
����������
�������

Citation: Wang, R.; Tsai, W.-T.

Asynchronous Federated Learning

System Based on Permissioned

Blockchains. Sensors 2022, 22, 1672.

https://doi.org/10.3390/

s22041672

Academic Editor: Nikos Fotiou

Received: 24 December 2021

Accepted: 18 February 2022

Published: 21 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Asynchronous Federated Learning System Based on
Permissioned Blockchains
Rong Wang * and Wei-Tek Tsai

Digital Society & Blockchain Laboratory, Beihang University, Beijing 100191, China; tsai7@yahoo.com
* Correspondence: wangrong@buaa.edu.cn

Abstract: The existing federated learning framework is based on the centralized model coordinator,
which still faces serious security challenges such as device differentiated computing power, single
point of failure, poor privacy, and lack of Byzantine fault tolerance. In this paper, we propose an
asynchronous federated learning system based on permissioned blockchains, using permissioned
blockchains as the federated learning server, which is composed of a main-blockchain and multiple
sub-blockchains, with each sub-blockchain responsible for partial model parameter updates and
the main-blockchain responsible for global model parameter updates. Based on this architecture,
a federated learning asynchronous aggregation protocol based on permissioned blockchain is pro-
posed that can effectively alleviate the synchronous federated learning algorithm by integrating the
learned model into the blockchain and performing two-order aggregation calculations. Therefore,
the overhead of synchronization problems and the reliability of shared data is also guaranteed. We
conducted some simulation experiments and the experimental results showed that the proposed
architecture could maintain good training performances when dealing with a small number of mali-
cious nodes and differentiated data quality, which has good fault tolerance, and can be applied to
edge computing scenarios.

Keywords: asynchronous federated learning; permissioned blockchains; privacy protection; IoT;
multi-blockchains architecture

1. Introduction

The machine learning method is based on sample data training to obtain machine
learning models suitable for different tasks and scenarios. These sample data are generally
collected from different users, terminals, and systems and stored centrally. In practical
application scenarios, this way of collecting sample data faces many problems. On one
hand, this approach compromises the privacy and security of the data. In some applications
such as Internet of Things devices, which are limited by the requirements of data privacy
and security, it is impossible to realize the centralized storage of data. On the other hand,
this method will increase the communication overhead. In some applications that rely
heavily on mobile terminals such as the Internet of Things, the communication overhead
cost of this data aggregation is enormous.

Federated learning allows for multiple users (or clients) to collaborate on training a
shared global model without sharing data on the local device. Multiple rounds of federation
learning are coordinated by a central server to obtain the final global model [1]. At the
beginning of each round, the central server sends the current global model to the clients
involved in federated learning. Each client trains the received global model based on its
local data and returns the updated model to the central server when it has finished training.
The central server collects the updates returned by all the clients and performs a single
update to the global model, thus ending the round.

However, federation learning for IoT networks faces a number of challenges in its
implementation. First, existing federation learning frameworks are based on a centralized

Sensors 2022, 22, 1672. https://doi.org/10.3390/s22041672 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22041672
https://doi.org/10.3390/s22041672
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8687-3838
https://doi.org/10.3390/s22041672
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22041672?type=check_update&version=1

Sensors 2022, 22, 1672 2 of 18

model coordinator, which still face serious security challenges such as a single point of
failure. Second, the gradient data learned by nodes in federation learning indirectly reflect
the information of the training samples, and an attacker can invert the sample data from
valid gradient information, requiring a reduction in gradient communication to reduce the
possibility of privacy compromise.

Permissioned blockchain is blockchain managed by a number of institutions, each of
which operates one or more nodes, and only the permitted nodes can participate in voting,
bookkeeping, and block building [2]. Each node in the blockchain usually has a physical
body or organization that corresponds to it. Participants are authorized to join the network
and form stakeholder permissions to work together to maintain the blockchain. The data
in the chain can only be read, written, and sent by different institutions within the system,
and the data are recorded jointly. It has the advantages of relatively fast transactions, no
mining, low transaction costs, fast transactions, and support for regulatory interests.

Through the authorization mechanism and identity management of the permissioned
blockchain, mutually untrustworthy users can be integrated together as participants to cre-
ate a secure and trustworthy cooperation mechanism. The model parameters of federated
learning can be stored in the permissioned blockchain, ensuring the security and reliability
of the model parameters. For example, while multiple participants perform federation
learning, the permissioned blockchain is deployed to record the data fingerprint (includ-
ing modeling samples, inference samples, and interaction information) of the federation
learning, while the corresponding raw data are stored locally by the participants. When a
malicious attack is detected on a sample, an investigation team is formed by each partici-
pant or a third party to verify the original data based on the fingerprints recorded in the
permissioned blockchains to find out which party has been attacked and take appropriate
measures. Through the distributed ledger feature of the permissioned blockchains, it is
naturally guaranteed that the model parameter data consistency, synchronization, and
sharing between multiple participants in the federation learning are secure and trustworthy,
and that the model parameter data interaction is transparent, traceable, tamper-proof,
and anti-forgery.

To address these challenges, we propose an asynchronous federal learning system
based on permissioned blockchains that addresses the federated learning single point of
failure problem and data security privacy issues. The major contributions of this paper are
summarized as follows:

(1) A permissioned blockchain-based federated learning framework is proposed. The
permissioned blockchains are composed of a main-blockchain and multiple sub-
blockchains, each of which is responsible for partial model parameter updates and the
main- blockchain is responsible for global model parameter updates.

(2) A multi-chain asynchronous model aggregation algorithm is proposed, which uses
deep reinforcement learning for node selection, the sub-blockchain nodes audit the
gradient and proof of correctness of the encryption and partially aggregate the
model parameters, and the main blockchain is responsible for the global model
parameter updates.

(3) A prototype permissioned blockchain-based federated learning system was imple-
mented and extensive experiments were conducted to demonstrate its feasibility
and effectiveness.

The rest of the paper is organized as follows. In Section 2, we explain the concepts of
blockchain, federation learning, and reinforcement learning used in this paper. Section 3
presents related work. We introduce our design of the system in Section 4. Section 5 presents
the experimental simulation results showing that our technique is working. Finally, we
conclude the paper and identify future directions in Section 6.

Sensors 2022, 22, 1672 3 of 18

2. Background
2.1. Federated Learning

Federated learning is an emerging fundamental AI technology first proposed by
Google in 2016 to solve the problem of updating models locally for Android phone end-
users [3]. Efficient machine learning is carried out between multiple participants or compu-
tational nodes. The machine learning algorithms that can be used for federated learning
are not limited to neural networks, but also include important algorithms such as ran-
dom forests. Federated learning is expected to be the basis for the next generation of
collaborative algorithms and collaborative networks for artificial intelligence.

Features of federated learning: data from all parties are kept local, without compromis-
ing privacy or violating regulations; multiple participants combine data to build a fictional
shared model and benefit from the system together; each participant has the same identity
and status under the federated learning system; the modeling effect of federated learning
is the same as, or not significantly different from, modeling the entire dataset in one place
(under user alignment or feature alignment of the individual data or feature alignment).
Transfer learning can be used to achieve knowledge migration by exchanging cryptographic
parameters between data, even if the users or features are not aligned. Federated learning
allows two or more data-using entities to collaborate and use data together without leaving
the local area, solving the problem of data silos. A typical federal learning system is shown
in Figure 1.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 19

Figure 1. Federal learning system.

2.2. Permissioned Blockchains
The blockchain was introduced in 2008 by a person named Satoshi Nakamoto as

Bitcoin [4]. Bitcoin blockchain individuals are connected through a peer-to-peer network
in order to publish financial transactions based on encryption using public and private
keys. A blockchain block is a basic component containing a block header and a block body,
as shown in Figure 2. These two functions contain multiple pieces of information such as
header number, nonce, current hash, previous hash, signed transaction data, etc.

Figure 2. Blockchain structure.

Blockchain platforms can be divided into two categories: public blockchains and
permissioned blockchains. In a public blockchain, all nodes can participate in voting,
bookkeeping, and block building. Permissioned blockchains are blockchains jointly
managed by several organizations, each of which runs one or more nodes, and only
permitted nodes can participate in voting, bookkeeping, and block building.
Permissioned blockchain has the characteristics of fast transaction speed, no mining, low
transaction cost, and support for regulation. According to the application requirements,
permissioned blockchain supports various consensus protocols such as Byzantine Fault
Tolerance, RAFT, Practical Byzantine Fault Tolerance, Plenum, etc. Each node on the
blockchain usually has an entity or organization corresponding to it, and the participants
are authorized to join the network and form a stakeholder permit to jointly maintain the
blockchain operation. The data in it only allow different institutions in the system to read,
write, and send transactions, and work together to record transaction data.

