Signal Activity Detection for Fiber Optic Distributed Acoustic Sensing with Adaptive-Calculated Threshold
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulated Data Stream
2.2. Algorithm of Signal Activity Detection with the Adaptive-Calculated Threshold
3. Results
3.1. Results of Signal Activity Detection of the Simulated Database
3.1.1. Simulated Database Description
3.1.2. Calculation of the Threshold
3.1.3. Performance Evaluation
3.2. Results of Signal Activity Detection of the Actual Database
3.2.1. DAS System and Actual Database Description
3.2.2. Calculation of Threshold
3.2.3. Performance Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Cai, H.; Ye, Q.; Wang, Z. Distributed acoustic sensing based on coherent Rayleigh scattering. Laser Optoelectron. Prog. 2020, 57, 1. [Google Scholar]
- Wang, X.; Liu, Y.; Liang, S.; Zhang, W.; Lou, S. Event identification based on random forest classifier for Φ-OTDR fiber-optic distributed disturbance sensor. Infrared Phys. Technol. 2019, 97, 319–325. [Google Scholar] [CrossRef]
- Sun, Q.; Feng, H.; Yan, X.; Zeng, Z. Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction. Sensors 2015, 15, 15179–15197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, W.; Lu, J.; Bao, M.; Guan, J.; Xu, C. Pattern recognition based on time-frequency analysis and convolutional neural networks for vibrational events in φ-OTDR. Opt. Eng. 2018, 57, 1. [Google Scholar] [CrossRef]
- Wu, H.; Liu, X.; Xiao, Y.; Rao, Y. A dynamic time sequence recognition and knowledge mining method based on the Hidden Markov Models (HMMs) for pipeline safety monitoring with Φ-OTDR. J. Lightwave Technol. 2019, 37, 4991–5000. [Google Scholar] [CrossRef]
- Wu, H.; Chen, J.; Liu, X.; Xiao, Y.; Wang, M.; Zheng, Y.; Rao, Y. One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS. J. Lightwave Technol. 2019, 37, 4359–4366. [Google Scholar] [CrossRef]
- Tejedor, J.; Macias-Guarasa, J.; Martins, H.F.; Piote, D.; Pastor-Graells, J.; Martin-Lopez, S.; Corredera, P.; Gonzalez-Herraez, M. A novel fiber optic based surveillance system for prevention of pipeline integrity threats. Sensors 2017, 17, 355. [Google Scholar] [CrossRef]
- Daley, T.M.; Freifeld, B.M.; Ajo-Franklin, J.; Dou, S.; Pevzner, R.; Shulakova, V.; Kashikar, S.; Miller, D.E.; Goetz, J.; Henninges, J. Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring. Lead. Edge 2013, 32, 699–706. [Google Scholar] [CrossRef] [Green Version]
- Dou, S.; Lindsey, N.; Wagner, A.M.; Daley, T.M.; Freifeld, B.; Robertson, M.; Peterson, J.; Ulrich, C.; Martin, E.R.; Ajo-Franklin, J.B. Distributed acoustic sensing for seismic monitoring of the near surface: A traffic-noise interferometry case study. Sci. Rep. 2017, 7, 11620. [Google Scholar] [CrossRef] [Green Version]
- Jousset, P.; Reinsch, T.; Ryberg, T.; Blanck, H.; Clarke, A.; Aghayev, R.; Hersir, G.P.; Henninges, J.; Weber, M.; Krawczyk, C.M. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat. Commun. 2018, 9, 2509. [Google Scholar] [CrossRef]
- Paulsson, B.N.P.; Thornburg, J.; He, R. A fiber optic borehole seismic vector sensor system for high resolution CCUS site characterization and monitoring. Energy Procedia 2014, 63, 4323–4338. [Google Scholar] [CrossRef] [Green Version]
- Daley, T.M.; Miller, D.E.; Dodds, K.; Cook, P.; Freifeld, B.M. Field testing of modular borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical seismic profiles at Citronelle, Alabama. Geophys. Prospect. 2016, 64, 1318–1334. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Wang, Z.; Lu, B.; Wang, X.; Li, L.; Ye, Q.; Qu, R.; Cai, H. Distributed acoustic sensing for 2D and 3D acoustic source localization. Opt. Lett. 2019, 44, 1690–1693. [Google Scholar] [CrossRef]
- Shpalensky, N.; Shiloh, L.; Gabai, H.; Eyal, A. Use of distributed acoustic sensing for doppler tracking of moving sources. Opt. Express 2018, 26, 17690–17696. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, H.; He, T.; Fan, C.; Yan, Z.; Liu, D.; Sun, Q. Ultra-high resolution strain sensor network assisted with an LS-SVM based hysteresis model. Opto-Electronic Advances 2021, 4, 200037. [Google Scholar] [CrossRef]
- Liu, K.; Tian, M.; Jiang, J.; An, J.; Xu, T.; Ma, C.; Pan, L.; Wang, T.; Li, Z.; Zheng, W. An improved positioning algorithm in a long-range asymmetric perimeter security system. J. Lightwave Technol. 2016, 34, 5278–5283. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Liu, T.; Liu, K.; Jiang, J.; Ding, Z.; Pan, L.; Tian, M. Long-range distributed fiber vibration sensor using an asymmetric dual Mach–Zehnder interferometers. J. Lightwave Technol. 2016, 34, 2235–2239. [Google Scholar] [CrossRef]
- Bao, J.; Mo, J.; Xu, L.; Liu, Y.; Lv, X. VMD-based vibrating fiber system intrusion signal recognition. Optik 2020, 205, 163753. [Google Scholar] [CrossRef]
