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Abstract: Stride length estimation is one of the most crucial aspects of Pedestrian Dead Reckoning
(PDR). Due to the measurement noise of inertial sensors, individual variances of pedestrians, and
the uncertainty in pedestrians walking, there is a substantial error in the assessment of stride length,
which causes the accumulated deviation of Pedestrian Dead Reckoning (PDR). With the help of
multi-gait analysis, which decomposes strides in time and space with greater detail and accuracy,
a novel and revolutionary stride estimating model or scheme could improve the performance of
PDR on different users. This paper presents a diverse stride gait dataset by using inertial sensors
that collect foot movement data from people of different genders, heights, and walking speeds. The
dataset contains 4690 walking strides data and 19,083 gait labels. Based on the dataset, we propose a
threshold-independent stride segmentation algorithm called SDATW and achieve an F-measure of
0.835. We also provide the detailed results of recognizing four gaits under different walking speeds,
demonstrating the utility of our dataset for helping train stride segmentation algorithms and gait
detection algorithms.

Keywords: inertial measurement units; indoor localization; stride estimation; stride segmentation;
gait recognition

1. Introduction

Pedestrian localization is commonly used in maneuvers, fire drills, and mine rescues.
Unlike GPS, optical, audio, and other sensor data, inertial measurements are infrastructure-
independent, allowing them to be used for a terminal location in complex contexts [1,2].
As a result of the development of Micro-Electro-Mechanical Systems (MEMS), Inertial
Measurement Units (IMUs) have become lightweight, low in power consumption, low cost,
and non-intrusive to users, which are suitable characteristics for clinical and residential
applications. Thus, IMU-based Pedestrian Dead Reckoning (PDR) has become popular and
received considerable attention [3–7].

Stride length estimation, direction estimation, and position update are three key pro-
cesses of PDR [8–10]. One of the most basic components is estimating stride length [11,12].
There are mainly two classes of approaches: the first kind of method is based on the in-
tegration of the accelerations, and the other techniques utilize various models to predict
the stride length. The models can be further divided according to whether they are based
on physical or statistical models. The double integration of acceleration in the forward
direction is the most direct method for estimating stride length because it needs no as-
sumption or user customization. However, it is not easy to obtain the forward acceleration
from IMU measurements since each part of the body moves in different directions during
walking. Biomechanical models for step length estimating, such as inverted pendulum
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models, are defined mainly by simplifying and approximating the mechanical movements
of the human body. Nevertheless, due to the significant variability of pedestrians, these
models need to be calibrated for each user. Mechanical models are also impacted by the
non-negligible bias and noise of the IMU, which makes the distance error grow cubically
over time or distance [13]. In order to reduce the cumulative error, Zero-Velocity-Update
(ZUPT) was introduced to reset the integral computations for distance when the foot was
recognized as remaining stationary on the ground [14–16]. Thanks to the periodicity of
human gait, various statistical variables show a clear correlation with step length and can
therefore work as features or predictors in statistical models. This type of method needs to
create an empirical regression model based on the movement features of the pedestrian’s
pelvis, feet, or legs and then fit the model parameters by utilizing the existing dataset
to estimate the step length for walking. Li’s model demonstrates a linear relationship
between step length and walking frequency [17]. Weinberg’s model utilizes the difference
between the maximum and the minimum in vertical acceleration data within a step [18].
Kim’s model is only based on the mean acceleration within a step [19]. Scarlett’s model
uses minimum, maximum and average acceleration to estimate step length [20]. Since
the variability of individuals’ walking habits stems from gender, height, age, and walking
speed, these empirical models require parameter customization for individual pedestrians.
If the predicted data differ much from the training data distribution, then the accuracy of
the statistical models will be low. In recent years, neural networks have been developed
as a promising trend in the pedestrian localization area and have also been used for step
length prediction [21,22]. They achieve better prediction accuracy than empirical models
with the cost of larger-scale datasets and more massive computation consumption. With
limited training data, neural networks are prone to be overfitted, and the requirement for
a large number of computational resources prevents them from being used in wearable
devices and embedded systems.

To summarize the preceding methods of stride length estimation approaches, they
all treat a single stride as a whole processing item rather than dealing with more detailed
decomposition and analysis. Firstly, a segment of signal corresponding to a stride must
be detected, and then selected features need to be calculated and input into a pretrained
model to derive a prediction of movement distance. However, stride length estimation is a
case of a black box problem, and researchers are currently unable to investigate the effect of
individual differences on stride length estimation. In the field of kinesiology, IMU-based
mobile gait analysis enables a continuous and detailed insight into the motor performance
of foot movements in multiple gait patterns, under more natural and realistic conditions
compared to laboratory settings [23]. With the basis of estimating temporal and spatial
parameters within a stride, gait analysis is not only used for the detection of stroke and
Parkinson’s symptoms, but also for posture stability in the rehabilitation phase of treatment
after injury [24–28]. Inspired by this, we think that it is possible to improve the accuracy of
stride length estimation on the basis of gait analysis. By accurately dividing a stride into
several gait segments, stride length estimation can be transformed into a fusion of several
predictions from different gait analyses. However, there is still a lack of studies in the field
of localization based on the analysis of gait signals as well as gait information and step
length estimation for PDR application.

IMU-based gait recognition can be investigated on the basis of precise labels charac-
terizing the semantic information corresponding to a specific segment of IMU data, and
various datasets have been published [29]. These datasets provide cyclic data collected on
different parts of the body by various kinds of sensors and are briefly described in Table 1.
The Digital Biobank [8,10] and Sensor-based Gait Analysis Validation Data [30] mainly
collected data from healthy elderly controls, PD patients, and geriatric patients by using an
optical motion capture system to provide reference data, but the system must be built in a
laboratory and has a limited scope. MAREA [31] was used to detect key movements in the
gait, such as the heel touching the bottom and the toe off the ground. It provided gait data
from 20 subjects, containing data of pressure sensors located on the soles of the feet and
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data of IMU sensors recording ankle and wrist movement. Each stride was divided into
two phases, where the foot swings in the air and makes contact with the ground.

Table 1. Summary of published gait datasets.

Dataset

Digital Biobank Sensor-Based
Gait Analysis

Validation Data
[30]

MAREA [31]

Smart
Annotation

Cyclic Activities
Dataset [32]

The Diverse Gait
Dataset

eGaIT-Validation
Stride

Segmentation [8]

eGaIT-
Validation Gait
Parameters [10]

Sampling
frequency [Hz] 102.4 102.4 102.4 128 200 100

Reference Data GAITRite (pressure
sensors)

Manual
annotation

Motion capture
system

Piezo-electric
force sensitive

resistors

Camera
recordings

(30 Hz)

Camera
recordings

Number of
subjects

101
(55 females and 46

males)

70
(39 males and

41 females)

15
(8 males and

7 females)

20
(12 males and

8 females)

18
(14 males and

4 females)

22
(13 males and

9 females)

Subject health
description Generic patients.