The advantages of the permissioned blockchains are as follows:

Figure 1. Federal learning system.

The existing federal learning method based on homomorphic encryption is generally
as follows: each device side trains a local model using a local dataset, obtains the local
model gradient information after training, encrypts the local model gradient information
after training using a homomorphic encryption algorithm (such as the Paillier algorithm,
etc.), and sends the local model gradient information after encryption to the server-side.
Then, after receiving the respective encrypted local model gradient information from
each device, the server-side aggregates the encrypted local model gradient information
according to a predetermined aggregation method to obtain the global model gradient
information in the encrypted state (global model gradient information in the form of cipher
text). The server sends the global model gradient information in the encrypted state to each
device, so that each device decrypts the global model gradient information in the encrypted
state received by each device using the homomorphic encryption algorithm, and continues
to train the local model based on the decrypted global model gradient information using
the local dataset until the local model converges or reaches the number of iterations of
training to obtain the global model. However, although this processing provides strong
privacy guarantees for federation learning using homomorphic encryption, it performs
complex encryption operations (e.g., modulo multiplication or exponential operations,
etc.), and this complex encryption operation is very time-consuming and requires a lot of

Sensors 2022, 22, 1672 4 of 18

computational resources. At the same time, the complex encryption operation results in
a larger ciphertext, which consumes more network resources during transmission than
during plaintext transmission.

2.2. Permissioned Blockchains

The blockchain was introduced in 2008 by a person named Satoshi Nakamoto as
Bitcoin [4]. Bitcoin blockchain individuals are connected through a peer-to-peer network
in order to publish financial transactions based on encryption using public and private
keys. A blockchain block is a basic component containing a block header and a block body,
as shown in Figure 2. These two functions contain multiple pieces of information such as
header number, nonce, current hash, previous hash, signed transaction data, etc.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 19

Figure 1. Federal learning system.

2.2. Permissioned Blockchains
The blockchain was introduced in 2008 by a person named Satoshi Nakamoto as

Bitcoin [4]. Bitcoin blockchain individuals are connected through a peer-to-peer network
in order to publish financial transactions based on encryption using public and private
keys. A blockchain block is a basic component containing a block header and a block body,
as shown in Figure 2. These two functions contain multiple pieces of information such as
header number, nonce, current hash, previous hash, signed transaction data, etc.

Figure 2. Blockchain structure.

Blockchain platforms can be divided into two categories: public blockchains and
permissioned blockchains. In a public blockchain, all nodes can participate in voting,
bookkeeping, and block building. Permissioned blockchains are blockchains jointly
managed by several organizations, each of which runs one or more nodes, and only
permitted nodes can participate in voting, bookkeeping, and block building.
Permissioned blockchain has the characteristics of fast transaction speed, no mining, low
transaction cost, and support for regulation. According to the application requirements,
permissioned blockchain supports various consensus protocols such as Byzantine Fault
Tolerance, RAFT, Practical Byzantine Fault Tolerance, Plenum, etc. Each node on the
blockchain usually has an entity or organization corresponding to it, and the participants
are authorized to join the network and form a stakeholder permit to jointly maintain the
blockchain operation. The data in it only allow different institutions in the system to read,
write, and send transactions, and work together to record transaction data.

The advantages of the permissioned blockchains are as follows:

Figure 2. Blockchain structure.

Blockchain platforms can be divided into two categories: public blockchains and
permissioned blockchains. In a public blockchain, all nodes can participate in voting, book-
keeping, and block building. Permissioned blockchains are blockchains jointly managed by
several organizations, each of which runs one or more nodes, and only permitted nodes can
participate in voting, bookkeeping, and block building. Permissioned blockchain has the
characteristics of fast transaction speed, no mining, low transaction cost, and support for
regulation. According to the application requirements, permissioned blockchain supports
various consensus protocols such as Byzantine Fault Tolerance, RAFT, Practical Byzantine
Fault Tolerance, Plenum, etc. Each node on the blockchain usually has an entity or orga-
nization corresponding to it, and the participants are authorized to join the network and
form a stakeholder permit to jointly maintain the blockchain operation. The data in it only
allow different institutions in the system to read, write, and send transactions, and work
together to record transaction data.

The advantages of the permissioned blockchains are as follows:

(1) Strong controllability. Compared with public blockchains, public blockchains generally
have many nodes, and once a blockchain is formed, the block data cannot be modified.
For example, Bitcoin has many nodes, and it is impossible to change the data in it if
you want to modify. In contrast, in permissioned blockchains, data can be modified as
long as the majority of pre-selected nodes reach consensus.

(2) Better performance. The permissioned blockchain is to some extent owned only by
the members within the permit as the number of nodes in the permit is limited, so it is
easy to reach a consensus.

(3) Fast transaction speed. Only permissioned nodes can join the blockchain network,
and transactions can only be verified by consensus nodes without network-wide
confirmation. In a way, the essence of permission is still a private blockchain, it has a

Sensors 2022, 22, 1672 5 of 18

limited number of nodes, and it is easy to reach consensus, so the transaction speed is
also relatively blocky.

(4) Better privacy protection. The user identity is managed and the read access is restricted,
which can provide better privacy protection. The data of the public blockchain is public,
but the permission is different, so only the permission internal organization and its
users have the permission to access the data.

Better privacy protection can be provided by managing the identity of the user with
restricted read access. Data in the public chain are public, but licensing is different in that
only licensed internal agencies and their users have access to the data.

The permissioned blockchain system is generally divided into a storage layer, a
blockchain core layer, a blockchain service layer, an interface layer, and an application
layer, as shown in Figure 3. The storage layer is responsible for various cached data storage
and persistent storage of blockchain data. The blockchain core layer is responsible for
core blockchain functions such as consensus mechanism, reputation mechanism, user
data, transaction data, smart contracts, encryption and decryption, signature verification,
authentication management, and node management.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 19

(1) Strong controllability. Compared with public blockchains, public blockchains
generally have many nodes, and once a blockchain is formed, the block data cannot
be modified. For example, Bitcoin has many nodes, and it is impossible to change the
data in it if you want to modify. In contrast, in permissioned blockchains, data can
be modified as long as the majority of pre-selected nodes reach consensus.

(2) Better performance. The permissioned blockchain is to some extent owned only by
the members within the permit as the number of nodes in the permit is limited, so it
is easy to reach a consensus.

(3) Fast transaction speed. Only permissioned nodes can join the blockchain network,
and transactions can only be verified by consensus nodes without network-wide
confirmation. In a way, the essence of permission is still a private blockchain, it has
a limited number of nodes, and it is easy to reach consensus, so the transaction speed
is also relatively blocky.

(4) Better privacy protection. The user identity is managed and the read access is
restricted, which can provide better privacy protection. The data of the public
blockchain is public, but the permission is different, so only the permission internal
organization and its users have the permission to access the data.
Better privacy protection can be provided by managing the identity of the user with

restricted read access. Data in the public chain are public, but licensing is different in that
only licensed internal agencies and their users have access to the data.

The permissioned blockchain system is generally divided into a storage layer, a
blockchain core layer, a blockchain service layer, an interface layer, and an application
layer, as shown in Figure 3. The storage layer is responsible for various cached data
storage and persistent storage of blockchain data. The blockchain core layer is responsible
for core blockchain functions such as consensus mechanism, reputation mechanism, user
data, transaction data, smart contracts, encryption and decryption, signature verification,
authentication management, and node management.

Figure 3. Permissioned blockchain system architecture.

2.3. Reinforcement Learning
Reinforcement learning, a subfield of machine learning, is inspired by the

behaviorism theory in the psychology of how intelligence gradually develop expectations
of stimuli in response to rewards or punishments given by the environment, producing
habitual behavior that maximizes benefits. It emphasizes how to act based on the
environment to maximize the expected benefit.

Figure 3. Permissioned blockchain system architecture.

2.3. Reinforcement Learning

Reinforcement learning, a subfield of machine learning, is inspired by the behaviorism
theory in the psychology of how intelligence gradually develop expectations of stimuli
in response to rewards or punishments given by the environment, producing habitual
behavior that maximizes benefits. It emphasizes how to act based on the environment to
maximize the expected benefit.

Reinforcement learning is the process by which an agent learns by ‘trial and error’ and
is guided by the rewards it receives from interacting with the environment to maximize the
rewards it receives [5]. The signal is an evaluation of how well the action was produced
(usually a scalar signal), rather than telling the reinforcement learning system (RLS) how to
produce the correct action. Since the external environment provides little information, the
RLS must learn from its own experience. In this way, the RLS acquires knowledge in an
action-evaluation environment and improves the course of action to suit the environment.

