA protocol, and a node with the OA-DLMA protocol is regarded as an agent node.
Each agent node is also equipped with an acoustic–optical transceiver, and can transmit
data packets by adaptively choosing an optical channel or an acoustic channel to maximally
utilize the underutilized channels, while other non-agent source nodes employing TDMA
or ALOHA protocols are equipped with an acoustic transceiver or an optical transceiver in
order to save energy. TDMA nodes only deliver data packets at the beginning of each time
slot in a distributed manner. ALOHA nodes are actually q-ALOHA nodes, which transfer
data packets with certain transmission probabilities at the beginning of each time slot. In
other words, the non-agent nodes are restricted to sending packets on a specific channel.
An agent node, unlike non-agent nodes, is not allotted a dedicated channel for its packet
transmissions, and it can only make use of the underutilized channels of non-agent nodes.
For a specific time slot, the agent can only compensate for the unused slot on an optical
channel or an acoustic channel. It cannot transmit on both optical and acoustic channels
in the same slot. Because of the high-speed transmissions, each agent is encouraged to
prefer compensating the unused time slot on the optical channel. Collisions will occur if
agent and non-agent nodes transmit across the same channel at the same time. The relay
node returns an acknowledgement packet as a response to the data packet from the source
node, and the same channel as the transmitting channel of the source node is adopted for
replying. It forwards the collected information to the surface bacons via optical or acoustic
channels for subsequent communication in the terrestrial area. The relay node can also
occupy the optical and acoustic channels concurrently, if necessary, because the two types
of communication do not bother each other.

Figure 2. A heterogeneous UWSN consists of multiple source nodes and relay nodes, where source
nodes can transmit data packets to the relay node through optical or acoustic channels.

In our heterogeneous underwater system, we divide the time into fixed-length frames.
Each frame is further split into smaller and equal time slots. Similar to [23], data packet
delivery time is generally fixed at the beginning of each time slot. The short acknowledge-
ment packets are sent by the relay node afterwards. Additionally, the same type of packet
for different nodes has the same packet length. One slot length consists of two segments
for data transmission and acknowledgement, respectively. The relay node can only receive
one data packet in a single data transmission. Once more than one data packet arrives at
the relay node simultaneously, conflicts ensue. Besides, conflicts may still happen if more
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than one node attempts to take up the same channel. After the relay node receives the data
packet at the current time slot, it will send back an ACK acknowledgement to the sender
at the current time slot. The ACK packet will be received by the sender at this time slot
because the slot length is long enough to accommodate a complete transmission.

In the hybrid optical–acoustic dual channel transmission mode, because of the non-
negligible propagation delay caused by slow acoustic velocity, the acoustic mode slot length
should be sufficiently long to cover the entire transmission between the source node and
the relay node. The slot length should be no less than two times the maximum propagation
delay (Tmax_delay) plus one duration for transmitting acoustic data information (T1) and one
duration for transmitting an acoustic ACK acknowledgement (TC), that is:

tslot ≥ 2·Tmax_delay + T1 + TC (5)

Besides, the duration of optical and acoustic ACK acknowledgements can be regarded
as the same, since the data size of ACK packets is both small and their values have little
difference. The optical mode maintains a time slot length as in Equation (6) that holds a
duration for transmitting optical data information (T2) plus a duration for an optical ACK
signal (TC), since the optical propagation delay can be almost neglected.

tslot ≥ T2 + TC (6)

Because both acoustic and optical transmissions exist in one common network model,
two types of time slot length are assumed to be the same, which satisfies Equation (5).
According to Equations (5) and (6), it is obvious that in each time slot, optical data trans-
mission time is much longer than that of acoustic data transmission. In addition, due to the
high optical bit rate, source nodes can transmit more data bits by optical channel during
one time slot. In the real traffic case, high-speed transmission of data (such as pictures,
videos, etc.) [59] is guaranteed by the optical transmission technique.

The non-agent nodes using the TDMA protocol transmit packets in specific time slots
within a frame through a fixed allocation method. The nodes employing the ALOHA
protocol are assigned a transmission probability at the fixed sending time [60]. We assume
that some non-agent nodes can only send data packets in an optical channel, and others
can transfer data packets through an acoustic channel, thus they do not interfere with each
other in this way. Similarly, equipped with an acoustical-optical transceiver, each agent
node can launch communication with the relay node via an optical channel or an acoustic
channel at the same time. Combining with the deep reinforcement learning algorithm,
the agents can interact with the environment and take full advantage of the underutilized
channels (optical and acoustic channels) after a series of observations and actions. Namely,
the agents will capture the available time slots of hybrid optical and acoustic channels
no matter which channel is underutilized. Therefore, the network performance can be
improved. A fundamental example of slotted operations for a heterogeneous UWSN with
two non-agent nodes and one agent node is illustrated in Figure 3.

In Figure 3, the non-agent nodes (one TDMA node and one ALOHA node) transmit
their own data packets at the beginning of the time slots to the relay node by optical channel
or acoustic channel, respectively. Specifically, the TDMA node adopts time slot (t + 1) and
time slot (t + 3) to initiate sessions with the relay node. The ALOHA node adopts slot
t and slot (t + 3) for transmitting data packets to the same relay node. Once the relay
node acquires the data packet, the ACK packet backtracks to the corresponding sender
immediately, and the acknowledgement can be received within the same time slot. In order
to maximize the throughput and channel utilization of the overall network, the agent is
not deliberately assigned an uplink channel. That is, it will learn the transmission manner
of the non-agent nodes and utilize the vacant time slots of underutilized channels. As
depicted in Figure 3, the agent acquires the vacant time slots of the optical and acoustic
channels. It occupies the slot t, slot (t + 2), and slot (t + 4) of optical channel that are not used
by the TDMA node to send data packets. Meanwhile, the agent also occupies the unused
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slot (t + 1) of the acoustic channel to deliver data packets to the relay node. By capturing
more available time slots of an optical or acoustic channel, the agent can transmit more
data packets to the relay node. Correspondingly, the network performance improvements
in terms of throughput and channel utilization can be achieved with our proposal.

Figure 3. Slotted operations of two non-agent nodes and one agent node towards one relay node:
One of the non-gent nodes uses an optical channel to send data packets, another occupies an acoustic
channel for packet transmissions. They do not interfere with each other. The agent can utilize the
unused time slots for transmissions.

5. OA-DLMA Protocol

In this section, we discuss the data transmission manner of the hybrid optical and
acoustic dual channel MAC protocol in our slotted heterogeneous system as a DRL problem.
The agent attempts to occupy the time slots that are not occupied by non-agent nodes of
different channels. Specifically, we assume that the current state is in the time slot t. Related
definitions of deep reinforcement learning are explained as follows.

Agent: A node using the OA-DLMA protocol is referred to as an agent. Agents
are capable of interacting with underwater heterogeneous environments and choosing
appropriate actions.