Elderly controls
(45), PD

patients (15),
geriatric

patients (15).

Healthy (11), PD
patients (4). All healthy. All healthy. All healthy.

Scenarios laboratory settings

Indoor:
obstacle-free
environment;

Outdoor:
overground.

Laboratory
settings.

Indoor:
laboratory

settings;
Outdoor:

overground
streets.

Outdoor: A
prescribed circuit
in outdoor setting

with varying
surfaces.

Indoor corridors.

Sensor wear
positions Shoe Shoe Shoe

Waists, left wrist,
left and right

ankles
Shoe Shoe

Labels

Gait velocity,
cadence, step

length, heel to heel
base of support

width, length of gait
phases. [33]

The start and
end point of
each stride

Heel-strike,
toe-off, heel-off

Heel-strike,
toe-off

The start and end
point of each

stride

Stance, toe-off,
heel-strike.

Walking dis-
tance/duration

10 m normal walk;
1–2 min

four-wheeled walk;

40 m straight
walk;

2 min free walk;
4 × 10 m walk;

Treadmill walk;
outdoor

walk/run/jog;
- 46 m straight

walk

Number of strides - -

1116 strides (1037
from healthy

subjects, 129 from
patients.)

-
2263 walking

strides and 1391
running strides

4690 walking
strides

MAREA also provided foot movement data on a treadmill with changing speeds and
inclination angles to help evaluate gait events detection, since the lower body movement
kinetics of walking on a treadmill are similar to that of walking on the ground. However,
the work in [34] found that the shear forces caused by the belts sliding over the treadmill
significantly reduced propulsive force during late stance, so there exists considerable differ-
ences in gait variables between overground and treadmill walking. The Smart Annotation
Cyclic Activities Dataset [32] provides foot movement recordings with camera frames as
reference information. It provides stride borders in the foot movement sequence but with
gait phases not mentioned. To summarize, thanks to the existing stride databases or gait
datasets mentioned above, a large number of investigations into the biomechanics of foot
movements have been made possible. However, there is still a lack of stride gait datasets
providing both stride borders and gait phases from healthy subjects walking in overground
with diverse parameters, such as gender, height, and walking speeds, which significantly
affect gait variables in cyclic movement. Among the datasets that collect data from healthy
pedestrians, the number of healthy subjects in our dataset is much greater than that of
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the sensor-based Gait Analysis Validation Data [27] and is comparable to the other two
datasets [31,32]. Compared with MAREA [31], we offer more gait labels and foot movement
data that are closer to the real application scenarios. Our dataset shares the same type
of reference information as the Smart Annotation Cyclic Activities Dataset [32], but we
provide reference data with a higher sampling frequency and more detailed gait labels.

One of the initial steps in most wearable gait analysis systems is to segment strides
from continuous sensor data, which is a crucial component of the underlying signal pro-
cessing pipeline. Various methods have been successfully applied to stride segmentation.
By identifying peaks or valleys in the data sequence as significant and typical gait events,
Weinberg suggested stride borders be recognized, and later dynamic threshold schemes
were added to improve the accuracy [18,35,36]. Among the existing IMU-based adaptive
stride segmentation methods, [37] proposed a technique which utilized an autocorrelation
procedure to fine-tune the threshold for stride boundaries. However, unbiased autocor-
relation estimates rely heavily on extracting meaningful information from the signal’s
autocorrelation coefficients, necessitating a larger number of observed samples and thus
lagged parameter values. The number of samples needed for analysis was said to be at
least 400, but the sampling rate of current IMU modules is from 50 to 200 Hz, implying
a lag of at least 2 s. As a result, parameter adjustments would be significantly delayed
regarding the recognized stride.

In the study of [38], an adaptive procedure was added to the finite state machine
algorithm in which six transition rules are empirically set for separating a full stride into six
stages. The assumption behind these fixed state transfer criteria is that all strides are made
up of a combination of six complete phases sequentially. The signal’s amplitude threshold,
the signal’s derivative threshold, and the signal’s variance threshold were adjusted in
the state machine based on sixty percent of the average of the local maxima and minima
detected in the last three strides. If the recognized strides were less than three steps, the
preset thresholds would be used. The method of parameter updating was based on the
authors’ assumption that the signal distribution pattern of pedestrian walking follows a
similar conditional pattern that transforms between distinct states within a certain range
of speed fluctuations. However, the assumption of the cycle heel-strike, foot flat, middle
mid-swing, heel off, toe-off, and middle mid-swing in the gait pattern limits the analysis
for that particular forward walking gait. Although it is the most frequent phase sequence, it
must be considered that some strides may omit one or more phases due to the uncertainty
of pedestrian foot movements.

In the research of [39], a parameter adjustment mechanism was proposed to be added
to the Hidden Markov Model to improve the adaptability of stride segmentation. Rather
than analyzing the statistical characteristics of acceleration or gyroscope data, the system
begins by calculating the Impulse Response Function (IRF) for the gyroscope signals at
different stages to reflect the periodic impedance of the force at the ankle joints of the
humans and robots. Additionally, it then compares the inverse of the Euclidean distance
with the IRF of each stage at each moment. Similar to [38], the system assumed that the gait
stages are fixed in mid-stance, terminal stance, swing, and loading response. The IRF of
the current signal should be close to one of the four gait templates as the current estimated
stride phase. The authors did not provide test results for this method on different subjects,
so the robustness of the threshold adaptation for stride segmentation or gait recognition
is unknown.

The research in [13] offered a positive correlation between the amplitude of the peak
acceleration point within the heel strike phase and the threshold required to identify the
zero-velocity phase and developed a regression model. The model was used to estimate
the threshold value for the forthcoming zero-velocity phase based on the magnitude of the
newly formed acceleration peak point. The utility of adaptive thresholds for zero-velocity
phase detection, i.e., improving stride recognition accuracy, was only verified on a 75 m test-
path with different walking and running speeds, while the cross-individual adaptation was
not mentioned in the validation experiments of this approach. We infer that the empirical
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model parameters might need customization to each individual due to the influence of
gender, height, and age on pedestrian gait patterns.

In summary, current adaptive stride segmentation methods are unable to recog-
nize stride in cross-individual and wide speed domain scenarios with robustness due
to the lag of the regulation mechanism, the fixation of the number of gait phases and
complex transition conditions, and thr customization of threshold estimation models for
different individuals.