Figure 4 illustrates the principle of reinforcement learning. The Agent selects an action
to be used in the environment, and the environment accepts the action with a state change,
and at the same time generates a reinforcement signal (reward or punishment) back to the
Agent. The choice of action affects not only the immediate reinforcement value but also
the state of the environment at the next moment and the final reinforcement value. The

Sensors 2022, 22, 1672 6 of 18

goal of Agent is to find the optimal strategy in each discrete state to maximize the expected
discount and reward.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 19

Reinforcement learning is the process by which an agent learns by ‘trial and error’
and is guided by the rewards it receives from interacting with the environment to
maximize the rewards it receives [5]. The signal is an evaluation of how well the action
was produced (usually a scalar signal), rather than telling the reinforcement learning
system (RLS) how to produce the correct action. Since the external environment provides
little information, the RLS must learn from its own experience. In this way, the RLS
acquires knowledge in an action-evaluation environment and improves the course of
action to suit the environment.

Figure 4 illustrates the principle of reinforcement learning. The Agent selects an
action to be used in the environment, and the environment accepts the action with a state
change, and at the same time generates a reinforcement signal (reward or punishment)
back to the Agent. The choice of action affects not only the immediate reinforcement value
but also the state of the environment at the next moment and the final reinforcement value.
The goal of Agent is to find the optimal strategy in each discrete state to maximize the
expected discount and reward.

Figure 4. Schematic diagram of the principle of reinforcement learning.

3. Related Works
In this section, we review the most recent related works in the field of asynchronous

federated learning (see Section 3.1) and in the area of blockchain-based asynchronous
federated learning (see Section 3.1).

3.1. Asynchronous Federal Learning
The purpose of research on asynchronous federation learning is to give more

flexibility to participating federation learning nodes. Wang Hao et al. [6] proposed the
model fusion method, which can also be understood as decision fusion, and is averaged
over the prediction results of multiple network models to improve learning accuracy and
has been widely used (e.g., to improve ImageNet recognition performance) [7–10].
McMahan Brendan et al. [3] presented an asynchronous learning strategy that presents an
aggregation of temporally weighted local models on the server. The time-weighted
aggregation strategy is introduced on the server to exploit the previously trained local
models, thus improving the accuracy and convergence of the central model. Chen
Zunming et al. [11] proposed a lightweight dynamic asynchronous algorithm that
considers averaging frequency control and parameter selection for federal learning to
speed up model averaging and improve efficiency. Wang Qizhao et al. [12] introduced an
efficient asynchronous federation learning that allows edge nodes to select some models
from the cloud for asynchronous updates based on local data distribution, thus reducing
computation and communication and improving the efficiency of federation learning. Li
Ming et al. [13] proposed a novel asynchronous vertical federation learning framework

Figure 4. Schematic diagram of the principle of reinforcement learning.

3. Related Works

In this section, we review the most recent related works in the field of asynchronous
federated learning (see Section 3.1) and in the area of blockchain-based asynchronous
federated learning (see Section 3.1).

3.1. Asynchronous Federal Learning

The purpose of research on asynchronous federation learning is to give more flexi-
bility to participating federation learning nodes. Wang Hao et al. [6] proposed the model
fusion method, which can also be understood as decision fusion, and is averaged over
the prediction results of multiple network models to improve learning accuracy and has
been widely used (e.g., to improve ImageNet recognition performance) [7–10]. McMahan
Brendan et al. [3] presented an asynchronous learning strategy that presents an aggrega-
tion of temporally weighted local models on the server. The time-weighted aggregation
strategy is introduced on the server to exploit the previously trained local models, thus
improving the accuracy and convergence of the central model. Chen Zunming et al. [11]
proposed a lightweight dynamic asynchronous algorithm that considers averaging fre-
quency control and parameter selection for federal learning to speed up model averaging
and improve efficiency. Wang Qizhao et al. [12] introduced an efficient asynchronous
federation learning that allows edge nodes to select some models from the cloud for
asynchronous updates based on local data distribution, thus reducing computation and
communication and improving the efficiency of federation learning. Li Ming et al. [13]
proposed a novel asynchronous vertical federation learning framework with gradient
prediction and double-ended sparse compression to accelerate the training process and
reduce the transmission of intermediate results. Chen Zheyi et al. [14] developed an asyn-
chronous federation learning scheme that employs a lightweight node selection algorithm
to efficiently perform the learning task by iteratively selecting heterogeneous IoT nodes
to participate in global learning aggregation. Yang Helin et al. [15] developed an asyn-
chronous federated learning (AFL) framework that could provide asynchronous distributed
computing by implementing model training locally without transmitting raw sensitive data
to the UAV server. Asynchronous dominant actor criticism (A3C) based federated device
selection, drone placement, and resource management algorithms were used to improve
the speed and accuracy of federated convergence. Zhang Hongyi et al. [16] developed
a real-time end-to-end federation learning framework using sliding training windows
to reduce communication overhead and speed up model training. Sun Wen et al. [17]
proposed a clustering-based asynchronous federation learning framework using Lyapunov
dynamic missing queues and deep reinforcement learning (DRL) to adaptively adjust the

Sensors 2022, 22, 1672 7 of 18

aggregation frequency of federation learning to improve the learning performance under
resource constraints. Xue M. A. et al. [18] proposed a collaborative federation learning
mechanism to construct a hierarchical multi-level confidential communication network
with the asynchronous fusion of network parameters uploaded by the respective fusion
centers using sequential Kalman filtering algorithms at the cloud and edge, respectively.
Chen Yujing et al. [19] proposed an asynchronous online federated learning (ASO-Fed)
framework in which edge devices perform online learning with continuous local data
streams and a central server aggregates model parameters from clients. Xiaofeng et al. [20]
proposed a privacy-preserving asynchronous federation learning mechanism (PAFLM)
for edge network computing, which allows multiple edge nodes to achieve more efficient
federation learning without sharing their private data. Lu Yunlong et al. [21] proposed a
different private asynchronous federation learning scheme for resource sharing in vehicular
networks that incorporates local difference privacy into federation learning to protect the
privacy of updated local models with a stochastic distributed update scheme. Ma Qianpiao
et al. [22] proposed a semi-asynchronous federation learning mechanism (FedSA) where
the parameter server aggregates a certain number of local models in each round in the order
of arrival. Liu Jianchun et al. [23] presented a new communication-efficient asynchronous
federated learning (CE-AFL) mechanism in which the parameter server will only aggregate
local model updates from a certain fraction α (0 < α < 1) of all edge nodes in the order of
their arrival in each epoch. Rizk Elsa et al. [24] proposed dynamic federated learning (DFL)
in which a random subset of available agents is updated locally based on their data in each
iteration. Miao Qinyang et al. [25] proposed a hierarchical asynchronous federated learning
(FL) framework based on sensitive task decomposition using deep reinforcement learning
(DRL) techniques to select participants with sufficient computational power and high-
quality datasets. By integrating task decomposition and participant selection, reliable data
sharing is achieved by sharing local data models instead of source data, while protecting
data privacy. Agrawal Shaashwat et al. [26] presented a novel temporal model averaging
algorithm, which uses a dynamic expectation function to calculate the number of expected
client models per round and a weighted averaging algorithm to successively modify the
global model. Gao Yujia et al. [27] designed a resilient local update algorithm that can
train personalized models by setting specific update weights for each node based on the
differences between the global and local models. Wang Zhongyu et al. [28] proposed a new
asynchronous FL framework that takes into account the potential failures of uploading
local models and the resulting lag in global updates of models of different magnitudes. Liu
Kai-Hsiang et al. [29] proposed an online solution based on actor-critical federation learning
called AC-Federate, where an actor-critic (AC) model for each edge node jointly optimizes
continuous actions (i.e., radio and computational resource allocation) and discrete actions
(i.e., offloading decisions) and trains the model using a weighted loss function. Each edge
node uploads the gradients of its actor-critic neural network to the central controller in an
asynchronous manner, updating all edge nodes with the integrated network parameters.

3.2. Blockchain-Based Federated Learning

Lu et al. [30] presented a secure data sharing architecture authorized by the blockchain,
which stores and shares the federal learning model and parameter transfer process through
the blockchain to ensure the security of the sharing process. Kang et al. [31] proposed a
scheme based on reputation as a reliable metric to select trusted workers for federated
learning that used a multi-weight subjective logic model to design an efficient reputation
computation scheme based on the interaction history of task publishers and recommended
reputation records, and manage reputation using a blockchain running on edge nodes. Qu
Y. et al. [32] and Qi Y. et al. [33] applied local differential privacy techniques to blockchain
federation learning to protect data privacy in the industrial Internet and smart transporta-
tion domains by adding noisy perturbations to the raw data. Liu et al. [34] used smart
contracts containing validation datasets to automatically evaluate updates uploaded by
devices before performing model aggregation to detect the presence of poisoning attacks.