Action: We suppose that there are two available channels, including an optical channel
and an acoustic channel. at defines the selected behavior by the agent at time step t:
at ∈ {0, 1} is the action space. at = 0 means that the agent chooses not to send in the current
time slot t. at = 1 means that the agent chooses to send in time slot t on the channel i,
i ∈ {1, 2}, in which i = 1 represents the agent sends packets via acoustic channel, and i = 2
denotes the agent chooses the optical channel for data transmission.

Observation: After the agent behaves an action at time slot t, it will acquire related
observation information of the dual channels. If it decides to send a data packet towards
the relay node via channel i at time slot t, it will receive the acknowledgement from the
relay node at time slot t along with the ACK packet. The observations of the agent are
presented in Equation (7):

ot =
[
o1

t , o2
t

]
(7)

where each element represents the individual observation of a particular channel. If at = 0,
as for any i ∈ {1, 2}, the observation oi

t = Success or Idleness expresses whether the
transmission of non-agent nodes on channel i is successful or the channel i is not used at
time slot t. If at = i ∈ {1, 2}, oi

t = Success or Failure indicates whether the transmission of
the agent succeeds or not on channel i.

State: After selecting action at, the system state varies from the past state to the next
state. st represents the environment state at time slot t and are constituted by observations
and actions. Specifically, in time slot t, the action–observation pair is as follows on receiving
the observation value ot.

zt , (at, ot) (8)
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Thus, the state in slot t can be defined as:

st , (zt+1−M, . . . , zt), (9)

where M is the state history length, implying that the current system involves M action–
observation pairs from slot (t + 1 −M) to slot t.

Reward: After selecting action at to transfer from st to st+1, the agent can obtain the
corresponding reward rt of the dual channel in our underwater system. To further improve
the network performance, priority compensation can be considered for the optical channel
since it can undertake more data messages. We adopted a distinguishing reward policy,
and the rewards of each channel are defined as:

ri
t =


0, oi

t = Idleness or Failure
1, oi

t = Success and i is acoustic channel
2, oi

t = Success and i is optical channel
(10)

In Equation (10), ri
t = 0 means that agent does not take action or collisions happen

if the agent sends packets; ri
t = 1 represents that the agent sends packets on the acoustic

channel successfully; ri
t = 2 shows that the agent delivers packets on the optical channel

successfully. We set different values of reward to distinguish the behavior on the optical
channel and the acoustic channel. In this way, the agent can be qualified to prioritize the
compensation of optical transmission. By aggregating the rewards of hybrid optical and

acoustic channels, the actual accumulated reward of the agent is given by rt =
2
∑

i=1
ri

t, which

merges the rewards of optical channel and acoustic channel.
Experience Replay: Experience replay is introduced to break the correlations between

samples and therefore reduces the variance of the updates. At each time-step t, after
the agent has interacted with the underwater environment, it stores the corresponding
experience tuple et = (at,st,rt,st+1) into replay memory D = {e1,e2, . . . ,eM}. After storing
enough tuples, the system will launch experience replay to select random tuples for contin-
ually renewing rewards and states. The loss function in the subsequent content is exactly
calculated according to the values extracted from experience replay.

Fixed Target Network: The target Q-network Q(s, a; θ−) with parameter θ− is used
to update the primary Q-network’s values frequently, but slowly, in order to figure out the
instabilities in training process.

The whole operation of the OA-DLMA protocol is shown in Figure 4. We employ
DQN algorithm to address the hybrid optical–acoustic MAC design problem in this paper.
Based on policy π, the agent node executes action at when the environmental state is st. The
corresponding Q value is described as Qπ(st, at). The updating of Q value is an iterative
process of weighted averaging of past Q values and future information. In the OA-DLMA
system, the update of Q values follows Equation (11):

Q(st, at)← Q(st, at) + α

[
rt + γ max

a′
Q
(
st+1, a′

)
−Q(st, at)

]
(11)

The loss function here is modified as:

L(θ) =
[

rt + γ max
a′

Q
(
st+1, a′; θ−

)
−Q(st, at; θ)

]2
(12)

In Equation (12), the third term is the eval Q value, and the first two terms on the right
are the output of target-network, i.e.,

yrt ,st+1 = rt + γ max
a′

Q
(
st+1, a′; θ−

)
(13)
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Equation (13) is updated through Stochastic Gradient Descent (SGD) to get the θ value
as follows.

θ ← θ − ρ
[
yrt ,st+1 −Q(st, at; θ)

]
∇Q(st, at; θ) (14)

in which ρ is the time slot number requested at each iteration.

Figure 4. Deep Q network for the OA-DLMA protocol of UWSNs.

The learning and training process of OA-DLMA is described in Algorithm 1.

Algorithm 1: Training process of the OA-DLMA protocol for heterogeneous UWSNs.

1: Initialize α, γ, D, ε, F, M, NE //F is the update frequency of the target network
2: Initialize Q-network and target-network with random weights θ, θ−

3: Initialize state randomly
4: for each time slot t do
5: Input current state st into Q-network and output Q value Q(st, at; θ);
6: Select an action at using Equation (2);
7: Get ot through collecting ot =

[
o1

t , o2
t
]
.

8: for I = 1 to 2 do
9: if 0 ≤ t ≤ tslot then
10: st+1 = s0
11: else
12: if oi

t = Idleness or Failure then
13: ri

t = 0.
14: else if oi

t = Success and i is optical channel
15: ri

t = 2.
16: else
17: ri

t = 1.
18: end if
19: end if
20: Get the reward rt through collecting

{
r1

t , r2
t
}

;
21: Generate the next state st+1 based on Equation (9);
22: Store experience et = (at,st,rt,st+1) into replay memory D;
23: end for
24: Calculate the short-term average rewards as Equation (15);
25: Calculate the channel utilization as Equation (16);
26: Select random sample minibatch of experience tuples from D;
27: Train Q-network;
28: Compute loss function by Equation (12);
29: Perform SGD to minimize loss function;
30: Update θ;
31: Every F time slots copy current Q-network to target-network: θ− = θ;
32: end for
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As given in Algorithm 1, it reveals that this algorithm will traverse all the n time slots
to reach convergence. In the process, learning and training will also be executed over two
channels to obtain corresponding observations and rewards for optimizing network targets.
As a result, the complexity of this algorithm is O(n), since it only needs to walk through
all the time slots. Namely, the algorithm complexity running time nearly depends on the
ergodic total time slots and exhibits linear growth.