Alternatively, template matching algorithms such as Dynamic Time Warping (DTW)
were introduced for stride segmentation. DTW methods calculate the similarity between
the input sequence and the template, which makes it well adapted to varying segment
lengths and trivial distortion [8,40,41]. The template matching method, like standard DTW,
can still distinguish the strides from signal series, referencing a standard stride template.
The SDATW introduced in this research is trained on such a diverse gait dataset to maintain
accuracy and consistency in cross-individual and broad speed domain scenarios.

From the perspective of frequency signal decomposition, wavelet analysis provided
insight into determining stride borders, and it is suggested that better performance could
be achieved in the frequency domain than in the time domain [42–45]. Another kind of
method employs Hidden Markov Models (HMM) [46–48], residual neural networks [29],
etc. These methods could achieve better detection accuracy in stride segmentation or gait
recognition assignments with the assurance that large-scale training data should be offered
and massive computing resources supplied. However, this requirement runs counter to the
low-power-consumption nature of wearable device platforms.

The purpose of this paper consists of the following four parts. Firstly, we give a
diverse gait dataset including IMU data and camera recordings of foot movement, which
features a wide coverage of gender, height and walking speed. Secondly, we propose to
divide a normal walking stride into four gait phases on the basis of biomechanics and
annotate the whole dataset with four different gait labels. Last but not least, we offer a
threshold-independent stride segmentation algorithm that requires no customization and
is able to perform with adequate accuracy and robustness at different speeds. We take it a
step further by evaluating gait recognition to provide a baseline for accurate gait analysis.

2. Materials and Methods
2.1. Subjects and Measurement Protocols

A total of 22 healthy volunteers (13 males, 9 females, age 32.5 ± 7.5 years) participated
in the study and were divided into different groups according to gender and height
information, as shown in Table 2. Each subject walked at three kinds of self-selected speeds
along an indoor corridor of 46 m. The data collection area was free of obstacles and long
enough, so they were asked to walk as usual while approximately keeping straight along the
brick line between the floor tiles. We added this restriction with the consideration that using
the brick line as an auxiliary beacon can help subjects maintain a straight walking direction.
It is not only important for subjects that they can focus their attention on controlling the
walking speed evenly and steadily but for the videographer that they could capture the full
process of foot movement by camera. Although this limitation probably prevented us from
fully simulating the walking state of a pedestrian in real application scenarios, we extended
the diversity of the acquisition samples with three different walking speed gears. We let the
subjects choose their own walking speed for three different daily scenarios: normal walking
in the street, slower than normal choice such as thinking while walking, and faster than
normal choice such as weaving through the crowds at a brisk pace to catch the upcoming
bus. Furthermore, we chose a corridor that was 46 m long. The distance ensures that we
collect a sufficient amount of data on pedestrians walking on a daily basis, since subjects
are able to quickly adapt to this experimental environment built on a realistic scenario. By
collecting walking data from 3 different speed gears and with 2 trails for each speed order,
we believe such an acquisition scheme is able to capture the walking characteristics of the
subject and essentially encompasses the regular and extreme states of that individual’s foot
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movement in daily life. By pooling pedestrian data across gender and height attributes, we
can obtain a dataset that incorporates individual pedestrian differences and a wide range
of stride gait states; hence, we call it the Diverse Gait Dataset.

Table 2. A total of 22 healthy volunteers (13 males, 9 females, age 32.5 ± 7.5 years) participated in the
study and were divided into different groups according to gender and height information.

Height Range
(cm) Males Females Number of Strides

(Speed Type) Number of Gait Phases

155~160 - 2

fast 142 stance 487
middle 159 pushoff 478

slow 171 swing 474
all 472 heel-strike 474

160~165 2 3

fast 261 stance 1121
middle 337 pushoff 1100

slow 475 swing 1113
all 1073 heel-strike 1110

165~170 2 2

fast 298 stance 1022
middle 324 pushoff 1013

slow 367 swing 1113
all 989 heel-strike 998

170~176 4 1

fast 406 stance 1358
middle 440 pushoff 1353

slow 459 swing 1006
all 1305 heel-strike 1378

176~180 2 1

fast 123 stance 408
middle 121 pushoff 399

slow 146 swing 400
all 390 heel-strike 393

180~185 3 -

fast 150 stance 480
middle 114 pushoff 470

slow 197 swing 470
all 461 heel-strike 465

2.2. Sensor System and Setup

Each subject wore an Xsens MTw IMU, which consists of a 3-axis accelerometer
(±160 m/s2), 3-axis gyroscope (±1200 deg/s) and a 3-axis magnetometer. The measure-
ment module was attached to the in-step on the right side of the shoe with elastic bands
and was connected via Bluetooth to the data acquisition software ’MT Manager’. Figure 1
displays that position and orientation of the IMU in each trail of data collection. The ac-
celerometer X and Y axes were pointing to the forward and upward direction, respectively,
and the Z axis was pointing in the left direction. We used three different cellphones in
different collection batches: an iPhone X (60fps, 720p), a HuaWei Mate 30pro (120fps, 1080p)
and a One Plus 7pro (240fps, 1080p). Thanks to the smaller size and weight of the phone
compared to traditional cameras, we were able to attach the phone to a tennis bat and just
make sure that the fixation was secure. Cell phones’ video recording is not only able to
overcome the impacts of unstable light in the field, but also, with its powerful anti-shake
function and strong focus tracking ability, it can lock and track the foot as a target as long as
we set the focus point on the camera. With the above guarantees, we can use the rear camera
on the phone to record the foot movements through the grids between the tennis rackets
with no obstruction. While the pedestrian was walking, the videographer needed to adjust
the distance to the subject’s foot and angle of the racket so that all the foot movements were
recorded in the view of camera.
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Figure 1. The IMU position and the direction of each axis.

2.3. Sensor Signals and Time Synchronization

Each set of raw data consists of two parts: inertial motion data recorded by the IMU
and foot motion images recorded by the phone camera. Since the IMU does not have a
triggering mechanism for data acquisition, we offer a scheme to synchronize the IMU data
and image frames after data collection. At the beginning of each trail of data acquisition,
we asked the subjects to follow a pre-designed action: before starting to walk and after
walking to the end point and standing firmly, the single foot wearing the IMU should
stamp the ground vertically and swiftly [49]. This action is distinctly different from the
foot movement during walking and can be reliably and accurately identified in the IMU
data and video as shown in Figure 2. Based on the timestamp of the stomp actions, we
can calculate the time offset that the IMU data lags behind the video stream. Then, we
manually delayed the timestamp of image frames in the timeline for the period of offset
value. It can be verified in the experiments that the time differences between the last three
stamps and the corresponding image frames are almost zero. With this guarantee and
consistent frequency in the video stream and IMU sequence, we could align the IMU data
with the gait labels obtained from the images and maintain very high time accuracy in the
annotation process.
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2.4. Manual Data Labeling

The following section describes the concepts of manual gait division and the process
of data annotation.