Sensors 2022, 22, 1672 8 of 18

Kim et al. [35] put forward a federated learning method applied to the device side based
on the blockchain framework where the local gradients of each iteration are stored in
blocks after verification and consensus, and analyzed the end-to-end latency and optimal
block generation rate. Wang et al. [36] proposed a blockchain federated learning system
supporting heterogeneous models and designed two mining methods offline and online to
resist Byzantine. Y. Lu et al. [37] presented a hybrid blockchain architecture based federal
learning architecture that consists of a permissioned blockchain and a local directed acyclic
graph (DAG) using deep reinforcement learning (DRL) for node selection, integrating the
learned model into the blockchain and performing two-stage validation. By combining
blockchain with federation learning, Y. Lu et al. [37] endowed the system with the op-
timized decision-making capability of artificial intelligence while retaining the security
and trustworthiness of the blockchain, and it also optimized the blockchain in terms of
efficiency and communication to enhance its operation. Kang et al. [36] proposed a scheme
to select trusted workers for federal learning based on reputation as a reliable metric using
a multi-weighted subjective logic model based on the task publisher’s interaction history
and recommended reputation records, designed an efficient reputation calculation scheme,
and managed the reputation using a blockchain running on edge nodes. Y. J. Kim et al. [38]
considered two types of weight selection for a blockchain-based federated learning scenario
to update a subset of clients of the global model, which possesses relatively high stability
and can improve the convergence speed of the federated learning task model.

Liu Yinghui et al. [39] considered federated learning with stagnation coefficients
(FedAC) while using a blockchain network instead of a classical central server to aggregate
global models. It avoids real-world problems such as anomalous local device training fail-
ure interruptions, dedicated attacks, etc. Lu Yunlong et al. [40] presented an asynchronous
federation learning scheme to improve efficiency by employing deep reinforcement learning
(DRL) for node selection. The reliability of the shared data is also ensured by integrat-
ing the learned model into the blockchain and performing a two-stage verification. Lu
Y. et al. [40] suggested a blockchain-empowered federation learning scheme to enhance
communication security and data privacy protection in digital twin edge networks (DITEN)
using digital twin-empowered reinforcement learning to schedule relay users and allocate
spectrum resources. Liang Hao et al. [41] put forward a framework for smart driving model
sharing and collaborative training among operators using blockchain technology. In this
framework, smart contracts are used to enable the management of reinforcement learning
across the federation. Liu Wei et al. [42] proposed a blockchain-based health care data
sharing scheme that used blockchain as an incentive mechanism for rewarding health care
providers who are honest with high-quality data or contribute to decryption.

4. Asynchronous Federal Learning System Based on Permissioned Blockchains
4.1. System Overview

The asynchronous federated learning system based on permissioned blockchains
is divided into four layers of architecture: the IoT device layer, the network layer, the
edge computing layer, the blockchain layer, and the application layer. Figure 5 shows an
overview of our system architecture.

(1) IOT device layer

IOT device communication is carried out through 4G, 5G, NB-IoT, Ethernet, serial
bus, parallel bus, and other common physics. The communication protocol can support
http, mqtt, Canbus, Modbus, CC-link, etc. Devices include QR code tags and readers,
RFID tags and readers/writers, cameras, GPS, various sensors, video cameras, terminals,
sensor networks, and other data collection devices. RFID technology, sensing and control
technology, and short-range wireless communication technology are the main technologies
involved in the sensing layer. The sensing layer consists of intelligent sensing nodes and
data collection nodes. Smart nodes sense various kinds of information, for example, Smart
Dust, which is used for environmental information collection, can sense temperature,
humidity, graphics, and other information. These smart nodes can form a network and

Sensors 2022, 22, 1672 9 of 18

network themselves to pass data to an upper layer gateway access point, which submits
the collected sensing information through the network layer to the backend for processing.
Applications such as environmental monitoring and pollution monitoring are based on this
type of architecture for the IoT.

(2) Edge computing layer

Store and process data at the edge devices without the need for a network connection
for cloud computing. This eliminates the need for high bandwidth constant network con-
nections. The edge computing layer includes edge data cleansing, edge data storage, alarm
message pushing, and edge device response. Edge device data cleansing: Edge computing
devices perform simple cleansing of data based on their own computing power such as
checking data consistency, handling invalid and missing values, etc. Edge data storage:
The edge computing node stores data according to the storage capacity of the device and
uploads data as the network allows. Alarm information push: Alarm information of edge
computing node devices is pushed to relevant personnel by SMS, email, etc. Edge device
response: The edge computing borrowing point makes device response according to the
characteristics of the edge device to ensure the real-time response of the device and the
consistency of the device performance requirements.

(3) Blockchain layer

The blockchain layer is the core layer of the IoT combined with blockchain, and the
most important thing in the blockchain layer is the consensus algorithm. The blockchain
system is generally divided into a storage layer, a blockchain core layer, a blockchain service
layer, an interface layer, and an application layer, as shown in Figure 1. The storage layer
is responsible for various cached data storage and persistent storage of blockchain data.
The blockchain core layer is responsible for blockchain core functions such as consensus
mechanism, reputation mechanism, user data chain, transaction chain, smart contract,
encryption and decryption, signature verification, authentication management, and node
management. The blockchain consensus algorithm is to allow blockchain nodes to reach
consensus on the creation, verification, and storage of blocks and to ensure the consistency
of blockchain copies in the system service layer. The smart contract layer includes two major
parts: contract management and contract interface. Among them, contract management is
responsible for the deployment, installation, debugging, and operation of smart contracts.
The contract interface is provided to external systems for invocation.

(4) Application layer

The application layer consists of various application servers (including database
servers), whose main functions include the aggregation, conversion, and analysis of col-
lected data as well as the adaptation and event triggering of user-level presentation. A
large amount of raw data obtained from the end nodes is transformed into data of practical
value after transmission, conversion, and analysis at the network layer; the application
servers, which store these data, will adapt the information presented according to the user’s
presentation device and trigger relevant notification messages according to the user’s set-
tings. At the same time, when it is necessary to complete the control of the end nodes,
the application layer can also complete the control command generation and command
distribution control.

The application layer shall provide users with the user interface (UI interface) of the
Internet of Things application including user equipment (such as PC, mobile phone), client,
etc., in addition, the application layer also includes a cloud computing function. Based on
cloud computing, the Internet of Things Management Center, information center, and other
departments can intelligently process massive information.

Sensors 2022, 22, 1672 10 of 18

Sensors 2022, 22, x FOR PEER REVIEW 9 of 19

4. Asynchronous Federal Learning System Based on Permissioned Blockchains
4.1. System Overview

The asynchronous federated learning system based on permissioned blockchains is
divided into four layers of architecture: the IoT device layer, the network layer, the edge
computing layer, the blockchain layer, and the application layer. Figure 5 shows an
overview of our system architecture.

Figure 5. Asynchronous federal learning system based on permissioned blockchain.

(1) IOT device layer
IOT device communication is carried out through 4G, 5G, NB-IoT, Ethernet, serial

bus, parallel bus, and other common physics. The communication protocol can support
http, mqtt, Canbus, Modbus, CC-link, etc. Devices include QR code tags and readers,
RFID tags and readers/writers, cameras, GPS, various sensors, video cameras, terminals,
sensor networks, and other data collection devices. RFID technology, sensing and control
technology, and short-range wireless communication technology are the main
technologies involved in the sensing layer. The sensing layer consists of intelligent sensing
nodes and data collection nodes. Smart nodes sense various kinds of information, for
example, Smart Dust, which is used for environmental information collection, can sense
temperature, humidity, graphics, and other information. These smart nodes can form a
network and network themselves to pass data to an upper layer gateway access point,
which submits the collected sensing information through the network layer to the
backend for processing. Applications such as environmental monitoring and pollution
monitoring are based on this type of architecture for the IoT.
(2) Edge computing layer

Store and process data at the edge devices without the need for a network connection
for cloud computing. This eliminates the need for high bandwidth constant network
connections. The edge computing layer includes edge data cleansing, edge data storage,
alarm message pushing, and edge device response. Edge device data cleansing: Edge
computing devices perform simple cleansing of data based on their own computing
power such as checking data consistency, handling invalid and missing values, etc. Edge
data storage: The edge computing node stores data according to the storage capacity of
the device and uploads data as the network allows. Alarm information push: Alarm
information of edge computing node devices is pushed to relevant personnel by SMS,
email, etc. Edge device response: The edge computing borrowing point makes device
response according to the characteristics of the edge device to ensure the real-time
response of the device and the consistency of the device performance requirements.
(3) Blockchain layer

Figure 5. Asynchronous federal learning system based on permissioned blockchain.