6. Performance Evaluation
6.1. Simulation Setup

In this section, we evaluate the performance of the proposed OA-DLMA protocol
by comparing it with two representative and promising protocols, OA-CMAC [39] and
MC-DLMA [49], in heterogeneous hybrid optical and acoustic underwater sensor networks.
OA-CMAC is a handshake-based MAC protocol that combines optical and acoustic trans-
mission techniques to save energy. It can transmit large data messages (videos, pictures, etc.)
over a short distance and send small-sized data packets over a long range. MC-DLMA
is a multi-channel protocol for heterogeneous terrestrial wireless sensor networks based
on DRL. It divides the wireless spectrum resource into several sub-channels, and each
non-agent node sends packets to the relay node on its pre-allocated channel. Since the
MC-DLMA performs well in terrestrial systems, we tailor it to our underwater system
with the assumption that it can send data packets through optical and acoustic channels,
denoted as UMC-DLMA. The inherent training mechanism of MC-DLMA is followed by
UMC-DLMA. It does not deliberately distinguish between specific actions on the optical
and acoustic channels, and the same reward policy is set for both. In the following simula-
tions, we first consider the scenario where one agent (OA-DLMA node) coexists with one
TDMA node and one ALOHA node. The three nodes transmit data packets to the relay
node. All the nodes adopting different MAC protocols are required to send their packets
only at the beginning of each time slot. Besides, we further consider an extended scenario
including more agents and non-agent nodes with optical and acoustic channels.

All the simulations are based on Python (Version 3.5.4) and Ubuntu 16.04 LTS plat-
forms, and Tensorflow (Version 1.6.0) [61] and Keras (Version 2.4.3) [62] are adopted as the
software frameworks for deep reinforcement learning. The activation function is RELU [63].
The discount factor γ is set to 0.9, and the state history length M is 32. The greedy exponent
ε is initially set to 1 in ε-greedy algorithm, then it decays by 0.995 every time slot until it
reaches a minimum value of 0.01. The capacity of replay memory D is 560, and the number
of extracted sample tuple NE is 32 at each training session. The update frequency F is
480 for overwriting the old parameter θ−. All the hyper-parameters and parameters are
summarized in Tables 2 and 3, respectively.

Table 2. OA-DLMA Hyper-parameters.

Hyper-Parameter Value

The number of neurons per layer 64
Activation function RELU

State history length M 32
Reward discount factor γ 0.9
Exploration probability ε Decay from 1 to 0.01

Experience buffer capacity D 560
Random samples NE 32
Optimizer of DQN RMSProp

Learning rate α 0.001
Update frequency F of target-net 480

Smoothing window size Nw 1600
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Table 3. OA-DLMA Parameters.

Parameter Value

Acknowledgement time 0.1 s
Acoustic bit rate 10 kb/s
Optical bit rate 1 Mb/s

Maximum distance between source node and
the relay node 30 m

6.2. Simulation Metrics

In this paper, we assess the performance of our OA-DLMA protocol in terms of
short-term sum throughput [48] and channel utilization [18].

The short-term sum throughput is defined as the average packet rate that is success-
fully received by the relay node during the measurement duration (i.e., the duration of the
past Nw time slots after the network converges), which is defined as:

Throughput =
T1·acoustic data rate·N1 + T2·optical data rate·N2

Measurement duration
bit/s, (15)

where Ti (i = 1,2) represents the duration to send an acoustic data stream or optical data
stream in one time slot, respectively. Ni (i = 1,2) denotes the number of time slots that
are used by acoustic transmissions or optical transmissions during the whole measuring
duration. For ease of description, sum throughput and throughput are used interchangeably
with short-term sum throughput in the following.

The channel utilization is defined as the proportion of the time for all the channels to
transmit acoustic and optical data packets over the total measurement duration, which can
be calculated as:

Channel Utilization =
T1·N1 + T2·N2

Mesaurement duration·C , (16)

where C is the number of used channels.

6.3. Simulation Results
6.3.1. The Coexistence of One OA-DLMA Node with One TDMA and One ALOHA Node

We first evaluate the MAC performance under the coexistence of one agent node
(OA-DLMA node) with two non-agent nodes (one TDMA and one ALOHA node) in
two channels (one optical channel and one acoustic channel). The two non-agent nodes
can alternate between optical and acoustical transmission technologies. We consider two
simulation scenarios: (a) The TDMA node delivers packets to the relay node by acoustic
channel, and the ALOHA node sends packets to the relay node through an optical channel;
(b) The TDMA node sends packets to the relay node by optical channel, and the ALOHA
node transfers packets to the relay node through an acoustic channel. In more detail, the
number of time slots that are occupied by the TDMA node varies from 1 to 10, and the
transmitting probability of the ALOHA node increases from 0.1 to 1. We let R and q denote
the number of time slots occupied by the TDMA node within 10 slots and the transmission
probability of the ALOHA node, respectively. In the two scenarios, we first let R be fixed
at 5 and q be variable from 0.1 to 1 with a step size of 0.1. Afterwards, q is fixed at 0.6 and R
varies from 1 to 10.

To verify the algorithm convergence and theoretical validity, we also exhibit the
optimal values of every scenario. Of particular note is that the theoretical optimal values
in the following content are all deduced under the circumstance where the available time
resources are maximally utilized by source nodes. The related derivations are all explained
in Appendix A.

(a) Acoustic TDMA and Optical ALOHA
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(1.) Short-term Sum Throughput: Figure 5 depicts the sum throughput when one agent
coexists with one ALOHA node and one TDMA node. The TDMA node and the ALOHA
node transmit data packets over an acoustic channel and an optical channel, respectively.
The transmission probability q of the ALOHA node varies from 0.1 to 1, and the TDMA
node occupies five time slots for data sending. From Figure 5, we can observe that the
throughput of the TDMA node remains constant since it transmits packets through an
acoustic channel with a fixed number of time slots. We can also see that the ALOHA node
has little transmission since its transmission probability is relatively low when q is less
than 0.5. The agent, thereupon, acts as a compensator to send packets with its transmission
probability (1-q) in the current time slots as ALOHA should have behaved. When q is
greater than 0.5, the ALOHA node launches optical transmissions more frequently, and the
agent no longer transmits data on the optical channel, but on the TDMA node’s unused time
slots in the acoustic channel. As a result, the throughput of the ALOHA node gradually
becomes greater with the increase of q. Concurrently, the simulated throughput of the
ALOHA node accords with the theoretical analyses in Appendix A.1. Furthermore, the
ALOHA node can acquire optimal throughput when q is 1, and the optical channel is fully
utilized by the ALOHA node at that moment. Another observation from Figure 5 is that
the sum throughput can always stabilize at corresponding near-optimal values regardless
of variations in q. The main reason is that the agent can help to utilize the underutilized
slots of optical or acoustic channels.

Figure 5. Sum throughput when one agent coexists with one optical ALOHA node and one acoustic
TDMA node, which have fixed R and variable q, respectively.