- Zhang, T.; Shao, Y.; Wu, Y.; Geng, Y.; Fan, L. An overview of speech endpoint detection algorithms. Appl. Acoust. 2020, 160, 107133. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Tsiartas, A.; Narayanan, S.S. Robust voice activity detection using long-term signal variability. IEEE Trans. Audio Speech Lang. Processing 2011, 19, 600–613. [Google Scholar] [CrossRef]
- Ma, Y.; Nishihara, A. Efficient voice activity detection algorithm using long-term spectral flatness measure. EURASIP J. Audio Speech Music Processing 2013, 2013, 87. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Liu, Y.; Ren, X. Voice activity detection based on long-term power spectrum variability. J. Front. Comput. Sci. Technol. 2019, 13, 1534–1542. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y.; Liu, K.; Liu, T.; Ma, C.; Chen, Q. Event discrimination of fiber disturbance based on filter bank in DMZI sensing system. IEEE Photonics J. 2016, 8, 1–14. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y.; Liu, K.; Liu, T.; Ma, C.; Tian, M. High-efficiency endpoint detection in optical fiber perimeter security. J. Lightwave Technol. 2016, 34, 5049–5055. [Google Scholar] [CrossRef]
- Huang, X.; Jia, Y.; Liu, K.; Liu, T.; Chen, Q. Configurable filter-based endpoint detection in DMZI vibration system. IEEE Photonics Technol. Lett. 2014, 26, 1956–1959. [Google Scholar] [CrossRef]
- Liu, K.; Ma, P.; An, J.; Li, Z.; Jiang, J.; Li, P.; Zhang, L.; Liu, T. Endpoint detection of distributed fiber sensing systems based on STFT algorithm. Opt. Laser Technol. 2019, 114, 122–126. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, B.; Shen, L. Speech endpoint detection in strong noisy environment based on the Hilbert-Huang transform. In Proceedings of the International Conference on Mechatronics & Automation, Changchun, China, 12 August 2009. [Google Scholar]
- Aghajani, K.; Manzuri, M.T.; Karami, M. A robust voice activity detection based on wavelet transform. In Proceedings of the International Conference on Electrical Engineering, Lahore, Pakistan, 26 March 2008. [Google Scholar]
- Song, C.; Chung, J.; Cho, J.S.; Nam, Y.J. Optimal design parameters of a percussive drilling system for efficiency improvement. Adv. Mater. Sci. Eng. 2018, 2018, 2346598. [Google Scholar] [CrossRef] [Green Version]
- Gutowski, T.G.; Dym, C.L. Propagation of ground vibration: A review. J. Sound Vib. 1976, 49, 179–193. [Google Scholar] [CrossRef]
- Hu, J.; Luo, Y.; Ke, Z.; Liu, P.; Xu, J. Experimental study on ground vibration attenuation induced by heavy freight wagons on a railway viaduct. J. Low Freq. Noise Vib. Act. Control 2018, 37, 881–895. [Google Scholar] [CrossRef]
- Cheng, F.; Chen, A.; Wu, D.; Tang, X. Ground vibration propagation and attenuation of vibrating compaction. J. Vibroengineering 2019, 21, 1342–1352. [Google Scholar] [CrossRef]
- Peng, Y.; Su, Y.; Wu, L.; Chen, C. Study on the attenuation characteristics of seismic wave energy induced by underwater drilling and blasting. Shock Vib. 2019, 2019, 4367698. [Google Scholar] [CrossRef]
- Pial-Moctezuma, F.; Delgado-Prieto, M.; Romeral-Martínez, L. An acoustic emission activity detection method based on short-term waveform features: Application to metallic components under uniaxial tensile test. Mech. Syst. Signal Processing 2020, 142, 106753. [Google Scholar] [CrossRef] [Green Version]
- Fang, G.; Xu, T.; Feng, S.; Li, F. Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm. J. Lightwave Technol. 2015, 33, 2811–2816. [Google Scholar] [CrossRef]
- Chapter 5 Vibrations—Brown University. Available online: https://fliphtml5.com/vxov/kref/basic (accessed on 10 February 2022).
Method | Window Function | Data Stream Length (s) | Window Length (ms) | Overlap Length (ms) | Smooth Width |
---|---|---|---|---|---|
LSFM | Rectangular window | 10 | 40 | 36 | 10 |
STFT | Rectangular window | 10 | 20 | 16 | 10 |
Proposed method | Rectangular window | 10 | 4 | 0 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Xu, T.; Cao, K.; Jiang, Y.; Deng, D.; Li, F. Signal Activity Detection for Fiber Optic Distributed Acoustic Sensing with Adaptive-Calculated Threshold. Sensors 2022, 22, 1670. https://doi.org/10.3390/s22041670
Ma L, Xu T, Cao K, Jiang Y, Deng D, Li F. Signal Activity Detection for Fiber Optic Distributed Acoustic Sensing with Adaptive-Calculated Threshold. Sensors. 2022; 22(4):1670. https://doi.org/10.3390/s22041670
Chicago/Turabian StyleMa, Lilong, Tuanwei Xu, Kai Cao, Yinghao Jiang, Dimin Deng, and Fang Li. 2022. "Signal Activity Detection for Fiber Optic Distributed Acoustic Sensing with Adaptive-Calculated Threshold" Sensors 22, no. 4: 1670. https://doi.org/10.3390/s22041670
APA StyleMa, L., Xu, T., Cao, K., Jiang, Y., Deng, D., & Li, F. (2022). Signal Activity Detection for Fiber Optic Distributed Acoustic Sensing with Adaptive-Calculated Threshold. Sensors, 22(4), 1670. https://doi.org/10.3390/s22041670