2.4.1. Gait Modes

When humans are walking, the body relies on the support of the feet to maintain the
balance of the torso between travels. The torso generates forward or backward momentum
with the ground’s reaction force on the feet to achieve startup and cushioning. Research in
the field of human motor health defines a pedestrian stride as the process of a foot leaving
the ground until it leaves the ground again. Based on biomechanics, this process could be
divided into four different gait patterns shown in Figure 3: (1) pushoff phase: the ankle
exerts force to make the heel and palm leave the ground sequentially; (2) swing phase:
after the toes leave the ground, the foot begins swinging in the direction of travel in a
pendulum-like motion; (3) heel-strike phase: the heel firstly comes into contact with the
ground and takes the ground impact, and then the foot gradually makes contact with the
ground to transfer the ground force to the arch to alleviate the impact; (4) stance phase: in
this phase, the foot remains relatively stationary on the ground and supports the center of
gravity of the torso, maintaining the body’s balance and preparing for the next gait phase,
i.e., the push phase. These four gait patterns constitute a continuous cycle corresponding
to the periodic motion of a single foot during walking. Based on the above discussion,
the video frames can be utilized to generate four labels in our dataset: ’pushoff, swing,
heelstrike, and stance’ corresponding to four different gait patterns, respectively.
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Figure 3. The movement of a whole stride can be divided into four gait phases. (A) displays that
the heel just leaves the ground at the end of stance phase; (B) displays that the toe is going to leave
the ground at the end of pushoff phase; (C) displays that the heel touches the ground at the end of
swing phase.

2.4.2. Data Annotation

Since the transitions between gaits are made in chronological order according to a
fixed tight relationship, when dividing the gaits in the video stream, we do so by manually
capturing the key movements of the feet in the gaits.

The process of producing labels is based on ELAN software, which was released in
the year 2000 by the Max Planck Institute for Psycholinguistics in the Netherlands to label
audio signals. It supports labeling of audio, video and audio-video multi-streaming data
and is recognized as professional labeling software in psychology, medicine, psychiatry,
education and behavioral research [50]. ELAN defaults to a semantic layer associated with
the index position of the data to be labeled, then generates a label file of the data by placing
the words entered by the user in the semantic layer.

We can obtain each image frame of foot motion and its corresponding timestamp in
ELAN. By manually identifying and picking the image frames corresponding to differ-
ent significant foot movements, we annotated all the foot motion data involved in this
dataset and generated label files. It should be noted that manual annotation is a very
time-consuming task. We could have taken the alternative of using existing gait recognition
methods, such as Hidden Markov Models [46], but the parameters of the model or detection



Sensors 2022, 22, 1678 9 of 25

algorithms still require fine-tuning before real application. Additionally, in the case of
unknown generalizability of methods, the detection results will require manual verification
inevitably. Therefore, we sticked to this conventional approach to generate reliable and
accurate labeling information. The flow of data annotation is shown in Figure 4.
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Figure 4. In the ELAN interface, the Current Image Frame shows the target’s movement state at the
moment; the Current Label Information shows the time range corresponding to the series of images
selected by the user. When a specific movement state is captured (box 1), the user stops opening
the next frame and edits the label for the corresponding gait in the Area for Editing Labels (box 2);
Annotation Information records the detailed information that has been labeled so far, and the latest
label item is located in the bottom of label history (box 3).

2.4.3. Data File Description

The data set consists of the following types of files: IMU data files, ELAN exported
label files, subject information (height, gender, walking speed type, etc.). The IMU data
includes the following: time_stamp_0, time_stamp_1, acc_x, acc_y, acc_z, turnrate_x, turn-
rate_y, turnrate_z, magnetometer_x, magnetometer_x, magnetometer_y, magnetometer_z.
In that order, the two timestamp readings, tri-axis acceleration data, tri-axis gyroscope data
and tri-axis magnetometer data are represented. The timestamp readings are recorded in
sample order, which corresponds to 0.01 s, the acceleration data are in units of m/s2, the
angular velocity data are in units of rad/s, and the magnetometer readings are normalized
to the Earth’s magnetic field strength. The tag file is suffixed with ’.eaf’, where all labeled
words are encoded and each code corresponds to the respective timestamp.

2.5. Stride Segmentation Method

In this part of the work, we chose the DTW method for stride segmentation because it
shows satisfactory adaptability to different time lengths and varying signal amplitudes. We
reproduced the multi-dimensional subsequence Dynamic Time Warping (msDTW) method
and validated its performance in the diverse gait dataset. We refer interested readers to [51]
for computation details of msDTW. However, we found that the msDTW works well on
the basis of a grid search scheme to select a specific threshold value that is utilized when
searching for the stride borders. If a valley point in the accumulated distance between
the template signal and the input sequence is less than the threshold, then the segment
between the last valley point that meets the condition and the newly detected valley point
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will be regarded as a new stride. If the threshold is too large, then pseudo-strides will be
detected; if the threshold is too small, then normal strides are prone to being missed. In
order to make the stride segmentation process independent of the threshold, we propose a
novel method, SDATW, based on IMU-subsequence-shape-descriptors and the augmented
time warping process. The following section describes the process of our algorithm.

2.5.1. Template Generation

Stride template is defined as B = {β0, β1, . . . , βn−1}T , B ∈ Rn, βi ∈ R6, where each
sample in template consists of the item from 3-axis accelerometer and 3-axis gyroscope.
We evenly select 30 percent of the manually labeled stride segments from each height
group, then each axis in every segment was interpolated or down-sampled to a length of
200 samples [8]. Consequently, we get a stride-database with full-speed-range coverage
for each height group. Finally, all the strides in the database were averaged sample by
sample to generate a template representative of a compromise for a wide speed range and
individual differences in strides.

2.5.2. Data Normalization

In this literature, we use z-normalization, which is a necessity for accuracy and
generalization of DTW methods [52]. Z-normalization refers to the process of normalizing
every sample in a series of data such that the mean of all values is 0 and the standard
deviation is 1, so it helps to reduce the impact of outlier points on recognition results. The
calculation is shown in the following formula:

accnorm,i =
acci − acc

S
, i = 1, 2, . . . , n (1)

where acc is the mean value of the accelerometer series, and S is the unbiased estimation of
the standard deviation:

S =
1

n− 1

n

∑
i=1

(acci − acc)2 (2)

Since only normalized data were used in further calculation, the index norm is omitted
for simplicity.