Figure 6 depicts the sum throughput when one agent coexists with two non-agent
nodes, where the transmitting probability of the ALOHA node is fixed at 0.6 and the TDMA
node utilizes a changing number of time slots. In Figure 6, the throughput of the TDMA
increases with the increase of available time slots till the upper limit number of time slots
arrives. With the increasing use of time slots by the TDMA node, the throughput of the
agent decreases. Since more time slots are occupied by the TDMA node, the agent has to
utilize fewer time slots. The throughput of the ALOHA node nearly stays stable as the
transmission probability q is fixed. It is also shown in Figure 6 that the sum throughput is
always the same no matter how the TDMA node occupies time slots. The reason is that
the agent can always apply the unoccupied time slots of the TDMA node in the acoustic
channel. We can still observe that the total throughput can almost reach the optimal
value. As a result, the agent is again proven to exhibit its capability to compensate for the
insufficient transmissions within its abilities.

(2.) Channel Utilization: The corresponding channel utilizations are exhibited in
Figures 7 and 8, respectively. In Figure 7, the TDMA node utilizes a fixed number of
time slots. The transmission probability of the ALOHA node varies from 0.1 to 1 simul-
taneously. As can be seen, the general channel utilization trend is an approximate “V”
shape. In other words, with the increase of q, the channel utilization first decreases and
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then increases, and the best channel utilization can be gained when q = 1. The main reason
is that the TDMA node always transmits on the acoustic channel with a fixed number of
time slots. When q is no more than 0.5, the optical ALOHA node transmits less, and the
agent replaces it to send on the optical channel with the transmission probability of (1 − q).

Figure 6. Sum throughput when one agent coexists with one optical ALOHA node and one acoustic
TDMA node, which have fixed q and variable R.

Thus, the channel utilization falls with an increase of q in this case. However, the agent
does not send on the optical channel and instead captures and utilizes the underutilized
slots of the TDMA node on the acoustic channel once q is greater than 0.5. In this case, the
acoustic channel can be better utilized. As a result, the channel utilization enlarges with an
increase of q. Accordingly, Figure 7 depicts the approximate “V” shaped trend of channel
utilization. Besides, the simulation result accords with the analyses in Appendix A.1. In
short, with the assistance of the agent, no matter what the value of q is, we can see that the
channel utilization can still stay almost consistent with the theoretical optimal value.

Figure 8 shows the channel utilization when q is 0.6 and R varies from 1 to 10. We can
see that the channel utilization remains quite stable in spite of the variation of occupied time
slots by the TDMA node. Because the transmission probability of optical ALOHA is fixed
at 0.6, the stable transmissions of the ALOHA node are far from influencing the channel
utilization at this time. Except for this, the agent can acquire all the unused time slots of the
TDMA node, and the slots can be sufficiently used. To sum up, the channel utilization will
rarely change, since the transmissions by the acoustic and optical channels are quite stable.
Meanwhile, it can also be observed from the figure that the simulated channel utilization
basically stays consistent with the optimal value with the help of the agent.

Figure 7. Channel utilization when one agent coexists with one ALOHA node and one TDMA node,
which have fixed R and variable q.
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Figure 8. Channel utilization when one agent coexists with one ALOHA node and one TDMA node,
which have fixed q and variable R.

(b) Acoustic ALOHA and Optical TDMA

(1.) Short-term Sum Throughput: Figures 9 and 10 depict the sum throughput when one
agent coexists with one acoustic ALOHA node and one optical TDMA node. First, R is
fixed at 5, and q increases from 0.1 to 1 with a step size of 0.1. It can be clearly observed
from Figure 9 that the throughput of the optical TDMA node is unchangeable, since it
transmits packets through an optical channel with a fixed number of time slots. Because
the agent can help to use the remaining slots of the TDMA node on the optical channel, its
maximum throughput can be achieved. As for the ALOHA node on the acoustic channel,
its throughput enhances with the increase of q because it transmits with the transmission
probability q. The variation in the throughputs of the acoustic ALOHA node is not obvious
because the acoustic node transmits less data than the optical node. The throughput of the
agent remains constant since the agent can always compensate the unused time slots on
the optical channel. As a result, the variation of the sum throughput is only influenced by
the transmission of the ALOHA node. Undoubtably, the sum value still approaches the
optimal value on account of the additional transmissions of the agent on the optical and
acoustic channels.

With a fixed q and a change in R from 1 to 10, the throughput of the ALOHA node
displays almost the same as in Figure 10. The throughput of the optical TDMA node scales
up if it occupies more time slots, and the throughput of the agent scales down conversely.
That is because the upper limit of the optical channel transmission ability is fixed. As a
result, we can observe that the total throughput does not change when R changes, and it
appears to be nearly the same as the optimal value. The phenomena are also regarded as
the effects of the agent’s optimal actions.

Summarized from Figures 5, 6, 9, and 10, we have realized that the total throughput
can always approach their optimal value even if nodes employ different technologies, not
to speak of how R or q varies. That is because the agent can always take full advantage of
the time slots of each channel via training and learning without any mutual interference.

(2.) Channel Utilization: Corresponding channel utilizations are described in Figures 7 and 8.
Obviously, the channel utilization displays the same trends as the total throughput value.
In Figure 7, where the transmission probability q scales up from 0.1 to 1 and R is set to
be 5, we can find that the channel utilization rises with the increasing q. The main reason
is that optical transmissions are stable because the agent always helps the TDMA node
with sufficient optical transmissions. Thus, the channel utilization is only related to the
transmissions of the ALOHA node on the acoustic channel. The ALOHA node transmits
more packets with a bigger value of q. Therefore, the channel utilization always increases
until it reaches its maximum value. The simulated channel utilization is also very similar
to the optimal channel utilization, due to the efficient compensation achieved by the agent
node on the acoustic or optical channel.
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In Figure 8, where the occupied time slots by the TDMA node scale up from 1 to 10,
the channel utilization will not be affected anyway. That is due to the higher transmission
probability of the ALOHA node (q = 0.6), as the agent has little chance to compensate for the
ALOHA node on the acoustic channel at all. In general, the channel utilization in Figure 8
can nearly reach its optimal theoretical values as well, and the deviations between optimal
values and simulated values can be nearly ignored. The reason is that the agent can acquire
the unused time slots within its capacity and thus fully utilize the channel all the time, no
matter how R or q changes.

Figure 9. Sum throughput when one agent coexists with one acoustic ALOHA node and one optical
TDMA node, which have fixed R and variable q.

Figure 10. Sum throughput when one agent coexists with one acoustic ALOHA node and one optical
TDMA node, which have fixed q and variable R.

