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Abstract: The truncated signed distance function (TSDF) fusion is one of the key operations in the 3D
reconstruction process. However, existing TSDF fusion methods usually suffer from the inevitable
sensor noises. In this paper, we propose a new TSDF fusion network, named DFusion, to minimize
the influences from the two most common sensor noises, i.e., depth noises and pose noises. To the
best of our knowledge, this is the first depth fusion for resolving both depth noises and pose noises.
DFusion consists of a fusion module, which fuses depth maps together and generates a TSDF volume,
as well as the following denoising module, which takes the TSDF volume as the input and removes
both depth noises and pose noises. To utilize the 3D structural information of the TSDF volume, 3D
convolutional layers are used in the encoder and decoder parts of the denoising module. In addition,
a specially-designed loss function is adopted to improve the fusion performance in object and surface
regions. The experiments are conducted on a synthetic dataset as well as a real-scene dataset. The
results prove that our method outperforms existing methods.

Keywords: depth fusion; TSDF; sensor noises

1. Introduction

Depth fusion is of great importance for many applications, such as augmented reality
applications and autonomous driving. Many methods have been proposed in this area
and truncated signed distance function (TSDF) [1] is one of the most famous. However,
TSDF requires manual adjustment on its parameters, possibly leading to thick artifacts. To
address this problem, some depth fusion methods have emerged with improved perfor-
mance. Methods such as [2,3] use surfel-based or probabilistic approaches to generate 3D
representations, which may be a voxel grid, a mesh or a point cloud. In addition, compared
with these classical methods, convolutional neural network (CNN) based methods have
shown advantages in the fusion performance. However, their results still suffer from noisy
input, which results in missing surface details and incomplete geometry [4].

The data acquired by depth cameras inevitably contain a significant amount of noise.
Although researchers have proposed many methods to remove the noise, most of the works
only focus on removing the noise caused by depth maps but neglect the noise of camera
poses (pose noises for simplicity). Figure 1 illustrates the two types of noises. Figure 1a
shows the situation where there is no noise and a plane is in the sight of the camera. If
there are depth noises, the noise may be outliers or missing data, as shown in Figure 1b,
which leads to noisy TSDF volumes. As for the pose noise, Figure 1c provides an example
when the camera has translation and rotation error compared with Figure 1a, which causes
troubles when integrating the TSDF updates due to the inaccurate extrinsic data. Both
types of noises may have adverse impacts on depth fusion results. However, there are only
a few works that focus on removing noises for TSDF fusion, even given the fact that both
types of noises are inevitable.
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Figure 1. Illustration of the sensor noises. (a) Sensor without noises. (b) Depth noises. (c) Sensor
pose noises.

RoutedFusion method [4], as an example, considers the depth noise and aims to obtain
a robust TSDF volume against different levels of depth noise. It uses depth maps derived
from synthetic datasets and puts random noises into the depth maps. However, in the
fusion process, the camera pose they use is the ground-truth pose from the synthetic dataset,
so that the results can only be robust against depth noise, but not against pose noise. In this
paper, we propose a method named DFusion that considers not only depth noises but also
pose noises, as shown in Figure 2. To the best of our knowledge, this is one of the earliest
research that tries to avoid the performance drop caused by pose noises.
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Figure 2. DFusion can minimize the influence of both types of noises.

Generally, depth fusion is conducted with 2D convolutional models. However, when
considering the pose noise, it is better to remove the noise with the 3D representation be-
cause it is challenging to recognize and remove the surface shifts in the 2D space. Therefore,
we firstly adopt a Fusion Module, as the first part of DFusion, with the same setting as the
fusion network in the RoutedFusion method, to fuse the depth maps with camera poses
into a TSDF volume. After gaining the integrated TSDF volume, we design a Denoising
Module, an UNet-like neural network, as the second part of DFusion to denoise the TSDF
volume. Since the input of the Denoising Module is a 3D volume, 3D convolutional layers
are utilized to obtain the 3D features. Skip connections are used to avoid the vanishing
gradient problem, which is prone to occur due to the small value of TSDF volume.