2.5.3. Calculation of Distance Matrix of Shape Descriptor Sequence

Intuitively, the DTW algorithm searches for the minimum cumulative distance when
matching sample points by measuring the similarity of two time series of different lengths.
We formally design the query sequences A = {α0, α1, . . . , αm−1}T , A ∈ Rm and template
B = {β0, β1, . . . , βn−1}T , B ∈ Rn. We create and initialize the distance accumulation matrix
Dm+1,n+1 :

D(i, j) =


0, i = {0, 1, . . . , m− 1}, j = 0
0, i = 0, j = {0, 1, . . . , n− 1}
in f , else

(3)

To calculate the time warping distance matrix between the sample points of the
sequence, conventionally the elements of Dm+1,n+1 are calculated as:

D(i, j) = dist(i, j) + min{D(i− 1, j), D(i, j− 1), D(i− 1, j− 1)} (4)

The disti,j is the spatial distance between the i-th point in query sequency and the
j-th element in template. It is usually calculated by using Euclidean distance, Manhattan
Distance, Hamming Distance or other types of approach. The msDTW algorithm is one of
the cases employing template matching algorithms to stride segmentation in recent years.
In conventional DTW algorithms, the accumulated distance is compared with a threshold to
assess whether a data segment fits the signal distribution in the template, which is also used
in the msDTW method. Thus, msDTW can represent standard DTW algorithms that make
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decisions based on a threshold. We found that the distribution of accumulated distance
is not monotonically increasing or decreasing when applying msDTW to data from the
same subject with consistent walking cadence. A visible spike appears at the time adjacent
to the valley point, as shown in box 2 in Figure 5. However, the threshold and temporal
conditions fail to preclude the appearance of pseudo-valleys.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 26 
 

 

Figure 5, SDATW employs six shape descriptors, which aid the accumulated distance 
curve’s more desirable smoothness and monotonicity. 

In the process of finding the minimum cumulative distance, the traditional DTW 
methods require recreating a sliding window for each sample point and calculating the 
distance between the data segment inside the window and the template, which makes the 
DTW computationally expensive. SDATW searches for the minimum accumulated dis-
tance point by using only a matrix to locate the data segment with starting and ending 
points that best match the template. The selected matching data segment can be guaran-
teed that its starting point has the best similarity to the template than the previous sample 
points, and the data before the ending point contain the information of the current cycle 
as much as possible, which allows SDATW to get rid of the dependence on the threshold. 
It ensures that the minimum value in the accumulated distance is not overlooked, as well 
as supports online stream data detection to suit practical application requirements. In this 
literature, we replace the spatial distance by measuring the distance between shape de-
scriptors, which is designed to express subsequence structural information under the as-
sumption that the optimal-matched subsequences should be recognized with the best sim-
ilarity between their structural features. 

(a) 

 
(b1) (b2) 

 
(b3) (b4) 

  
(b5) (b6) 

Figure 5. The accumulated distance curve used in conventional DTW methods may contain spikes 
leading to pseudo-minimums, and multi-valleys blurring the stride boundaries. Shape descriptors 
Figure 5. The accumulated distance curve used in conventional DTW methods may contain spikes
leading to pseudo-minimums, and multi-valleys blurring the stride boundaries. Shape descriptors are
able to improve the smoothness and monotonicity of the accumulated distance curve. (a) accumulated
distance in conventional DTW; (b1) accumulated distance from RAW descriptor; (b2) accumulated
distance from PAA descriptor; (b3) accumulated distance from DWT descriptor; (b4) accumulated
distance from SLOPE descriptor; (b5) accumulated distance from DERIVATIVE descriptor; (b6) accu-
mulated distance from HOG1D descriptor.

In this literature, the stride boundary is set at the end of the stance phase, which
accounts for nearly 40% of a stride cycle. Because the magnitude of the sensor signal in
the stance phase is lower than in other phases, the stride boundaries appear in the flat
section of the accumulated distance curve. The phenomena of multiple valleys within
the flat area make the basis for identifying the boundaries blurred, as indicated in box
1 in Figure 5. Therefore, if the curve of the accumulated distance function could keep
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smooth and monotonic, it would be promising to improve the accuracy of the stride
segmentation method.

We use shape descriptors to help improve the smoothness and monotonicity of the
accumulated distance curve. Shape descriptors were designed to measure similarities
between two points by computing similarities between their local neighborhoods, rather
than computing the distance between two points based on their values. As a result, the
accumulated distance between the sample point and the template element is the difference
between the data distribution of their neighborhoods and a subsequence of template,
where the difference calculation is not confined to the Euclidean distance. By measuring
the differences between neighbors, it makes the cumulative distance curve behave more
smoothly and the valley spots more distinct and discriminative than conventional DTW
approaches, which form the basis of SDATW without relying on thresholds. As shown
in Figure 5, SDATW employs six shape descriptors, which aid the accumulated distance
curve’s more desirable smoothness and monotonicity.

In the process of finding the minimum cumulative distance, the traditional DTW
methods require recreating a sliding window for each sample point and calculating the
distance between the data segment inside the window and the template, which makes the
DTW computationally expensive. SDATW searches for the minimum accumulated distance
point by using only a matrix to locate the data segment with starting and ending points
that best match the template. The selected matching data segment can be guaranteed that
its starting point has the best similarity to the template than the previous sample points,
and the data before the ending point contain the information of the current cycle as much
as possible, which allows SDATW to get rid of the dependence on the threshold. It ensures
that the minimum value in the accumulated distance is not overlooked, as well as supports
online stream data detection to suit practical application requirements. In this literature, we
replace the spatial distance by measuring the distance between shape descriptors, which
is designed to express subsequence structural information under the assumption that the
optimal-matched subsequences should be recognized with the best similarity between their
structural features.

Each shape descriptor is calculated to encode local structural information around
the temporal point αi or β j. Given a mapping function M(·), we convert the query se-
quence A to its descriptor sequence: Ades = {αdes0, αdes1, . . . , αdesm−1}T , αdesi ∈ Rl , i.e.,
Ades = {M(α0), M(α1), . . . , M(αm−1)}T . The l in αdesi ∈ Rl indicates that the dimen-
sion of αdesi could be different with sample point and is up to the mapping function
M(·). The shape descriptors can be classified into the magnitude-aware-descriptors and
the fluctuation-capturing-descriptors. The magnitude-aware-descriptors include Raw
Subsequence (RAW), Piecewise Aggregate Approximation (PAA), and Discrete Wavelet
Transform (DWT). RAW is namely the raw samples around the point where features need
to be extracted. PAA consists of mean values of several equal-length intervals divided from
the original subsequence. DWT consists of concatenated wavelet coefficients, which come
from decomposing a subsequence into three levels by using a Haar wavelet basis. These
three kinds of descriptors are generated based on the amplitude of the signal, namely the
y-axis value, so they memorize the signal magnitude distribution in the neighborhood of
the sample point in the subsequence. The fluctuation-capturing-descriptors involve SLOPE,
DERIVATIVE, and HOG1D. SLOPE is extracted as a series of gradients of the intervals
whose length depends on the size of the subsequence and the number of equal-length inter-
vals; DERIVATIVE is similar to SLOPE but is calculated from the first-order derivative of a
subsequence; HOG1D inherits from the Histogram of Oriented Gradients (HOG) descrip-
tor [50] and was used in [51] to describe 1D time series sequences. As SLOPE, DERIVATIVE,
and HOG1D mainly record the direction and amplitude of signal fluctuations, they are
invariant to the magnitude of raw subsequence. We refer interested readers to [52] for
computation details of shape descriptors.