6.3.2. The Coexistence of Multiple OA-DLMA NODES with Multiple TDMA and
ALOHA Nodes

For an extension, we consider a more complex scenario with multiple source nodes to
observe how the network performance will be influenced by different ratios of the number
of optical nodes to acoustic nodes. We employ a heterogeneous network with five agent
source nodes and ten non-agent source nodes and seven channels (three optical channels
and four acoustic channels), where all source nodes transmit packets to the common relay
node. The number of optical nodes scales up with a step size of 10% of non-agent nodes,
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and we let the upper proportion of optical nodes be 60%. In other words, the numbers of
optical nodes vary from 3 to 6 and the numbers of acoustic nodes vary from and 7 to 4.
Besides, all nodes are classified into TDMA and ALOHA nodes. We set two combinations of
TDMA and ALOHA nodes, considering each proportion of optical nodes. The proportions
of TDMA nodes are set at 0% as the minimum and the current proportion of optical nodes
as the maximum. That is, the minimum means that all optical nodes are ALOHA nodes,
and all acoustic nodes are TDMA nodes. The maximum means that all optical nodes are
TDMA nodes, and all acoustic nodes are ALOHA nodes. We no longer discuss what will
happen if R or q changes since the related discussions have been stated in Section 6.2.
Therefore, the number of time slots occupied by TDMA nodes in each optical channel R is
5 and the transmission probability q of ALOHA nodes is 0.1 as well. The corresponding
simulation results are listed as follows.

(1.) Short-term Sum Throughput: Figure 11 exhibits the network throughput when
non-agent nodes transmit data to the relay node employing acoustic and optical channels
in different proportions, where the combinations of TDMA nodes and ALOHA nodes are
also alterable. When all optical nodes are ALOHA nodes and all acoustic nodes are TDMA
nodes, we notice that the throughput of TDMA nodes on acoustic channels is nearly the
same because they transmit with a fixed number of time slots. Because only part of the
agents can compensate for free optical channels, the remaining agents can compensate for
unused acoustic channels. The throughput provided by agents acting as compensators
on acoustic channels is also unchangeable. With a high-speed transmission capability, the
optical channel’s throughput has a much greater impact on the sum throughput than the
acoustic channel, so the sum throughput gradually decreases with the increasing number
of ALOHA nodes. More ALOHA nodes mean more contention on the optical channel,
resulting in a reduction in optical channel throughput.

On the contrary, when all optical nodes are TDMA nodes and all acoustic nodes are
ALOHA nodes, the throughput of ALOHA nodes on acoustic channels is so extremely
low that it is almost invisible in the figure because q is small, and an acoustic channel
accommodates less transmission than an optical channel. Accordingly, the throughput
provided by the agents to compensate for acoustic channels is also limited. Figure 11
also shows that the throughput of the optical TDMA nodes is unchangeable since they
transmit packets through optical channels with a fixed number of time slots. The agents
can assist in utilizing the remaining slots of the TDMA nodes on optical channels. Hence,
the maximum throughput of the optical channels can always be achieved. As a result,
the sum throughput remains nearly constant. Furthermore, we can easily see that in all
cases, the total throughput can reach the near-optimal value discussed in Appendix A.2.
Concurrently, a higher throughput can be obtained when all optical nodes are TDMA nodes
and all acoustic nodes are ALOHA nodes.

(2.) Channel Utilization: Accordingly, Figure 11 illustrates the corresponding channel
utilization. It also demonstrated that the simulated results are near optimal values because
OA-DLMA always takes the optimal actions to optimize the channel utilization. In different
scenarios, channel utilization follows a similar pattern to total throughput. Although
channel utilization is higher when all optical nodes are ALOHA nodes and all acoustic
nodes are TDMA nodes, there is little difference between the two scenarios. It is worth it to
sacrifice a little channel utilization for higher throughput. That is why, in Section 6.3.3, the
simulations are based on optical TDMA node and acoustic ALOHA node scenarios.

6.3.3. OA-DLMA versus OA-CMAC/MC-DLMA Protocol

For an extension, we compare the throughput and channel utilization of our pro-
posed OA-DLMA protocol with two typical MAC protocols, including the OA-CMAC
protocol [39] and the underwater version of the MC-DLMA protocol [49], denoted as
UMC-DLMA. The UMC-DLMA protocol has the same underwater configuration as the
OA-DLMA and it can send packets via acoustic and optical channels. Furthermore, to
demonstrate the benefit to each agent of compensating an optical or acoustic channel,
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we additionally compare our protocol with a benchmark protocol in which each agent
only compensates for an optical channel (i.e., only transmits in the unused time slots of
an optical channel), referred to as O-DLMA. We consider a scenario in which 15 source
nodes attempt to communicate with one upper relay node through 3 optical channels and
4 acoustic channels, with TDMA nodes transmitting via optical channels and ALOHA
nodes sending via acoustic channels. We enumerate four levels of network performance
on the basis of different ALOHA node transmission probabilities to roundly finish the
comparisons. That is, ALOHA nodes transmit with a transmission probability of 0, 0.3, 0.5,
and 0.7, respectively.

Figure 11. Network performances of different proportions of optical nodes and TDMA nodes.

(1.) Short-term Sum Throughput: Figure 12 exhibits the throughput of OA-DLMA,
O-DLMA, OA-CMAC, and UMC-DLMA protocols with different values of q (q = 0, 0.3,
0.5, and 0.7). Regardless of q value, the throughputs of the three DRL-based protocols
(OA-DLMA, O-DLMA, and UMC-DLMA) far outweigh those of the OA-CMAC protocol.
The reason is that OA-CMAC protocol requests to send packets via acoustic and optical
handshakes, which reduces the time of data packet sending. Furthermore, because the DRL
algorithm is not adopted in it, unused time slots cannot be acquired and utilized effectively,
which further degrades its throughput.

We can also see that OA-DLMA almost performs better than UMC-DLMA with
different values of q. Although applying optimal configurations, UMC-DLMA can only
achieve an optimal sum throughput of 2087.71 kb/s when q = 0, while in OA-DLMA
2754.43 kb/s. The reason for this is that, despite the fact that the UMC-DLMA protocol uses
multi-channels to send packets, the UMC-DLMA nodes cannot most effectively acquire
unused time slots in the high-capacity optical channels because the acoustic and optical
channels are not distinguished in it, so the agents will randomly choose an underutilized
channel for training and learning. On the contrary, our proposal discusses the transmitting
ability difference between the acoustic and optical channels. Distinguishing rewards
correspond to two different channels, which makes it beneficial to differentiate the specific
actions on the acoustic channel or the optical channel. As a result, the agents will always
prefer to compensate for the underutilized optical channels since the optical technology
allows high speed and large data transmissions.

With an increase of q, the difference between OA-DLMA and UMC-DLMA becomes
smaller. When q = 1, the two protocols have nearly the same throughput. The main reason
for this is that a higher value of q increases the likelihood of the ALOHA node launching
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acoustic transmissions. Accordingly, the agent has less chance of acting as a compensator
for sending packets in acoustic channels. Although there is no difference in reward values
for successful optical channel transmissions and successful acoustic channel transmissions
in UMC-DLMA, because fewer and fewer acoustic time slots are available, the agents
can only use unoccupied time slots of TDMA nodes in optical channels. As a result, the
difference between OA-DLMA and UMC-DLMA is almost negligible.