For training the networks, we utilize a synthetic dataset which can provide the ground-
truth value of depth maps and camera poses. The model is trained in a supervised manner.
In addition to the commonly-used fusion loss, several specially-designed loss functions
are proposed, including a L1 loss for all voxels in the whole scene and L1 losses over the
objects and surfaces for better fusion performance on these regions.

In sum, the contributions of this work are as follows:

• We propose a new fusion network named DFusion, which considers both depth noises
and pose noises in the fusion process. DFusion can avoid the performance drops
caused by both types of noises, and conduct accurate and robust depth fusion.

• We design new fusion loss functions that focus on all the voxels while emphasizing
the object and surface regions, which can improve the overall performance.

• The experiments are conducted on a synthetic dataset as well as a real scene dataset,
measuring the actual noise levels with the real-world setting and demonstrating the
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denoising effects of the proposed method. The ablation study proves the effectiveness
of the proposed loss function.

2. Related Works
2.1. Depth Fusion and Reconstruction
2.1.1. Classical Methods

TSDF fusion method [1] is one of the most important classical fusion methods that
fuses depth maps with camera intrinsics and the corresponding viewpoints, i.e., camera
poses, into a discretized signed distance function and weight function, thereby obtaining a
volumetric representation. It has been adopted as the fundamental in the majority of depth
map fusion based 3D reconstruction, including KinectFusion [5], BundleFusion [6], and
voxel hashing [7,8]. However, the depth maps always involve noises but all these methods
update a wider band to deal with the noise, as a result, there are noise artifacts, especially
outlier blobs and thickening surfaces, on the results.

In contrast to the voxel-based method, there are some reconstruction approaches
that update the results in different ways. For example, Zienkiewicz et al. [9] introduce
a scalable method that fuses depth maps into a multi-resolution mesh instead of a voxel
grid. Keller et al. [10] design a flat point-based representation method [2], which utilizes
the input from the depth sensor directly without converting representations, thereby
saving the memory and increasing the speed. In addition, the surfel-based approach
that approximates the surface with local points is adopted for reconstruction [2,11]. The
unstructured neighborhood relationship can be built by this approach, although it usually
tends to miss connectivity information among surfels. MRSMap [12], as an example,
integrates depth maps into a multi-resolution surfel map for objects and indoor scenes.

Some researchers also regard the depth map fusion process as a probabilistic density
problem [3,12–14], considering various ray directions. Yong et al. [15] estimate the prob-
ability density function based on the original point cloud instead of the depth map and
use a mathematical expectation method to decrease the complexity of computation. In [16],
the marginal distribution of each voxel’s occupancy and appearance is calculated by a
Markov random field along with the camera rays. However, all these classical methods
have limitations to balance reconstruction quality, scene assumptions, speed and spatial
scale due to the large and complex computation but limited memory.

2.1.2. Learning-Based Methods

Along with the development of deep learning methods, there exist lots of proposals
that fuse and improve the performance of classical 3D reconstruction [17]. For example,
ScanComplete [18] method completes and refines the 3D scan with a CNN model, which
can deal with the large-scale input and obtain the high-resolution output. RayNet [19],
which combines a CNN model with Markov random fields method, considers both local
information and global information of the multi-view images. It can cope with large
surfaces and solve the occlusion problem. Based on Mask R-CNN method [20], Mesh
R-CNN [21] detects objects in an image, then builds meshes with a mesh prediction model
and refines the meshes with a mesh refinement model.