4.2. Asynchronous Federated Learning Algorithm

To improve data security, training efficiency, and accuracy, we designed an asyn-
chronous federated learning algorithm based on permissioned blockchains for our feder-
ated learning scheme, as shown in Figure 6. The permissioned blockchains are composed
of a main-blockchain and multiple sub- blockchains that are responsible for synchronous
global aggregation and asynchronous local training, respectively, in our asynchronous
federated learning scheme.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 19

Figure 6. Schematic diagram of the asynchronous federation learning algorithm.

Step 1: Terminal devices and edge computing devices are registered and
authenticated, each terminal device and edge computing device is registered with the sub
blockchain, and the sub-blockchain authenticates each device and issues certificates.

Step 2: The global model is assigned to the main-blockchain, the sub-blockchain
downloads the global model from the main-blockchain, and the participating edge
computing nodes are selected based on the nodes for deep reinforcement learning,
considering factors such as device training latency, model transmission latency, and
accuracy rate.

Step 3: The participating edge computing node downloads the global model from the
sub-blockchain and initializes the training model and parameters.

Step 4: The end device loads data samples and offloads them to the edge computing
device for local model training. We use the convolutional neural network (CNN) layer as
a feature extractor to extract features from the raw data in the mobile device, and after n
iterations, the resulting gradient, giving the encrypted gradient and proof of correctness,
is encrypted and uploaded to the sub-blockchain.

Each node adjusts the gradient based on the received gradient clipping criteria, as
shown in Equation (1).

Adj (𝑔(𝑤௧, 𝜉)) = ቐ 𝑔(𝑤௧, 𝜉),𝑐𝑔(𝑤௧, 𝜉)∥ 𝑔(𝑤௧, 𝜉) ∥ , ∥ 𝑔(𝑤௧, 𝜉) ∥ 𝑐∥ 𝑔(𝑤௧, 𝜉) ∥ 𝑐 (1)

Each node is trained locally and the gradients are encrypted as shown in Equation
(2). 𝑔~(𝑡) = encrypt(Adj (𝑔(𝑤௧, 𝜉))), ∀𝑖 ∈ ℬ,௧ (2)

Step 5: The sub-blockchain nodes review the gradient and proof of correctness of the
encryption. Collaborative decryption requires at least 2/3 participants to provide their
private share to decrypt a cipher as a way to further enhance the privacy of the data. The
sub-blockchain performs a local aggregation of the model parameters to aggregate the
model parameters. The resulting gradient, which gives the encrypted gradient and proof
of correctness, is encrypted and then uploaded to the main-blockchain.

The sub-blockchain receives the encryption gradient and evidence from the node for
verification, and after the verification passes, decrypts the gradient and uploads it to the
main-blockchain, as shown in Equations (3) and (4). 𝑔(𝑡) = 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑔~(𝑡)) (3)

Figure 6. Schematic diagram of the asynchronous federation learning algorithm.

The asynchronous federated learning algorithm proposed in this paper consists of
three phases: node selection, local training, and global aggregation. Node selection is
performed by using reinforcement learning algorithms to select participating blockchain
nodes to formulate and solve an optimization problem. The permission chain acts as
a centralized server for collecting federated learning models. The permission chain is
composed of a main-blockchain and multiple sub-blockchains, each responsible for partial
model parameter updates and the main-blockchain responsible for global model parameter
updates. Specifically, we will follow the following seven detailed steps for training.

Step 1: Terminal devices and edge computing devices are registered and authenticated,
each terminal device and edge computing device is registered with the sub blockchain, and
the sub-blockchain authenticates each device and issues certificates.

Step 2: The global model is assigned to the main-blockchain, the sub-blockchain down-
loads the global model from the main-blockchain, and the participating edge computing

Sensors 2022, 22, 1672 11 of 18

nodes are selected based on the nodes for deep reinforcement learning, considering factors
such as device training latency, model transmission latency, and accuracy rate.

Step 3: The participating edge computing node downloads the global model from the
sub-blockchain and initializes the training model and parameters.

Step 4: The end device loads data samples and offloads them to the edge computing
device for local model training. We use the convolutional neural network (CNN) layer as
a feature extractor to extract features from the raw data in the mobile device, and after n
iterations, the resulting gradient, giving the encrypted gradient and proof of correctness, is
encrypted and uploaded to the sub-blockchain.

Each node adjusts the gradient based on the received gradient clipping criteria, as
shown in Equation (1).

Adjc(gk(wt, ξi)) =

{
gk(wt, ξi),
cgk(wt ,ξi)
‖gk(wt ,ξi)‖

,
‖ gk(wt, ξi) ‖≤ c
‖ gk(wt, ξi) ‖≥ c

(1)

Each node is trained locally and the gradients are encrypted as shown in Equation (2).

g̃k(t) = encrypt(Adjc(gk(wt, ξi))), ∀i ∈ Bk,t (2)

Step 5: The sub-blockchain nodes review the gradient and proof of correctness of the
encryption. Collaborative decryption requires at least 2/3 participants to provide their
private share to decrypt a cipher as a way to further enhance the privacy of the data. The
sub-blockchain performs a local aggregation of the model parameters to aggregate the
model parameters. The resulting gradient, which gives the encrypted gradient and proof
of correctness, is encrypted and then uploaded to the main-blockchain.

The sub-blockchain receives the encryption gradient and evidence from the node for
verification, and after the verification passes, decrypts the gradient and uploads it to the
main-blockchain, as shown in Equations (3) and (4).

gnk(t) = decrypt(g̃k(t)) (3)

gk(wt) =
1∣∣Bk,t
∣∣ ∑ i∈Bk,t(Adjc(gnk(wt, ξi)) + ηi) (4)

Step 6: The main-blockchain node reviews the gradient and proof of correctness of the
sub-blockchain encryption and performs global aggregation of the model parameters to
aggregate the model parameters. We improved the aggregation efficiency by dividing the
aggregation phase into a local aggregation phase and a global aggregation phase. For each
node, local aggregation is performed asynchronously between nodes within a local range
to improve the quality of the trained local model. The main blockchain judges whether the
preset convergence conditions of the model are met. If not, it will carry out the next round
of training. If it arrives, it will terminate the federal learning task.

The main blockchain updates the global model covariates using the average of the K
gradients, as shown in Equation (5).

wt+1 = wt − γ
1
K ∑ K

i=1gk

(
wt−τ(t)

)
(5)

Step 7: Repeat steps 2–6 until the model converges or reaches a predetermined number
of training rounds.

The permissioned blockchain uses all gradients to update the parameters of the col-
laborative model that all participants have collaboratively encrypted, and the updated
model parameters are obtained by collaborative decryption. To prevent malicious partici-
pants from providing incorrect gradients or giving incorrect decryption shares during the
decryption phase, participants are required to provide encrypted gradients and proof of cor-
rectness before uploading the gradients, and to allow third parties to audit the participants’

Sensors 2022, 22, 1672 12 of 18

validation as a means of ensuring the auditability of the data. After the parameters have
been updated, participants need to provide their decryption shares and the corresponding
proof of correctness to download the co-decryption parameters, and again, any third party
can audit the decryption shares for correctness. Algorithm 1 provides the complete process
of our proposed blockchain-based asynchronous federation learning scheme.

Algorithm 1: Blockchain-Based Asynchronous Federated Learning Algorithms.

Input: Initial network status and blockchain nodes. Initial global model θg and local models θl.
The registering edge nodes as participating nodes EI = {e1, e2, . . . , eN}. The dataset di∈D.
Input: Select the participating edge nodes Ep ⊂ EI by running node selection algorithm.
1: for episode∈{1,EP} do
2: for s_episode∈{1,EPs} do
3: sub-blockchain retrieves global model from main-blockchain
4: for each edge node ei ∈EI do
5: ei executes the local training on its local data di, according to Equations (1)–(3),

encrypted gradient and proof of correctness, upload to sub-blockchain.
6: According to Equations (3) and (4), the sub-blockchain node reviews the encrypted

gradient and proof of correctness, performs local aggregation asynchronously, update
local models, gives the encrypted gradient and proof of correctness, and after
encryption, uploads it to the main-blockchain.

7: According to Equation (5), the main-blockchain node reviews the encrypted gradient
and global aggregation of model parameters.

8: end for
9: end for
10: Repeat steps 2–6 until the model converges or reaches a predetermined number of training

rounds.
11: end for
12: return The parameters of the final global model parameters.