As shown in Figure 12, the throughput of O-DLMA is close to but lower than that
of OA-DLMA. The main reason is that O-DLMA nodes can only compensate for free
optical channels. Even if there are no free optical channels but multiple available acoustic
channels, the agent cannot act as a compensator to send on acoustic channels. As a result,
the transmission capacity of the free acoustic channel is wasted. OA-DLMA, on the other
hand, allows each agent to compensate for an underutilized optical or acoustic channel.
It can fully utilize the unused channels, resulting in higher throughput than O-DLMA.
OA-DLMA has a maximum throughput of 2754.43 kb/s, while O-DLMA has a maximum
throughput of nearly 2736.84 kb/s. The difference between O-DLMA and OA-DLMA is
insignificant due to the lower transmission capacity of acoustic channels. With an increase
of q, the difference between OA-DLMA and O-DLMA becomes much smaller because
ALOHA nodes with a higher q transmit more packets on acoustic channels and agents have
fewer chances to compensate for acoustic channels.

Even though agents only compensate for underutilized optical channels, O-DLMA
has a much higher throughput than UMC-DLMA. The reason for this is that UMC-DLMA
nodes cannot effectively compensate for unused time slots in high-capacity optical channels
because they do not distinguish between acoustic and optical channels. As a result, the
agents will select an underutilized channel at random, such as an optical or acoustic channel.
On the other hand, O-DLMA nodes always compensate for underutilized high-capacity
optical channels, resulting in higher throughput than UMC-DLMA.

Figure 12. Sum throughput of the network with multiple source nodes using four MAC protocols
(i.e., O-DLMA, OA-DLMA, OA-CMAC, and UMC-DLMA). The transmission probability q of ALOHA
nodes in (a), (b), (c), and (d) is 0, 0.3, 0.5, and 0.7, respectively.

All told, our proposal is advantageous in distinguishing between the specific actions on
the acoustic and optical channels. Because of the high-speed data transmissions, the agents
will always prefer to compensate for the underutilized optical channels. Furthermore, the
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agents can concurrently assist in making full use of acoustic and optical channels for packet
transmissions. As a result, our protocol reflects better network performance than the three
baseline protocols. The simulation results have demonstrated that our OA-DLMA protocol
can achieve near-optimal sum throughput regardless of how non-agent nodes behave. Due
to the participation of deep reinforcement learning, extra methods, such as the handshake
mechanism, are not required in the OA-DLMA.

(2.) Channel Utilization: Figure 13 depicts the channel utilizations of OA-DLMA,
O-DLMA, OA-CMAC, and UMC-DLMA protocols with different values of q (q = 0, 0.3, 0.5,
and 0.7). Regardless of q value, the channel utilizations of the three DRL-based protocols
(OA-DLMA, O-DLMA, and UMC-DLMA) far outperforms the OA-CMAC protocol. The
reason is that OA-CMAC does not employ the DRL algorithm, and handshake mechanism
further reduces the sending time of data packets. We can also see that OA-DLMA performs
better than UMC-DLMA under different values of q. The reason is that the agents can learn
the best policy to effectively acquire and utilize the unused time slots of different channels.
Both OA-DLMA and UMC-DLMA outperform O-DLMA in terms of channel utilization
because they can compensate for available optical and acoustic channels, whereas O-DLMA
can only compensate for free optical channels. Even if there are no available optical channels
but plenty of acoustic channels, the O-DLMA node cannot act as a compensator to send on
acoustic channels. As a result, the free acoustic channel is squandered, leading to lower
channel utilization.

Figure 13. Channel Utilization of the network with multiple source nodes using four MAC protocols
(i.e., O-DLMA, OA-DLMA, OA-CMAC, and UMC-DLMA). The transmission probability q of ALOHA
nodes in (a), (b), (c), and (d) is 0, 0.3, 0.5, and 0.7, respectively.

7. Conclusions

In this paper, we proposed an optical and acoustic dual-channel deep-reinforcement
learning multiple access protocol for heterogeneous underwater sensor networks, referred
to as OA-DLMA. First, we present a heterogeneous underwater sensor network framework
that integrates optical and acoustic transmissions, in which source nodes can deliver packets
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to the relay node via optical or acoustic channels using different slotted MAC protocols.
Acoustic channels cooperating with optical channels always empower nodes to achieve
stable long-distance communication and short-distance high-speed data transmission. In
addition, deep reinforcement learning is introduced into the hybrid optical and acoustic
dual-channel MAC design, which enables agent sensor nodes to acquire available time
slots of underutilized channels (optical and acoustic) that are not used by non-agent nodes
without knowing the transmission information in advance. Through an effective training
mechanism, the agent nodes can be trained to capture and utilize the underutilized channels
that are not entirely consumed by other nodes. Consequently, the goal of maximizing the
throughput and channel utilization will be achieved by the continuous learning and training
of the agents. Furthermore, in order to enhance the network performance, a distinct reward
policy is set on the optical channel and the acoustic channel to differentiate the specific
actions on the two different channels, with priority compensation encouraged for the
optical channel due to its greater data transmission capability. More specifically, successful
optical channel transmissions can earn a higher reward value than successful acoustic
channel transmissions. Finally, we have derived the optimal short-term sum throughput
and channel utilization analytically and conducted extensive simulations to evaluate the
OA-DLMA protocol. The simulation results demonstrate that our protocol can adapt to
the heterogeneous hybrid underwater optical and acoustic environment and perform with
near-optimal performance. Compared with three benchmark protocols, our proposal can
significantly improve the network performance in terms of sum network throughput and
channel utilization.

In conclusion, the combination of the conventional optical and acoustic dual-channel
MAC protocol and the DRL algorithm is validated for improving the network performance
in the one-destination system. On the basis of this paper, we expect to investigate trans-
missions between multiple agent nodes and multiple destination nodes in future work.
Furthermore, we have observed that the underwater channels are not always perfect, so
transmissions may be lost in this scenario. As a result, future research will focus on how to
improve network performance with imperfect underwater communication channels.
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Abbreviations
The main abbreviations of this work are:

Abbreviation Description
DNN Deep Neural Network
DQL Deep Q Learning
DQN Deep Q-Network
DRL Deep Reinforcement Learning
HOA-UWSNs Hybrid Optical and Acoustic Underwater Wireless Sensor Networks
IoUT Internet of Underwater Things
MAC Media Access Control
OA-UWSN Optical-Acoustic hybrid Underwater Wireless Sensor Network
RF Radio Frequency
RL Reinforcement Learning
ROVs Remotely Operated Vehicles
SGD Stochastic Gradient Descent
TWSNs Terrestrial Wireless Sensor Networks
UASN Underwater Acoustic Sensor Network
UAVs Unmanned Aerial Vehicles
UWSNs Underwater Wireless Sensor Networks
WSNs Wireless Sensor Networks

Appendix A. Derivations of Optimal Throughput and Channel Utilization

In the following, we introduce a model-aware node to replace the agent in our work
since the agent is a DRL model-free node, which can finally sense the environment af-
ter learning and training. All the derivations in this paper are based on the work of
Yu et al. [23,64].