Figure 6 shows an example of calculating RAW descriptors for gyroscope-coronal-axis-
data. Each column represents the distance between one sample of query sequence Ades and
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the complete template Bdes. The top row represents the distance between the beginning
point of the template Bdes and the sequence Ades, while the bottom row represents the
distance between the end of the template Bdes and the sequence Ades. It is clearly shown in
Figure 6 that on the distance matrix, four dark blue paths are running from top to bottom
through the matrix and featuring periodicity, which is same as the number of strides in
IMU data. We would like to try to match each subsequence in the query sequence with the
stride template, with the goal of minimizing the cumulative distance and finally finding
the optimal segment.
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Figure 6. Distance matrix is shown as an example for calculating RAW descriptors for gyroscope-
coronal-axis-data. The elements with deep blue in the distance matrix show closer spatial distance
between the shape descriptor of a query sample and that of a template point, while elements with
red indicate greater spatial distance. (A) query sequence Ades; (B) stride template Bdes; (C) distance
matrix dist;’

By computing the weighted sum of one magnitude-aware-descriptor and one fluctuation-
capturing-descriptor, we can get a compound shape descriptor, which may carry over the
strengths of both descriptors and thus be more promising to correctly distinguish stride
segment from IMU data streams.

2.5.4. Augmented Time Warping Scheme

Given query sequence A = {α0, α1, . . . , αm−1}T , A ∈ Rm and template
B = {β0, β1, . . . , βn−1}T , B ∈ Rn, let Ades = {αdes0, αdes1, . . . , αdesm−1}T , αdesi ∈ Rl and
Bdes = {βdes0, βdes1, . . . , βdesn−1}T , βdes j ∈ Rl be their shape descriptor sequences, respectively.
Then, we use a disjoint query DTW method to find the Ades

′ = {αdess, αdess+1, . . . , αdese}T ,
αdesi ∈ Rl whose distance from template-descriptor sequence is the smallest among those of all
other possible subsequences of Ades. That is to say, D(Ades[s : e], Bdes ) ≤ D(Ades[p : q], Bdes)
for any pair of p = 0, 1, . . . , m− 1 and q = p, . . . , m− 1. In this part of work, we combined the
shape descriptors with the SPRING method proposed in [53]. Then, a threshold-independent
DTW method was evaluated on the MATLAB platform for solving the stride segmentation
problem. By augmenting the time warping process from two aspects, our method is able to
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find the best-match part from query subsequence but also dramatically reduce the computation
complexity since it is invariant to the length of streaming data.

The calculation of accumulated distance of warping path is same as na?ve solution,
but a subsequence time warping matrix named squery, whose height is same as the length of
template B, is utilized to keep the beginning point of current candidate query in memory at
the same time. The process of memorization is shown in following formula:

squery(t, i) =


squery(t, i− 1), D(t, i− 1) == dbest

squery(t− 1, i), D(t− 1, i) == dbest

squery(t− 1, i− 1), D(t− 1, i− 1) == dbest

(5)

dbest = min{D(t, i− 1), D(t− 1, i), D(t− 1, i− 1)} (6)

In this direct way, the head of the current candidate query could be saved in a greedy
way. In addition, if the candidate query is confirmed to be the best-match query at index-
position t, the range of best match in query sequence will be readily available, the beginning
position of Ades[s : e] is the value saved in squery(e, end) and the end position is e. It should
be noted that the confirmed position of the best match is later than the end position of the
best match and the reason can be explained in the following section.

The guarantee of no false best match is a necessity for the success of this step. Even
though pseudocode has been given in [53], we provide another perspective of understand-
ing based on the version of the method we reproduced.

When a new point αdest from query sequence Ades comes, we firstly calculate the accu-
mulated distance results. This step of calculation actually generates a new column in the
accumulated distance matrix D and a new column of beginning-position recordings in the
time warping matrix squery(i, j). We use D(:, t) and squery(:, t) to represent the new columns,
respectively, and the last element in D(:, t) and squery(:, t) is represented as D(end, t) and
squery(end, t). The accumulated distance of current candidate query is named as optimal
distance and represented as dmin.

We need to check whether current candidate query needs to be replaced. If judge-
ment statement D(end, t) < dmin is true, which means there is another waring path that
matches the template with less differences, then the current candidate query should be
replaced by the new query: let the optimal distance dmin = D(end, t), the beginning position
s = squery(end, t) and the end position e = t, and the index range of candidate query is
[s : e]. It should be noted that each point that is located in the index range of a candidate
query has the opportunity to act as a competitor to be the head of another candidate query,
unless it is excluded from the competitors against the head. This step ensures that the best
match will not be missed.

To beat and exclude the competitors which no longer have the chance to replace the
current candidate query, we find the index position of the element in squery(:, t) which is
competitor against the head. We use cmp to represent the index position of a competitor
point. If the judgement statement D(cmp, t) > dmin, t < end is true, which replies the
even the query matched with only part of template, its accumulated distance is larger than
current candidate query, not to mention the accumulated distance of matching the whole
template. In this way, the candidate query proves its superiority over its competitors. This
step acts as the preparation of confirming the candidate query as best-match query.

To confirm the candidate query as a best-match query, we only need to make sure that
there exist no competitor’s index positions in squery(:, t) or that there is hardly competitor’s
accumulated distance that is smaller than dmin. These two circumstances both indicate that
the candidate query stands out, since a new stride might have begun. The confirmed query
will be saved in optquery. Here, we also provide the explanation for the confirmed position
lagging behind the end point of the best match.

The method to start looking for new best match is called ’star-padding’ [53]. We
deliberately create a vector full of positive infinite elements with same height as D(:, t) and
put it at the left side of D(:, t). As for squery(:, t), we create a vector full of zero and deal
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with it in the same way. The detected strides can be accessed by optquery, which memorizes
the time range of each detected stride. The results can be shown in Figure 7.
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Figure 7. (A) The white lines represent the warping paths which correspond to best-matched
subsequences in the query sequence. By using the augmented time warping scheme, the best-match
subsequences could be detected and borders of strides recognized. Dark red ribbons between two
warping paths indicate the borders of detected stride segments. They display the accumulated
distances that are positive infinite resulting from star-padding. (B) The warping paths in distance
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the stride borders are available, which are represented as red vertical lines. Additionally, the stride
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2.5.5. Complexity Analysis

We make A an evolving sequence of length m, B a sequence of fixed length n, and l
the size of each neighbor for extracting each shape descriptors.