Specifically, in many learning-based approaches, TSDF fusion is still one of the im-
portant steps [22]. OctNetFusion [23] fuses the depth maps with TSDF fusion and subse-
quently utilizes a 3D CNN model to deal with the occluded regions and refines the surfaces.
Leroy et al. [24] propose a deep learning-based method to achieve multi-view photocon-
sistency, which focuses on matching features among viewpoints for obtaining the depth
information. Similarly, the depth maps are finally fused by TSDF fusion. RoutedFusion [4]
also fuses the depth maps based on the standard TSDF fusion. Different from other meth-
ods, it reproduces TSDF fusion by a CNN model, which predicts the parameters of volume
and weight, then the volumetric representation can be updated with new volume and
weight sequentially.
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Compared with the classical method, deep learning-based methods show advantages
in handling thickening artifacts and increasing diversity and efficiency. In addition, existing
methods pay little attention to the noise problem during the fusion process. Our method
adopts a part of RoutedFusion models to fuse the 3D volume firstly, then combines a
special-designed neural network to remove the noise, thereby improving the performance
of the depth fusion.

2.2. Denoising/Noise Reduction

Most of the works consider the noise as the depth noise and try to remove the noise at
the beginning of the fusion process. The authors in [3,25] adopt Gaussian noise to mimic
the real depth noise derived from the depth sensors, then achieve the scene reconstruction.
Cherabier et al. [26] also remove some regions of random shapes, such as circles and
triangles, to simulate the missing data. In RoutedFusion [4], the authors add random
noise to the depth maps and propose a routing network that can remove the random noise,
then use a fusion network to fuse the denoised depth maps into a TSDF volume. The
experiments prove that the routing network has a significant effect on improving accuracy.

Another way to cope with the noise is to refine the 3D representation directly. NPD [27]
trains the network by utilizing a reference plane from the noiseless point cloud as well as
the normal vector of each point while PointCleanNet [28] removes the outlier firstly then
denoises the remaining points by estimating normal vectors. Han et al. [29] propose a local
3D network to refine the patch-level surface but it needs to obtain the global structure from
the depth images firstly, which is inconvenient and time-consuming. Zollhöfer et al. [25]
propose a method that utilizes the details, such as shading cues, of the color image to
refine the fused TSDF volume since the color image typically has a higher resolution. A
3D-CFCN model [30], which is a cascaded fully convolutional network, combines the
feature of low-resolution input TSDF volume and high-resolution input TSDF volume to
remove the noise and refine the surface. However, all these methods only consider either
the outliers of the 3D representation or the noises caused by depth maps. In our method,
we design a denoising network with 3D convolutional layers, which remove the noise for
the TSDF volume without any other additional information. In addition, we take the noise
of both depth maps and camera poses into account; thus, the network is robust against not
only depth noises but also pose noises.

3. Methodology
3.1. TSDF Fusion

Standard TSDF fusion, which is proposed by Curless and Levoy [1], integrates a
depth map Di with the camera pose and camera intrinsic into a signed distance function
Vi ∈ RX×Y×Z and weight function Wi ∈ RX×Y×Z. For location x, the integration process
can be expressed as follows:

Vi(x) =
Wi−1(x)Vi−1(x) + wi(x)vi(x)

Wi−1(x) + wi(x)
(1)

Wi(x) = Wi−1(x) + wi(x) (2)

It is an incremental process, and V0 and W0 are initially set as zero volumes. In each
time step i, the signed distance vi and its weight wi are estimated according to the depth
map of the current ray, then are integrated into a cumulative signed distance function Vi(x)
and a cumulative weight Wi(x).

However, in the traditional way, the parameters are tuned manually, so that it is a heavy
task and difficult to exclude artifacts and maintain high performance. In RoutedFusion [4],
the TSDF fusion process has been conducted in a convolutional network, named depth
fusion network, which is trained to tune the parameters automatically. The input of the
fusion network is depth maps, camera intrinsics and camera poses. The depth map is fused
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into the previous TSDF volume with the camera intrinsic and camera pose incrementally.
The main purpose of RoutedFusion method is to deal with the noise of the TSDF volume
caused by the noise on depth maps. To remove the depth noise, the authors firstly adopt
the depth maps with random noises for training, then use a routing network to denoise the
depth maps before fusing them with the fusion network.