4.3. Node Selection Algorithm

The choice of device node is influenced by a number of factors. First, the differential
computing and communication capabilities of the end devices directly affect local training
and data transfer latency. Second, the size of the dataset carried on the end devices
varies and the data may not satisfy the independent homogeneous distribution property,
which makes a difference in the training quality of the local model. The number of end
devices involved in federated learning training in edge networks is often large, and when
dealing with the node selection problem, the traditional actor-critic algorithm is difficult to
determine the learning rate, which may lead to slow convergence or premature convergence
and other disadvantages, and the convergence performance of the algorithm needs to be
improved. Therefore, this paper designed a DPPO-based node selection algorithm based
on the idea of PPO algorithm design. The detailed process is shown in Algorithm 2.

After executing a step according to a certain end-device node selection policy, the
environment data changes and a reward value for evaluating this behavior is obtained, and
the reward function is as in Equation (6).

rt =
1

∑d∈D βd
∑

s∈Si

∑
d∈D

Aiβd (6)

In Equation (6), Ai is the loss function of the test set and βd is whether the node is
selected or not.

The selection policy π is shown in Equation (7).

αi,t = π(st) (7)

Sensors 2022, 22, 1672 13 of 18

After the corresponding state adopts the corresponding action according to this policy
to maximize the expectation of the goal-cumulative return of reinforcement learning, the
optimization policy is shown in Equation (7).

π∗ = argmax
π

E[∑
t=0

σt · rt] (8)

In Equation (8), σt is the discount factor and rt is the reward value.
The optimization goal of the network model is to satisfy Equation (9) by updating the

parameter θ as shown.

max
θ

E[
πθ(α|s)

πθold(α|s)
Advθold(s, α)] (9)

In Equation (9), Advθold(s, α) is the dominance function and πθ(α|s) is the probability
of taking action π in state s based on the end-device node selection policy α.

Advt = ∑
i>t

σi−tri −Vϕ(st) (10)

In Equation (10), σ is the discount factor; V is the state value function; and ϕ is the
critic network parameter.

L(φ) = −∑
t=1

(∑
i>t

σi−tri −Vϕ(st))
2

(11)

The loss function of the critic network is calculated using Equation (11) and back
propagated to update the critic network parameter ϕ.

Algorithm 2: The Node Selection Algorithm Based on DDPO (BAFL-DPPO).

Input: Initial network status and task information.
Input: Initialization of network, equipment and task information and global network parameters.
1: for episode∈{1,EP} do
2: for s_episode∈{1,EPs} do
3: Each node according to the global PPO policy αi,t = π(st) execute node selection
action α.
4: Calculate the reward rt according to Equation (6), select the next state st+1 according to

Equation (8), and store the current state, action and reward as samples.
5: Update current network and device status information.
6: end for
7: Each node uploads the collected data synchronously to the global network services.
8: Update dominance function and actor1 network parameters θ.
9: Back propagation update critic network parameters φ.
10: if s_episode%circke == 0 do
11: Update actor2 with the parameters in actor1
12: end if
13: end for
14: return Selected node list.

5. Simulation Experiments
5.1. Experimental Configuration

In order to simulate a real-world scenario, we set up the following experimental
environment: a GPU server with high computational power acts as the parameter server
and is responsible for most of the computational work; the remaining computers simulate
individual learning nodes in the edge network, each performing federal learning indepen-
dently with a bandwidth of 1 Mbps. Each computer stores some of the data locally and
trains the neural network model based on the local data alone. The experiments used our
self-developed federated blockchain system, consisting of a main blockchain and three

Sensors 2022, 22, 1672 14 of 18

sub-blockchains, using the HotStuff consensus algorithm [43] on each blockchain. In this
paper, we studied multiple edge device nodes with different computational power, and
simulated these devices with different computational power by adding a pause interval.
To better simulate the experimental scenario, the federal learning on these computers was
controlled by a separate computer.

We evaluated the proposed asynchronous federation learning on the MNIST dataset,
which is partitioned into 100 slices that are assigned to 100 providers. The edge data sharing
task is to share the computational results on the local data of each data provider. We used a
convolutional neural network (CNN) model as the local training model. In each iteration,
there is one global aggregation and 10 local trainings. In addition, we used a local CNN
model and a centralized CNN model as benchmark algorithms on the same dataset. The
local CNN trains the model on the local provider’s dataset, while the centralized CNN
model is trained on the entire centralized dataset. We then validated the performance of
the DDPO-based node selection algorithm.

The DPPO algorithm uses seven threads to interact with the external environment and
the reward discount factor was set to 0.9. The learning rates of the actor and critic networks
were set to 0.0001 and 0.0002, respectively, and actor 2 was updated using the parameters
in actor, whenever the agent was trained for 100 rounds. Two algorithms were selected as
the comparison of the proposed algorithm (BAFL-DPPO) in this paper. (1) BAFL-Greedy:
This algorithm selects all device nodes for model aggregation in each iteration of federal
learning training. (2) Local Training: No federal learning mechanism is used, and model
training is performed only on local devices.

5.2. Experimental Results

First, we evaluated the accuracy and loss of the proposed solution for different num-
bers of data providers on the MNIST dataset, which is a classification problem, so the
accuracy in the experiment can be defined as the number of correct classifications as a
percentage of the total number of samples. The variation of the accuracy of the three
algorithms with 30% of malicious device nodes is presented in Figure 7, from which it can
be seen that the accuracy of the models obtained by the three algorithmic mechanisms is
low in the early stages of training, which indicates that the training accuracy of the models
needs to be guaranteed by a sufficient number of training iterations. When the number
of iterations reached 10, the accuracy of the models obtained by the three mechanisms
stabilized, with the accuracy of BAFL-DPPO, BAFL-Greedy, and Local Training stabilizing
around 0.82, 0.75, and 0.7, respectively. The BAFL-DPPO algorithm maintains good train-
ing performance with a small number of malicious nodes and varying data quality, while
Local Training has difficulty in ensuring the training quality. The gain of the BAFL-DPPO
algorithm is more significant in the case of data heterogeneity due to the reinforcement
learning based dynamic adjustment strategy.

The variation of the loss functions of the three algorithms with 30% of malicious
device nodes is presented in Figure 8, from which it can be seen that the loss function of
Local Training always fails to converge and is significantly higher than that of BAFL-DPPO
and BAFL-Greedy because the federal learning mechanism is not used. Greedy loss rate
stabilized when the number of iterations reached 10, and BAFL-DPPO converged faster
than BAFL-Greedy with the smallest value of the loss function.

The latency comparison results of the three algorithms are shown in Figure 9, from
which it can be seen that the latency of the algorithm did not increase or decrease directly
with the increase in nodes, but tended to be stable at about 8 s. The latency of the BAFL-
Greedy algorithm increased with the increase in nodes, but was lower than that of the Local
Training algorithm. The BAFL-DPPO algorithm ensures low latency when dealing with a
wide range of node numbers due to its ability to efficiently select device nodes with high
training quality for model aggregation.

Sensors 2022, 22, 1672 15 of 18

Sensors 2022, 22, x FOR PEER REVIEW 15 of 19

5.2. Experimental Results
First, we evaluated the accuracy and loss of the proposed solution for different

numbers of data providers on the MNIST dataset, which is a classification problem, so the
accuracy in the experiment can be defined as the number of correct classifications as a
percentage of the total number of samples. The variation of the accuracy of the three
algorithms with 30% of malicious device nodes is presented in Figure 7, from which it can
be seen that the accuracy of the models obtained by the three algorithmic mechanisms is
low in the early stages of training, which indicates that the training accuracy of the models
needs to be guaranteed by a sufficient number of training iterations. When the number of
iterations reached 10, the accuracy of the models obtained by the three mechanisms
stabilized, with the accuracy of BAFL-DPPO, BAFL-Greedy, and Local Training
stabilizing around 0.82, 0.75, and 0.7, respectively. The BAFL-DPPO algorithm maintains
good training performance with a small number of malicious nodes and varying data
quality, while Local Training has difficulty in ensuring the training quality. The gain of
the BAFL-DPPO algorithm is more significant in the case of data heterogeneity due to the
reinforcement learning based dynamic adjustment strategy.

Figure 7. Accuracy comparison (30% of malicious device nodes).

The variation of the loss functions of the three algorithms with 30% of malicious
device nodes is presented in Figure 8, from which it can be seen that the loss function of
Local Training always fails to converge and is significantly higher than that of BAFL-
DPPO and BAFL-Greedy because the federal learning mechanism is not used. Greedy loss
rate stabilized when the number of iterations reached 10, and BAFL-DPPO converged
faster than BAFL-Greedy with the smallest value of the loss function.