According to [54], the calculation of shape-descriptors takes linear time O( l ∗m). At
time warping step, our algorithm keeps updating a single matrix and calculating O( n)
numbers for each sample point, the time complexity of time warping is O( m ∗ n). Since
l � m and n � m in general, the total time complexity of shape-descriptor calculation
and time warping procedure are same as O

(
m2); hence, the time complexity of the whole

algorithm is O
(

m2), which is the same as conventional DTW.
In summary, we prepare for warping path procedure with more in-depth information

than conventional approach, including magnitude and fluctuation of the IMU signal.
Furthermore, by recording the head of the candidate query and calculating the accumulated
distance matrix simultaneously, the augmented time warping matrix makes it possible
to calculate only one column of accumulated distance for each input point. Last but
not least, the technique of searching for best-match queries allows us to avoid relying
on thresholds and the procedure auto initializes when we detect a new stride segment.
Because the algorithm is based on shape descriptors [54] and augmented time warping [53],
it is named SDATW.
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2.5.6. Time Constraints

According to [8], the duration of a stride is located in the range of 250 to 2000 ms. This
helps us to exclude the pseudo-stride whose time durations are not compatible with the
time constraints.

2.6. Gait Division

When a pedestrian walks, successive gait patterns are sequentially articulated to
form a complete stride, and the gait patterns are divided between them based on the
foot movement. When the pushoff phase ends, the toe leaves the ground and the swing
phase begins; when the swing phase ends, the heel makes contact with the ground and
the heel-strike phase begins; when the heel-strike phase ends, the palm of the foot (shoe)
makes full contact with the ground and the stationary phase begins; when the stationary
phase ends, the heel begins to leave the ground and the pushoff phase begins.

Therefore, we define Toe Off (TO), Heel Touch (HT), and Heel Off (HO) as three
different stride events for gait recognition. Based on the time synchronization between
IMU data and gait label, we can apply the time range of gait labels to IMU sequence,
and experience-based knowledge of gait borders was verified to be a gait recognition
method [10]. When a TO event occurs, the foot completes the action from plantar flexion
to dorsiflexion, which leads to the gyroscope detecting a zero crossing of the coronal axis
data; when a HT event occurs, the gyroscope data in the coronal axis direction is reflected
to a sharp change of data in one direction due to the violent interaction between the foot
and the ground, and the accelerometer in the sagittal axis direction is reflected to a spike
of signal due to the sudden change of force; when an HO event occurs, which breaks the
static phase of the foot, the detection is performed by setting a threshold for the variance of
the signal, from which the division of the stride and gait is obtained, as shown in Figure 8.
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phase recognition.

2.7. Error Measurement

There are two types of errors in stride segmentation and gait recognition: (1) stride
segmentation failed to recognize the labeled stride boundaries; (2) stride segmentation is
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excessively sensitive and detects pseudo-stride boundaries. These types of errors also occur
in gait division assignments. Therefore, a preliminary evaluation of stride segmentation
and gait recognition based on accuracy and recall is performed.

2.7.1. Precision

precision =
∑ true positives

∑ detected positives
(7)

The true positives means the number of detected strides that are true in labels. The
detected positives is the number of all strides detected by the algorithm. Precision is used to
measure the level of correct detection of strides and gaits by the algorithm.

2.7.2. Recall

recall = ∑ true positives
∑ true positives + ∑ f alse negatives

(8)

The recall is the proportion of detected true strides/true gaits to all paces/gaits that
are labeled. All labeled strides/gaits contain samples that may not be detected by the
algorithm and are therefore used to measure the level of failure of the algorithm to detect
the labeled strides/gaits.

2.7.3. F-Measure

F−measure = 2· precision·recall
precision + recall

(9)

The F’measure is the summed average of the accuracy and recall [22] and contains the
strides/gaits that were falsely detected as well as those that were not detected.

3. Experiments and Results

To evaluate the effectiveness of SDATW, we carried out experiments on the diverse
gait dataset in four parts. Firstly, we tested the stride segmentation performance of six
single-axis schemes based on the magnitude-aware-descriptors and picked the best one;
then we selected a kind of descriptor from the fluctuation-capturing-descriptors that works
best in the same way. Secondly, based on the experience of the first part, we tried axis
combinations for the selected shape descriptors and performed stride segmentation. In the
third part, we fused the selected shape descriptors to form a compound shape descriptor
and tried all single-axis and multi-axis combinations. In the fourth part, we presented the
results of gait recognition based on the optimal scheme of stride segmentation. Our final
goal is to try to find the best decision of descriptor-data-axis schemes and use this result as
a benchmark for the diverse gait dataset. The IMU module being worn loosely during the
walking process causes the acceleration and gyroscope data to become noisier and alters
the distribution pattern of a stride cycle. In order to mitigate the detrimental impacts on
stride segmentation, we adopted a simple strategy: both the original and its flipped version
were employed as the inputs, and the group with higher number of identified strides was
chosen as the formal output of SDATW.

3.1. Separate Performance Evaluation of Two Types of Shape Descriptors

The goal of this portion of the experiment is to use each single kind of shape descriptor
to implement and validate pedestrian stride segmentation under cross-individual and
broad speed domain circumstances. Therefore, when preparing the experimental data,
we presume that the algorithm should not have access to certain priori information aids,
such as the physiological features of the pedestrians. According to gait analysis in [55],
walking speed dominates in influencing gait parameters over gender, age, body height
and weight. Therefore, we consider walking speed type as the key component in the test
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scenario in order to verify the stability of our stride segmentation method. For each group
of speed-type test, we mixed foot movement data from all subjects, which brought the
diversity of genders and height groups.

The SDATW was implemented for each distinct axis of acceleration and gyroscope.
Thanks to the contribution of [54], we could try various shape descriptors and test their
capability in extracting signal characteristics. Tables 3 and 4 present an overview of
the performance using the magnitude-aware-descriptors and the fluctuation-capturing-
descriptors, respectively.

Table 3. Stride segmentation results for magnitude-aware-descriptors in F-measure values. Best
results for each speed group are highlighted in bold numbers.