In a real application, however, the pose noise is also inevitable. Therefore, in our
method, the inputs include noised depth maps and noised camera poses.

3.2. Network Architecture

The proposed DFusion method mainly includes two parts: a Fusion Module for fusing
depth maps and a Denoising Module for removing the depth noises and pose noises. These
two modules are trained independently, with different loss functions.

Fusion Module. The Fusion Module follows the design of the fusion network pro-
posed in the RoutedFusion method [4]. It fuses depth maps incrementally with a learned
TSDF updating function, using the information of camera intrinsics and camera poses.
Then the TSDF update will be integrated to form a TSDF volume for the whole scene.
The process of the Fusion Module is illustrated in the upper part of Figure 3. Although
RoutedFusion can remove the depth noise, its denoising process is implemented as a
pre-processing network, i.e., the routing network as metioned in Section 3.1, rather than
the Fusion Module which is used in our method. Also, different from the RoutedFusion
method, we consider not only the depth noise but also the pose noise, the latter of which is
much more obvious when fusion is finished than before/during fusion. Therefore, we add
a post-processing module to deal with both of these two types of noises.

Skip Connection
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TSDF 
Update

TSDF 
IntegrationTSDF Extraction

Denoised 
TSDF

2DCov 8

2DCov 5
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Figure 3. The DFusion model.

Denoising Module. After obtaining the TSDF volume, the Denoising Module is
designed to remove the noise of the TSDF volume. The input of the Denoising Module,
which is also the output of the Fusion Module, is a TSDF volume with depth noises and
pose noises. Since it deals with a 3D volume, we adopt 3D convolutional layers instead of
2D convolutional layers, aiming to capture more 3D features to remove the noise (as using
3D convolutional layers is a natural choice for tasks such as 3D reconstruction [30] and
recognizing 3D shifts are extremely difficult for 2D convolutions). As shown in Figure 3,
the Denoising Module is implemented as an UNet-like network, which downsamples the
features in the encoder part and upsamples them back to the original size in the decoder
part. Skip connections are added among encoder layers and decoder layers.
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In the training phase, to mimic the noises of real-world applications, we add random
noises to the ground-truth depth maps and camera poses of the dataset. Therefore, the
output of the Fusion Module, as well as the input of the Denoising Module, is noisy
and needs to be fixed. For the depth noise, we add the noises Bd that follow a normal
distribution to all pixels P in the depth maps (following the solutions in [4,23]). This process
can be represented as

P′ := P + Bd, (3)

and
Bd ∼ N[0, σd], (4)

where σd is the pre-defined scale parameter. This parameter should be set to reflect the
actual noise levels of the applications. We set σd = 0.005 following [4,23].

As for pose noises, we add the noise to translation matrix T and rotation matrix R,
respectively. Firstly, given a random translation error Bt, a random rotation error Br, two
random unit vectors nt = (n1, n2, n3) and nr = (n4, n5, n6) (respectively, for translation and
rotation errors), the noised translation matrix and rotation matrix are calculated as follows.

T′ := T + nt · Bt

R′ := R + Rodri(nr, Br),
(5)

where Rodri(nr, Br) follows Rodrigues’s rotation formula and it can be represented as: n2
4(1− cosBr) + cosBr n4n5(1− cosBr)− n6sinBr n4n6(1− cosBr) + n5sinBr

n4n5(1− cosBr) + n6sinBr n2
5(1− cosBr) + cosBr n5n6(1− cosBr)− n4sinBr

n4n6(1− cosBr)− n5sinBr n5n6(1− cosBr) + n4sinBr n2
6(1− cosBr) + cosBr

 (6)

In addition, Bt and Br also follow the normal distribution.

Bt ∼ N[µt, σt]

Br ∼ N[µr, σr]
(7)

Since there is no existing method that adds artificial pose noises to improve the
denoising performance, the value of µ and σ is decided based on a real scene dataset. More
details are given in Section 4.2.