Appendix A.1. One Model-Aware Node Coexists with One TDMA Node and One ALOHA Node

We first consider the coexistence of a model-aware node with an acoustic TDMA node,
and a model-aware node with an optical ALOHA node, respectively. For convenience of
illustration, we analyze the throughput per unit time. Due to the different data transmission
capabilities of different channels (optical and acoustic channels), the capacity in bit/s of the
TDMA channel is set to V1 and the capacity in bit/s of the ALOHA channel is set to V2.
When one model-aware node coexists with one TDMA node, the TDMA node transmits
in X specific slots within each frame of K slots in a repetitive manner. In this case, the
model-aware node is a TDMA-aware node that has full knowledge of the X slots used by
the TDMA node. To maximize total throughput, the TDMA-aware node will transmit in all
slots that the TDMA node is not using. Thus, the optimal total throughput is V1.

When one model-aware node coexists with one ALOHA node, the ALOHA node
transmits with a fixed transmission probability of q in each time slot. The transmission
probabilities of different time slots are independently and identically distributed. In a
particular time slot, we let p be the transmission probability for the q-aware node and f (p)
be the associated sum throughput of 1 model-aware node and (N − 1) q-ALOHA nodes. It
is given as:

f (p) = V2·(N − 1)·q(1− q)N−2·(1− p) + V2·p(1− q)N−1 (A1)

The derivative of f (p) with respect to p is:

f ′(p) = V2·(1− N)·q(1− q)N−2 + V2·(1− q)N−1 (A2)

As a result, we find that when q > 1
N , f ′(p) < 0; when q < 1

N , f ′(p) > 0. In other
words, to optimize f (p), the optimal transmission probability p is as:

p∗ =
{

0, i f q > 1
N

1, i f q ≤ 1
N

(A3)
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Thus, the corresponding optimal sum throughput f (p∗) is given as:

f (p∗) =

{
V2·(N − 1)q(1− q)N−2, i f q > 1

N
V2·(1− q)N−1, i f q ≤ 1

N
(A4)

Considering the case where N = 2, we have learned from f (p∗) that the ALOHA node
does not transmit when q is no more than 0.5 and the agent will replace it. Besides, the
ALOHA node transmits its data packets when q is greater than 0.5 and the agent will not
transmit on the same channel. To further discuss the network performance when TDMA
and ALOHA node coexist with model-aware node, we introduce some specific symbols.
Ni(i = 1, 2) denotes the numbers that acoustic transmission or optical transmission suc-
ceeds at the relay node during the whole measuring duration. M represents the overall
frames during the simulation duration. We let V1 = R1 denote the acoustic bit rate and
V2 = R2 denote the optical bit rate. Ti(i = 1, 2) denotes the duration for sending acoustic
data stream or optical data stream in one time slot, respectively.

Appendix A.1.1. Throughput with One Acoustic TDMA Node and One Optical
ALOHA Node

First, we divide the sum throughput into two parts. The first part includes the
throughput of the optical ALOHA node and the throughput that the model-aware node
compensates for the optical channel. Another part includes the throughput of the acoustic
TDMA node and the throughput that the model-aware node compensates for the acoustic
channel. Because the optical channel transmits at high speeds, we focus primarily on
its throughput.

According to Equation (15) of Section 6, the first part of the sum throughput is given by:

Throughput1 =


R2·T2·(1−q)·K·M

K·M·tslot
= R2·T2·(1−q)

tslot
, q ≤ 0.5

R2·T2·q·K·M
K·M·tslot

= R2·T2·q
tslot

, q > 0.5
bit/s (A5)

The second part of the sum throughput is given by:

Throughput2 =


R1·T1· XK ·M·K

K·M·tslot
= R1·T1·X

K·tslot
, q ≤ 0.5

R1·T1· XK ·M·K+R1·T1· K−X
K ·M·K

K·M·tslot
= R1·T1

tslot
, q > 0.5

bit/s (A6)

The optimal sum throughput is calculated as the sum of Throughput1 and Throughput2:

Throughput =


R2·T2·(1−q)+R1·T1· XK

tslot
, q ≤ 0.5

R2·T2·q+R1·T1
tslot

, q > 0.5
bit/s (A7)

Appendix A.1.2. Throughput with One Acoustic ALOHA Node and One Optical
TDMA Node

Then, we continue to divide the sum throughput into two parts. The first part includes
the throughput of the optical TDMA node and the throughput that the model-aware node
compensates for the optical channel. Another part includes the throughput of the acoustic
ALOHA node and the throughput that the model-aware node compensates for the acoustic
channel. The first part of the sum throughput is as:

Throughput1 =
R2·T2·XK ·M·K + R2·T2·K−X

K ·M·K
K·M·tslot

=
R2·T2

tslot
bit/s (A8)
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The second part of the sum throughput is given by:

Throughput2 =


R1·T1·(1−q)

tslot
, q ≤ 0.5 and X = K

R1·T1·q
tslot

, q ≤ 0.5 and X 6= K
R1·T1·q

tslot
, q > 0.5

bit/s (A9)

The optimal sum throughput is also calculated as the sum of Throughput1
and Throughput2:

Throughput =


R1·T1·(1−q)+R2·T2

tslot
, q ≤ 0.5 and X = K

R1·T1·q+R2·T2
tslot

, q ≤ 0.5 and X 6= K
R1·T1·q+R2·T2

tslot
, q > 0.5

bit/s (A10)

Appendix A.1.3. Channel Utilization with One Acoustic TDMA Node and One Optical
ALOHA Node

As illustrated in Equation (16) of Section 6, the channel utilization is given by:

Channel Utilization =


[T2·(1−q)·K+T1· XK ·K]·M

K·M·C·tslot
=

T2·(1−q)+T1· XK
tslot ·C , q < 0.5

T2·q·K·M+T1· XK ·K·M+T1· K−X
K ·K·M

K·M·C·tslot
= T2·q+T1

tslot ·C , q > 0.5
(A11)

Appendix A.1.4. Channel Utilization with One Acoustic ALOHA Node and One Optical
TDMA Node

The channel utilization is given by:

Channel Utilization =


T2+T1·(1−q)

tslot ·C , q ≤ 0.5 and X = K
T2+T1·q
tslot ·C , q ≤ 0.5 and X 6= K

T2+T1·q
tslot ·C , q > 0.5

(A12)