Figure 7. Accuracy comparison (30% of malicious device nodes).

Sensors 2022, 22, x FOR PEER REVIEW 16 of 19

Figure 8. Comparison of losses (30% of malicious device nodes).

The latency comparison results of the three algorithms are shown in Figure 9, from
which it can be seen that the latency of the algorithm did not increase or decrease directly
with the increase in nodes, but tended to be stable at about 8 s. The latency of the BAFL-
Greedy algorithm increased with the increase in nodes, but was lower than that of the
Local Training algorithm. The BAFL-DPPO algorithm ensures low latency when dealing
with a wide range of node numbers due to its ability to efficiently select device nodes with
high training quality for model aggregation.

Figure 9. Latency comparison (30% of malicious device nodes).

To test the failure probability of malicious attacks, we randomly selected a certain
percentage of nodes as malicious nodes. Figure 10 illustrates the comparison of the failure
probability of the three methods in the face of malicious attacks: the failure probability of
the Local Training algorithm increased with the increase in malicious device nodes. The
BAFL-Greedy and BAFL-DPPO algorithms were Byzantine fault-tolerant when the
percentage of malicious device nodes was less than 33%, and the failure probability
increased with the increase in malicious device nodes when the percentage of malicious
device nodes exceeded 33% attack capability.

Figure 8. Comparison of losses (30% of malicious device nodes).

Sensors 2022, 22, x FOR PEER REVIEW 16 of 19

Figure 8. Comparison of losses (30% of malicious device nodes).

The latency comparison results of the three algorithms are shown in Figure 9, from
which it can be seen that the latency of the algorithm did not increase or decrease directly
with the increase in nodes, but tended to be stable at about 8 s. The latency of the BAFL-
Greedy algorithm increased with the increase in nodes, but was lower than that of the
Local Training algorithm. The BAFL-DPPO algorithm ensures low latency when dealing
with a wide range of node numbers due to its ability to efficiently select device nodes with
high training quality for model aggregation.

Figure 9. Latency comparison (30% of malicious device nodes).

To test the failure probability of malicious attacks, we randomly selected a certain
percentage of nodes as malicious nodes. Figure 10 illustrates the comparison of the failure
probability of the three methods in the face of malicious attacks: the failure probability of
the Local Training algorithm increased with the increase in malicious device nodes. The
BAFL-Greedy and BAFL-DPPO algorithms were Byzantine fault-tolerant when the
percentage of malicious device nodes was less than 33%, and the failure probability
increased with the increase in malicious device nodes when the percentage of malicious
device nodes exceeded 33% attack capability.

Figure 9. Latency comparison (30% of malicious device nodes).

Sensors 2022, 22, 1672 16 of 18

To test the failure probability of malicious attacks, we randomly selected a certain
percentage of nodes as malicious nodes. Figure 10 illustrates the comparison of the failure
probability of the three methods in the face of malicious attacks: the failure probability of the
Local Training algorithm increased with the increase in malicious device nodes. The BAFL-
Greedy and BAFL-DPPO algorithms were Byzantine fault-tolerant when the percentage
of malicious device nodes was less than 33%, and the failure probability increased with
the increase in malicious device nodes when the percentage of malicious device nodes
exceeded 33% attack capability.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 19

Figure 10. Defending against malicious attack.

6. Conclusions
In this paper, we first propose an asynchronous federated learning system based on

permissioned blockchains that can effectively alleviate the overhead of the synchronous
federated learning algorithm on the synchronization problem, while the reliability of
shared data is guaranteed to improve the learning performance of federated learning.
According to our simulation experimental results, we confirm the effectiveness of our
proposed scheme in terms of efficiency and accuracy with good convergence and
robustness, enough to maintain a good training performance even when dealing with a
small number of malicious nodes and differential data quality, providing an effective
solution for performing federated learning at network edge devices.

Author Contributions: Conceptualization, methodology, software, validation, formal analysis,
writing—original draft preparation, R.W.; Writing—review and editing, funding acquisition, W.-
T.T.; All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Chinese Ministry of Science and Technology (Grant No.
2018YFB1402700).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, Q.; Liu, Y.; Cheng, Y.; Kang, Y.; Chen, T.; Yu, H. Federated learning. Synth. Lect. Artif. Intell. Mach. Learn. 2019, 13, 1–207.
2. Wang, R.; Tsai, W.T.; He, J.; Liu, C.; Li, Q.; Deng, E. Logistics management system based on permissioned blockchains and RFID

technology. Adv. Comput. Sci. Res. 2019, 88, 465.
3. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from

decentralized data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale,
FL, USA, 20–22 April 2017; pp. 1273–1282.

4. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Bus. Rev. 2008, 4, 21260.

Figure 10. Defending against malicious attack.

6. Conclusions

In this paper, we first propose an asynchronous federated learning system based on
permissioned blockchains that can effectively alleviate the overhead of the synchronous
federated learning algorithm on the synchronization problem, while the reliability of shared
data is guaranteed to improve the learning performance of federated learning. According to
our simulation experimental results, we confirm the effectiveness of our proposed scheme
in terms of efficiency and accuracy with good convergence and robustness, enough to
maintain a good training performance even when dealing with a small number of malicious
nodes and differential data quality, providing an effective solution for performing federated
learning at network edge devices.

Author Contributions: Conceptualization, methodology, software, validation, formal analysis,
writing—original draft preparation, R.W.; Writing—review and editing, funding acquisition, W.-T.T.;
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Chinese Ministry of Science and Technology (Grant No.
2018YFB1402700).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2022, 22, 1672 17 of 18

References
1. Yang, Q.; Liu, Y.; Cheng, Y.; Kang, Y.; Chen, T.; Yu, H. Federated learning. Synth. Lect. Artif. Intell. Mach. Learn. 2019, 13, 1–207.

[CrossRef]
2. Wang, R.; Tsai, W.T.; He, J.; Liu, C.; Li, Q.; Deng, E. Logistics management system based on permissioned blockchains and RFID

technology. Adv. Comput. Sci. Res. 2019, 88, 465.
3. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from

decentralized data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale,
FL, USA, 20–22 April 2017; pp. 1273–1282.

4. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Bus. Rev. 2008, 4, 21260.
5. Wiering, M.A.; Van Otterlo, M. Reinforcement Learning. Adaptation, Learning, and Optimization; Springer: Berlin/Heidelberg,

Germany, 2012; p. 12.
6. Wang, H.; Kaplan, Z.; Niu, D.; Li, B. Optimizing federated learning on non-iid data with reinforcement learning. In Proceedings of

the IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020; pp. 1698–1707.
7. Luping, W.A.N.G.; Wei, W.A.N.G.; Bo, L.I. CMFL: Mitigating communication overhead for federated learning. In Proceedings

of the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA, 7–10 July 2019;
pp. 954–964.

8. Wang, J.; Wei, Z.; Zhang, T.; Zeng, W. Deeply-fused nets. arXiv 2016, arXiv:1605.07716.
9. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 2012, 25, 1097–1105. [CrossRef]
10. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.
11. Chen, Z.; Cui, H.; Wu, E.; Yu, X. Dynamic Asynchronous Anti Poisoning Federated Deep Learning with Blockchain-Based

Reputation-Aware Solutions. Sensors 2022, 22, 684. [CrossRef]
12. Wang, Q.; Li, Q.; Wang, K.; Wang, H.; Zeng, P. Efficient federated learning for fault diagnosis in industrial cloud-edge computing.

Computing 2021, 103, 2319–2337. [CrossRef]
13. Li, M.; Chen, Y.; Wang, Y.; Pan, Y. Efficient asynchronous vertical federated learning via gradient prediction and double-end

sparse compression. In Proceedings of the 2020 16th International Conference on Control, Automation, Robotics and Vision
(ICARCV), Shenzhen, China, 13–15 December 2020; pp. 291–296.

14. Chen, Z.; Liao, W.; Hua, K.; Lu, C.; Yu, W. Towards asynchronous federated learning for heterogeneous edge-powered internet of
things. Digit. Commun. Netw. 2021, 7, 317–326. [CrossRef]

15. Yang, H.; Zhao, J.; Xiong, Z.; Lam, K.Y.; Sun, S.; Xiao, L. Privacy-preserving federated learning for UAV-enabled networks:
Learning-based joint scheduling and resource management. IEEE J. Sel. Areas Commun. 2021, 39, 3144–3159. [CrossRef]

16. Zhang, H.; Bosch, J.; Olsson, H.H. Real-time end-to-end federated learning: An automotive case study. In Proceedings of the 2021
IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 12–16 July 2021; pp. 459–468.