3.3. Loss Functions

Since there are two modules in the network, i.e., Fusion module and Denoising module,
the total loss function involves two parts as follows.

Fusion Loss. The loss function of the Fusion Module is expressed as follows:

LF = ∑
a

λF
1 L1(Vlocal,a, V′local,a) + λF

2 LC(Vlocal,a, V′local,a), (8)

where Vlocal and V′local are two local volumes along ray a, respectively, from the the network
output and from the ground-truth. L1 is the L1 loss and can be represented as

L1(V, V′) =
∑vm∈V,v′m∈V′ |vm − v′m|

|V| (9)

In addition, we use the cosine distance loss LC (on the signs of the output volume and
ground-truth volume) to ensure the fusion accuracy of the surface, following the setting
in [4], which can be represented as

LC(V, V′) = 1− cos(sign(V), sign(V′)), (10)

where sign() is to get the signs of the inputs and cos() is to get the cosine values of the
angles between the input vectors.
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In addition, λF
1 and λF

2 are the weigths for the loss terms and are emperically decided
as 1 and 0.1 [4], respectively.

Denoising Loss. The Denoising Module is also trained in a supervised manner,
considering the fusion accuracy on the whole scene, objects, and surface regions. The loss
function is defined as follows:

LD = λD
1 LSPACE + λD

2 LOBJECT + λD
3 LSURFACE, (11)

where LSPACE, LOBJECT , and LSURFACE are, respectively, for the losses of the whole scene,
objects, and the surface regions (as shown in Figure 4). λD

1 , λD
2 , and λD

3 are the weights to
adjust their relative importance.

LSPACE is defined as

LSPACE = L1(V, V′), (12)

where V is the predicted scene volume while V′ is the ground-truth volume.
Let VOBJECT ⊆ V, and for each vm ∈ VOBJECT , v′m ≤ 0, then

LOBJECT = L1(VOBJECT , V′OBJECT) (13)

Similarly, let VSURFACE ⊆ V, and for each vm in VSURFACE, −S ≤ v′m ≤ S, where S is a
threshold of the surface range (we set S to 0.02), then

LSURFACE = L1(VSURFACE, V′SURFACE) (14)

We set the values of hyperparameter λD
1 , λD

2 , and λD
3 to 0.5, 0.25, and 0.25, respectively.

The effects of object loss and surface loss are explored in the ablation study.

Object
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Object
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(b)
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Object
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Figure 4. The focus regions of the loss functions (green masks for the focus regions). (a) The
illustration of the example scene, where one object exists. (b) The scene loss. (c) The object loss.
(d) The surface loss.
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4. Experiments

In this section, we first explain the details of the experimental setup. Then we introduce
the adopted datasets, with which both quantitative and qualitative results prove that our
proposed method outperforms existing methods.

4.1. Experimental Setup

All the network models are implemented in PyTorch and trained with NVIDIA P100
GPU. The RMSprop optimization algorithm [31] is adopted with an initial learning rate
of 10−4 and the momentum of 0.9, for both the fusion network and denoising network.
The networks are trained sequentially, that is, the fusion network is pre-trained before the
training of the denoising network. 10K frames sampled from ShapeNet dataset [32] are
utilized for training the network.

4.2. Dataset and Noise Simulation

ShapeNet dataset [32] includes a large scale of synthetic 3D shapes, such as the plane,
sofa and car. The ground-truth data, including depth maps, camera intrinsics and camera
poses, can be obtained from the 3D shapes. Similar to RoutedFusion [4], we use the
ShapeNet dataset to train the networks. To simulate the realistic noisy situation, not only
depth maps but also camera poses are added random noises in the training process.

CoRBS dataset [33], a comprehensive RGB-D benchmark for SLAM, provides (i) real
depth data and (ii) real color data, which are captured with a Kinect v2, (iii) a ground-truth
trajectory of the camera that is obtained with an external motion capture system, and (iv) a
ground-truth 3D model of the scene that is generated via an external 3D scanner. Totally,
the dataset involves 20 image sequences of 4 different scenes.