Appendix A.2. Y Model-Aware Nodes Coexist with Multiple Optical TDMA Nodes and Multiple
Acoustic ALOHA Nodes

When multiple model-aware nodes coexist with multiple optical TDMA nodes and
multiple acoustic q-ALOHA nodes, the optimal strategy is similar to the single model-
aware node case. Model-aware nodes can still know the non-agent nodes’ propagation
information of used slots. They can occupy the unused time slots that are not used by
their adjacent non-agent nodes to maximize the network performance. We regard Y
model-aware nodes as one integrated model-aware node. In each time slot, the integrated
model-aware node decides whether the model-aware nodes should access the channel or
not. If the integrated model-aware node finds a channel that can be accessed, it will choose
a model-aware node out of all the model-aware nodes in a round-robin manner to access
the available channel. Consider Y model-aware nodes coexisting with multiple TDMA
nodes and multiple q-ALOHA nodes. We assume that there are Z optical channels and W
acoustic channels. On a specific optical channel c1, all TDMA nodes transmit in X specific
slots within each frame of K slots in a repetitive manner. On a specific acoustic channel c2,
each q-ALOHA node transmits with a fixed transmission probability of q in each time slot.
The optical channel c1 includes (ZC1-1) TDMA nodes and the acoustic channel c2 includes
(WC2-1) ALOHA nodes. The other parameters in the following equations denote the same
implications as in Appendix A.1. We continue to discuss the optimal sum throughput and
channel utilization in this part.



Sensors 2022, 22, 1628 28 of 31

Appendix A.2.1. Throughput When the Number of Model-Aware Nodes Is Less than That
of Optical Channels

We still divide the sum throughput into two parts. The first part includes the through-
put of optical channels, which includes the throughput of TDMA nodes and the model-
aware nodes compensating for the optical channels. Another part includes the throughput
of acoustic channels, which includes the throughput of ALOHA nodes and the model-aware
nodes compensating for the acoustic channels. As shown in Equation (15) of Section 6, the
first part of the sum throughput is given by:

Throughput1 =


Y·R2·T2+(Z−Y)·R2·T2· XK

tslot
, X < K

Z
∑

c1=1

R2·T2
tslot

, X = K
bit/s (A13)

The second part of the sum throughput is given by:

Throughput2 =



W
∑

c2=1

[
(Wc2−1)·q·R1·T1·(1−q)Wc2−2

]
tslot

, (q ≤ 1
Wc2

and X < K) or (q > 1
Wc2

)

W
∑

c2=1
R1·T1·(1−q)Wc2−1

tslot
, q ≤ 1

Wc2
and X = K

bit/s (A14)

The optimal sum throughput is calculated as the total value of the two parts:

Throughput =



W
∑

c2=1

[
(Wc2−1)·q·R1·T1·(1−q)Wc2−2

]
+R2·T2·[Y+ X

K (Z−Y)]

tslot
, (q ≤ 1

Wc2
and X < K) or (q > 1

Wc2
and X < K)

W
∑

c2=1

[
(Wc2−1)·q·R1·T1·(1−q)Wc2−2

]
+

Z
∑

c1=1

R2 ·T2
tslot

tslot
, q > 1

Wc2
and X = K bit/s

W
∑

c2=1
R1·T1·(1−q)Wc2−1+

Z
∑

c1=1

R2 ·T2
tslot

tslot
, q ≤ 1

Wc2
and X = K

(A15)

Appendix A.2.2. Throughput When the Number of Model-Aware Nodes Is Greater than
the Number of Optical Channels but Not More Than the Total Number of Optical and
Acoustic Channels

We still divide sum throughput into two parts. The first part includes the throughput
of optical channels, which includes the throughput of TDMA nodes and the model-aware
nodes compensating for the optical channels. Another part includes the throughput of
acoustic channels, which includes the throughput of ALOHA nodes and the model-aware
nodes compensating for the acoustic channels. As shown in Equation (15) of Section 6, the
first part of the sum throughput is given by:

Throughput1 =
Z·R2·T2

tslot
bit/s (A16)

The second part of the sum throughput is given by:

Throughput2 =



Y−Z
∑

c2=1
R1·T1·(1−q)Wc2−1

tslot
, q ≤ 1

Wc2
and X 6= K

Y
∑

c2=1
R1·T1·(1−q)Wc2−1

tslot
, q ≤ 1

Wc2
and X = K bit/s

Z
∑

c2=1
R1·T1·(Wc2−1)·q·(1−q)Wc2−2

tslot
, q > 1

Wc2

(A17)

The optimal sum throughput is calculated as the total value of the two parts:



Sensors 2022, 22, 1628 29 of 31

Throughput =



Y−Z
∑

c2=1
R1·T1·(1−q)Wc2−1+Z·R2·T2

tslot
, q ≤ 1

Wc2 and X 6= K
Y
∑

c2=1
R1·T1·(1−q)Wc2−1+Z·R2·T2

tslot
, q ≤ 1

Wc2
and X = K bit/s

Z
∑

c2=1
R1·T1·(Wc2−1)·q·(1−q)Wc2−2+Z·R2·T2

tslot
, q > 1

Wc2

(A18)

Channel Utilization When the Number of Model-Aware Nodes Is Less than That of
Optical Channels

The channel utilization is given by:

Channel Utilization =



Y·T2+(Z−Y)· X
K ·T2+

W
∑
c2

[
(Wc2−1)·q·T1·(1−q)Wc2−2

]
(Z+W)·tslot

, (q ≤ 1
Wc2

and X < K) or (q > 1
Wc2

and X < K)
W
∑
c2

[
(Wc2−1)·q·T1·(1−q)Wc2−2

]
+

Z
∑

c1=1
T2

(Z+W)·tslot
, q > 1

Wc2
and X = K

W
∑
c2

T1·(1−q)Wc2−1+
Z
∑

c1=1
T2

(Z+W)·tslot
, q ≤ 1

Wc2
and X = K

(A19)

Channel Utilization When the Number of Model-Aware Nodes is Greater than the Number of
Optical Channels but Not More than the Total Number of Optical and Acoustic Channels

Channel Utilization =



Y−Z
∑

c2=1
T1·(1−q)Wc2−1+

W−Z
∑

c2=1
T1·(Wc2−1)·q·(1−q)Wc2−2+Z·T2

(Z+W)·tslot
, q ≤ 1

Wc2
and X 6= K

Y
∑

c2=1
T1·(1−q)Wc2−1+

W−Y
∑

c2=1
T1·(Wc2−1)·q·(1−q)Wc2−2+Z·T2

(Z+W)·tslot
, q ≤ 1

Wc2
and X = K

W
∑

c2=1
T1·(Wc2−1)·q·(1−q)Wc2−2+Z·T2

(Z+W)·tslot
, q > 1

Wc2

(A20)
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