17. Sun, W.; Lei, S.; Wang, L.; Liu, Z.; Zhang, Y. Adaptive federated learning and digital twin for industrial internet of things. IEEE
Trans. Ind. Inform. 2020, 17, 5605–5614. [CrossRef]

18. Xue, M.A.; Chenglin, W.E.N. An Asynchronous Quasi-Cloud/Edge/Client Collaborative Federated Learning Mechanism for
Fault Diagnosis. Chin. J. Electron. 2021, 30, 969–977. [CrossRef]

19. Chen, Y.; Ning, Y.; Slawski, M.; Rangwala, H. Asynchronous online federated learning for edge devices with non-iid data.
In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020;
pp. 15–24.

20. Lu, X.; Liao, Y.; Lio, P.; Hui, P. Privacy-preserving asynchronous federated learning mechanism for edge network computing.
IEEE Access 2020, 8, 48970–48981. [CrossRef]

21. Lu, Y.; Huang, X.; Dai, Y.; Maharjan, S.; Zhang, Y. Differentially private asynchronous federated learning for mobile edge
computing in urban informatics. IEEE Trans. Ind. Inform. 2019, 16, 2134–2143. [CrossRef]

22. Ma, Q.; Xu, Y.; Xu, H.; Jiang, Z.; Huang, L.; Huang, H. FedSA: A semi-asynchronous federated learning mechanism in
heterogeneous edge computing. IEEE J. Sel. Areas Commun. 2021, 39, 3654–3672. [CrossRef]

23. Liu, J.; Xu, H.; Xu, Y.; Ma, Z.; Wang, Z.; Qian, C.; Huang, H. Communication-efficient asynchronous federated learning in
resource-constrained edge computing. Comput. Netw. 2021, 199, 108429. [CrossRef]

24. Rizk, E.; Vlaski, S.; Sayed, A.H. Dynamic Federated Learning. In Proceedings of the 2020 IEEE 21st International Workshop on
Signal Processing Advances in Wireless Communications (SPAWC), Atlanta, GA, USA, 26–29 May 2020; pp. 1–5. [CrossRef]

25. Miao, Q.; Lin, H.; Wang, X.; Hassan, M.M. Federated deep reinforcement learning based secure data sharing for Internet of Things.
Comput. Netw. 2021, 197, 108327. [CrossRef]

26. Agrawal, S.; Chowdhuri, A.; Sarkar, S.; Selvanambi, R.; Gadekallu, T.R. Temporal Weighted Averaging for Asynchronous
Federated Intrusion Detection Systems. Comput. Intell. Neurosci. 2021, 2021, 5844728. [CrossRef]

27. Gao, Y.; Liu, L.; Zheng, X.; Zhang, C.; Ma, H. Federated sensing: Edge-cloud elastic collaborative learning for intelligent sensing.
IEEE Internet Things J. 2021, 8, 11100–11111. [CrossRef]

28. Wang, Z.; Zhang, Z.; Wang, J. Asynchronous Federated Learning over Wireless Communication Networks. In Proceedings of the
ICC 2021-IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–7.

http://doi.org/10.2200/S00960ED2V01Y201910AIM043
http://doi.org/10.1145/3065386
http://doi.org/10.3390/s22020684
http://doi.org/10.1007/s00607-021-00970-6
http://doi.org/10.1016/j.dcan.2021.04.001
http://doi.org/10.1109/JSAC.2021.3088655
http://doi.org/10.1109/TII.2020.3034674
http://doi.org/10.1049/cje.2021.07.008
http://doi.org/10.1109/ACCESS.2020.2978082
http://doi.org/10.1109/TII.2019.2942179
http://doi.org/10.1109/JSAC.2021.3118435
http://doi.org/10.1016/j.comnet.2021.108429
http://doi.org/10.1109/SPAWC48557.2020.9154327
http://doi.org/10.1016/j.comnet.2021.108327
http://doi.org/10.1155/2021/5844728
http://doi.org/10.1109/JIOT.2021.3053055

Sensors 2022, 22, 1672 18 of 18

29. Liu, K.H.; Hsu, Y.H.; Lin, W.N.; Liao, W. Fine-Grained Offloading for Multi-Access Edge Computing with Actor-Critic Federated
Learning. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29
March–1 April 2021; pp. 1–6.

30. Lu, Y.; Huang, X.; Dai, Y.; Maharjan, S.; Zhang, Y. Federated learning for data privacy preservation in vehicular cyber-physical
systems. IEEE Netw. 2020, 34, 50–56. [CrossRef]

31. Kang, J.; Xiong, Z.; Niyato, D.; Zou, Y.; Zhang, Y.; Guizani, M. Reliable federated learning for mobile networks. IEEE Wirel.
Commun. 2020, 27, 72–80. [CrossRef]

32. Qu, Y.; Gao, L.; Luan, T.H.; Xiang, Y.; Yu, S.; Li, B.; Zheng, G. Decentralized privacy using blockchain-enabled federated learning
in fog computing. IEEE Internet Things J. 2020, 7, 5171–5183. [CrossRef]

33. Qi, Y.; Hossain, M.S.; Nie, J.; Li, X. Privacy-preserving blockchain-based federated learning for traffic flow prediction. Future
Gener. Comput. Syst. 2021, 117, 328–337. [CrossRef]

34. Liu, Y.; Peng, J.; Kang, J.; Iliyasu, A.M.; Niyato, D.; Abd El-Latif, A.A. A secure federated learning framework for 5G networks.
IEEE Wirel. Commun. 2020, 27, 24–31. [CrossRef]

35. Kim, H.; Park, J.; Bennis, M.; Kim, S.L. Blockchained on-device federated learning. IEEE Commun. Lett. 2019, 24, 1279–1283.
[CrossRef]

36. Wang, Q.; Guo, Y.; Wang, X.; Ji, T.; Yu, L.; Li, P. AI at the edge: Blockchain-empowered secure multiparty learning with
heterogeneous models. IEEE Internet Things J. 2020, 7, 9600–9610. [CrossRef]

37. Lu, Y.; Huang, X.; Zhang, K.; Maharjan, S.; Zhang, Y. Blockchain empowered asynchronous federated learning for secure data
sharing in internet of vehicles. IEEE Trans. Veh. Technol. 2020, 69, 4298–4311. [CrossRef]

38. Kim, Y.J.; Hong, C.S. Blockchain-based node-aware dynamic weighting methods for improving federated learning performance.
In Proceedings of the 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS), Matsue, Japan,
18–20 September 2019; pp. 1–4.

39. Liu, Y.; Qu, Y.; Xu, C.; Hao, Z.; Gu, B. Blockchain-enabled asynchronous federated learning in edge computing. Sensors 2021,
21, 3335. [CrossRef]

40. Lu, Y.; Huang, X.; Zhang, K.; Maharjan, S.; Zhang, Y. Communication-efficient federated learning and permissioned blockchain
for digital twin edge networks. IEEE Internet Things J. 2020, 8, 2276–2288. [CrossRef]

41. Liang, H.; Zhang, Y.; Xiong, H. A Blockchain-based Model Sharing and Calculation Method for Urban Rail Intelligent Driving
Systems. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes,
Greece, 20–23 September 2020; pp. 1–5.

42. Liu, W.; Zhang, Y.H.; Li, Y.F.; Zheng, D. A fine-grained medical data sharing scheme based on federated learning. Concurr. Comput.
Pract. Exp. 2022, e6847. [CrossRef]

43. Yin, M.; Malkhi, D.; Reiter, M.K.; Gueta, G.G.; Abraham, I. Hotstuff: Bft consensus with linearity and responsiveness. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, Toronto, ON, Canada, 29 July–2 August 2019;
pp. 347–356.

http://doi.org/10.1109/MNET.011.1900317
http://doi.org/10.1109/MWC.001.1900119
http://doi.org/10.1109/JIOT.2020.2977383
http://doi.org/10.1016/j.future.2020.12.003
http://doi.org/10.1109/MWC.01.1900525
http://doi.org/10.1109/LCOMM.2019.2921755
http://doi.org/10.1109/JIOT.2020.2987843
http://doi.org/10.1109/TVT.2020.2973651
http://doi.org/10.3390/s21103335
http://doi.org/10.1109/JIOT.2020.3015772
http://doi.org/10.1002/cpe.6847

	Introduction
	Background
	Federated Learning
	Permissioned Blockchains
	Reinforcement Learning

	Related Works
	Asynchronous Federal Learning
	Blockchain-Based Federated Learning

	Asynchronous Federal Learning System Based on Permissioned Blockchains
	System Overview
	Asynchronous Federated Learning Algorithm
	Node Selection Algorithm

	Simulation Experiments
	Experimental Configuration
	Experimental Results

	Conclusions
	References