Noise Simulation. As introduced in Section 3.2, we need the µt, σt, µr, and σr param-
eters to mimic the real sensor noises. Since the CoRBS dataset provides not only real-scene
data but also the ground-truth data, we adopt it to obtain the realistic pose noise for
simulation. In order to measure the pose noise, we follow the calculation process of the
commonly-used relative pose error (RPE) [34]. RPE is defined as the drift of the trajectory
over a fixed time interval ∆. For a sequence of n frames, firstly, the relative pose error at
time step i is calculated as follows:

Ei = (I−1
i Ii+∆)

−1(J−1
i Ji+∆), (15)

where I is the ground-truth trajectory and J is the estimated trajectory. Then m = n− ∆
individual relative pose error matrices can be obtained along the sequence. Generally, the
RPE is considered as two components, i.e., RPE for translation matrix (T = trans(Ei)) and
RPE for rotation matrix (R = rot(Ei)). We use the following formulas for obtaining the µ
and σ parameters for the normal distribution.

µt =
1
m

m

∑
i=1
‖ trans(Ei) ‖ (16)

σt =

√
1
m

m

∑
i=1

(‖ trans(Ei) ‖ −µt)2 (17)

µr =
1
m

m

∑
i=1

∠rot(Ei) (18)

σr =

√
1
m

m

∑
i=1

(∠rot(Ei)− µr)2, (19)

where ∠rot(Ei) = arccos( Tr(R)−1
2 ) and Tr(R) represents the sum of the diagonal elements

of the rotation matrix R.
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For the translation error, µt is 0.006 and σt is 0.004, while for the rotation error, µr is
0.094 and σr is 0.068, which are used in the noise simulation for our experiments. These
parameters are also preferable in the training of DFusion model for actual uses, while they
can also be increased a bit (better keeping µt and σt no larger than 0.02, µr and σr no larger
than 0.2, with which the DFusion model can give good fusion results) if strong sensor
noises are expected.

4.3. Evaluation Results

The experiments are conducted on ShapeNet and CoRBS datasets. For ShapeNet
dataset, which involves the synthetic data, we add only depth noises and both depth noises
and pose noises, respectively. The results are shown in Tables 1 and 2. To compare with
state-of-the-art methods, our method is evaluated with four metrics, i.e., the mean squared
error (MSE), the mean absolute distance (MAD), intersection over union (IoU) and accuracy
(ACC). MSE and MAD mainly focus on the distance between the estimated TSDF and the
ground truth, while IoU and ACC quantify the occupancy of the estimation. According to
the results, our method outperforms the state-of-the-art methods on all metrics for both
scenarios. Especially when there exist both depth noises and pose noises, our method
shows a significant advantage over other methods. When only depth noises exist, the
RoutedFusion method and the proposed DFusion method have similar performance, while
the latter shows a slight advantage due to the post-processing of the Denoising Module.
Figures 5 and 6 illustrate the fusion results on the ShapeNet dataset with depth noises
or pose noises, respectively, which is more intuitive to show the advantages of DFusion
method. Consistent with the metric results, we can see that DFusion can give clean and
precise fusion for all these objects. Due to the use of deep learning models, RoutedFusion
and DFusion both have satisfactory outputs when depth noises are added, as shown in
Figure 5. However, when pose noises exist (as shown in Figure 6), the fusion results of
RoutedFusion deteriorate a lot, while our DFusion model can still have a precise output.

Table 1. Comparison results on ShapeNet (with only depth noise).

Methods MSE MAD ACC IoU

DeepSDF [35] 412.0 0.049 68.11 0.541
OccupacyNetworks [23] 47.5 0.016 86.38 0.509

TSDF Fusion [1] 10.9 0.008 88.07 0.659
RoutedFusion [4] 5.4 0.005 95.29 0.816
DFusion (Ours) 3.5 0.003 96.12 0.847

Table 2. Comparison results on ShapeNet (with depth noise and pose noise).

Methods MSE MAD ACC IoU

DeepSDF [35] 420.3 0.052 66.90 0.476
OccupacyNetworks [23] 108.6 0.037 77.34 0.453

TSDF Fusion [1] 43.4 0.020 80.45 0.582
RoutedFusion [4] 20.8 0.017 88.19 0.729
DFusion (Ours) 6.1 0.006 95.08 0.801
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TSDF RoutedFusion DFusion (Ours)

(a) Ground-truth Models

(b) Fusion Results

Figure 5. Fusion results on the ShapeNet dataset with depth noise added.
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TSDF RoutedFusion DFusion (Ours)

(a) Ground-truth Models

(b) Fusion Results

Figure 6. Fusion results on the ShapeNet dataset with pose noise added.

For the CoRBS dataset, we choose four real scenes to perform the comparison with
KinectFusion and RoutedFusion method. However, the pose information needs to be
calculated before fusing the depth maps. KinectFusion method involves the process of
calculating the pose information, which is the iterative closest point (ICP) algorithm [36].
Hence, to generate the TSDF volume, we use the ICP algorithm to obtain pose information
for RoutedFusion and DFusion method, then compare the results on the MAD metric. The
results are shown in Table 3. For all the scenes, our method achieves the best result. We also
show some visualization results in Figure 7, which proves that our method can denoise the
TSDF volume effectively and obtain more complete and smooth object models (note the
cabinet edges, desk legs, and the human model arms).
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Figure 7. Fusion results on the CoRBS dataset. ICP algorithm [36] is used to obtain the sensor
trajectory for RoutedFusion and DFusion.

Table 3. Quantitative results (MAD) on the CoRBS dataset.

Methods Human Desk Cabinet Car

KinectFusion [5] 0.015 0.005 0.009 0.009
ICP + RoutedFusion [4] 0.014 0.005 0.008 0.009
ICP + DFusion (Ours) 0.012 0.004 0.006 0.007

4.4. Ablation Study

To verify the effectiveness of the proposed loss function, we perform an ablation study,
which compares the results with other three variants of the loss function, i.e., the loss
function without object loss, the loss function without surface loss and the loss function
without both object and surface loss. The original loss is our default setting which involves
space loss, object loss and surface loss. For all variants, the experiment is conducted on the
ShapeNet dataset with both depth noises and pose noises added. The results are shown
in Table 4. It can be seen that the original setting can achieve the best performance for all
metrics, which demonstrates the effectiveness of the proposed loss functions.

Table 4. Variants of the proposed method (with depth noise and pose noise).

Methods MSE MAD ACC IoU

Without object loss 8.3 0.007 92.11 0.744
Without surface loss 7.5 0.006 91.83 0.769

Without object&surface loss 16.3 0.015 90.87 0.740

Original 6.1 0.006 95.08 0.801



Sensors 2022, 22, 1631 13 of 14

5. Conclusions

In this paper, we propose a new depth fusion network, considering not only depth
noises but also pose noises of depth sensors, which is more realistic in 3D reconstruction.
To improve the fusion quality, a new CNN model is proposed after fusing the depth maps.
A synthetic dataset and a real-scene dataset are adopted to verify the effectiveness of our
method. It has been proved that our method outperforms existing depth fusion methods
for both quantitative results and qualitative results.

One limitation of our proposed method is that it can only be used after all depth
sequences have been obtained. Therefore, it cannot be deployed in systems that require real-
time fusion. A possible solution is to involve incomplete depth sequences in the training
process, where we may need to redesign the noise generation and model optimization
methods, which can be one of the future objectives. In addition, DFusion may have some
performance issues if it is only trained on a small dataset, as the Denoising Module requires
enough training samples. Therefore, more works are needed to lower its data requirements.
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