Shape
Dscriptor Speed AccX AccY AccZ GyroX GyroY GyroZ

RAW

fast 0.623 ± 0.022 0.499 ± 0.048 0.537 ± 0.056 0.328 ± 0.049 0.605 ± 0.018 0.737 ± 0.069
mid 0.505 ± 0.066 0.681 ± 0.042 0.559 ± 0.088 0.362 ± 0.051 0.727 ± 0.049 0.832 ± 0.019
slow 0.534 ± 0.077 0.807 ± 0.012 0.607 ± 0.067 0.449 ± 0.069 0.774 ± 0.029 0.831 ± 0.008

all 0.63 ± 0.052 0.654 ± 0.043 0.577 ± 0.072 0.426 ± 0.07 0.675 ± 0.063 0.796 ± 0.034

PAA

fast 0.758 ± 0.015 0.65 ± 0.071 0.306 ± 0.055 0.256 ± 0.042 0.642 ± 0.024 0.819 ± 0.029
mid 0.783 ± 0.025 0.748 ± 0.057 0.35 ± 0.066 0.232 ± 0.061 0.73 ± 0.038 0.852 ± 0.006
slow 0.691 ± 0.033 0.76 ± 0.024 0.377 ± 0.04 0.477 ± 0.071 0.769 ± 0.033 0.816 ± 0.011

all 0.784 ± 0.019 0.666 ± 0.06 0.265 ± 0.043 0.278 ± 0.052 0.705 ± 0.057 0.833 ± 0.013

DWT

fast 0.765 ± 0.012 0.451 ± 0.081 0.304 ± 0.051 0.294 ± 0.052 0.652 ± 0.031 0.811 ± 0.031
mid 0.782 ± 0.027 0.638 ± 0.051 0.333 ± 0.06 0.206 ± 0.038 0.67 ± 0.025 0.847 ± 0.007
slow 0.739 ± 0.029 0.687 ± 0.05 0.375 ± 0.056 0.38 ± 0.069 0.722 ± 0.029 0.806 ± 0.011

all 0.761 ± 0.026 0.497 ± 0.07 0.243 ± 0.045 0.22 ± 0.051 0.687 ± 0.042 0.835 ± 0.008

Table 4. Stride segmentation results for fluctuation-capturing-descriptors in F-measure values. Best
results for each speed group are highlighted in bold numbers.

Shape
Dscriptor Speed AccX AccY AccZ GyroX GyroY GyroZ

SLOPE

fast 0.016 ± 0.001 0.014 ± 0.001 0.015 ± 0.001 0.025 ± 0.001 0.109 ± 0.043 0.059 ± 0.023
mid 0.032 ± 0.007 0.045 ± 0.008 0.014 ± 0.001 0.046 ± 0.005 0.165 ± 0.043 0.207 ± 0.072
slow 0.148 ± 0.042 0.203 ± 0.037 0.115 ± 0.025 0.296 ± 0.066 0.44 ± 0.059 0.414 ± 0.115

all 0.071 ± 0.02 0.069 ± 0.015 0.029 ± 0.004 0.146 ± 0.052 0.157 ± 0.039 0.245 ± 0.093

DERIVATIVE

fast 0.014 ± 0 0.019 ± 0.001 0.013 ± 0.001 0.023 ± 0.001 0.112 ± 0.049 0.067 ± 0.025
mid 0.026 ± 0.003 0.041 ± 0.004 0.016 ± 0.001 0.041 ± 0.003 0.161 ± 0.044 0.249 ± 0.083
slow 0.198 ± 0.063 0.293 ± 0.079 0.157 ± 0.04 0.304 ± 0.067 0.447 ± 0.075 0.418 ± 0.124

all 0.109 ± 0.04 0.111 ± 0.039 0.052 ± 0.015 0.145 ± 0.05 0.167 ± 0.049 0.261 ± 0.1

HOG1D

fast 0.13 ± 0.031 0.228 ± 0.073 0.237 ± 0.071 0.179 ± 0.026 0.578 ± 0.052 0.094 ± 0.025
mid 0.154 ± 0.021 0.455 ± 0.091 0.246 ± 0.058 0.166 ± 0.03 0.639 ± 0.036 0.218 ± 0.048
slow 0.238 ± 0.047 0.232 ± 0.059 0.273 ± 0.061 0.308 ± 0.039 0.65 ± 0.027 0.504 ± 0.054

all 0.186 ± 0.04 0.257 ± 0.065 0.285 ± 0.056 0.267 ± 0.054 0.454 ± 0.07 0.334 ± 0.078

Firstly, by comparing the errors of different speed groups, we can identify whether the
performance of the stride division algorithm based on one shape descriptor is stable under
different walking speeds. Secondly, we can also determine the IMU data axes that are most
significant to the stride segmentation by comparing the results with different data axes.
Finally, the data from all velocity groups are combined together to get the average accuracy
of the stride segmentation across individuals and wide velocity domain scenarios. We could
settle on the proper sensor axes and the shape descriptors that stand out with the highest
average F-measure. In experiments using the magnitude-aware-descriptors for stride
segmentation, the best performance could be obtained by using coronal gyroscope axis
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data and selecting DTW or PAA as shape descriptors. In fluctuation-capturing-descriptors,
HOG1D based on vertical gyroscope data was selected as the best one.

3.2. Stride Segmentation with Selected Shape Descriptors and Combined Sensor Types

Based on DWT, PAA, and HOG1D, we used the combination of accelerometer and
gyroscope data to see if there was an improvement in the results. Table 5 presents an
overview of the performance using different sensor axis combination schemes. The best
choice for DWT and PAA is using acceleration along the sagittal axis and the vertical axis
together and the best choice for the sensor axis combination is using three-axis-gyroscope
data together, but we need to say that there is a significant lag compared to the best result
in first part of experiments.

Table 5. Stride segmentation results of different sensor axis combination schemes in F-measure values.
Best results for each speed group are highlighted in bold numbers.

Shape
Dscriptor Speed AccXY AccXZ AccYZ AccXYZ GyroXY GyroXZ GyroYZ GyroXYZ

DWT

fast 0.585 ± 0.015 0.607 ± 0.03 0.649 ± 0.043 0.596 ± 0.009 0.504 ± 0.042 0.251 ± 0.083 0.273 ± 0.083 0.304 ± 0.082
mid 0.593 ± 0.017 0.523 ± 0.07 0.682 ± 0.023 0.589 ± 0.018 0.305 ± 0.054 0.375 ± 0.067 0.381 ± 0.081 0.386 ± 0.058
slow 0.669 ± 0.03 0.543 ± 0.063 0.767 ± 0.015 0.674 ± 0.032 0.487 ± 0.046 0.742 ± 0.053 0.718 ± 0.055 0.699 ± 0.061

all 0.628 ± 0.019 0.581 ± 0.072 0.666 ± 0.033 0.624 ± 0.018 0.388 ± 0.065 0.347 ± 0.108 0.336 ± 0.098 0.337 ± 0.102

PAA

fast 0.512 ± 0.035 0.592 ± 0.045 0.652 ± 0.058 0.516 ± 0.044 0.364 ± 0.066 0.144 ± 0.04 0.122 ± 0.022 0.076 ± 0.013
mid 0.552 ± 0.043 0.432 ± 0.051 0.723 ± 0.038 0.561 ± 0.038 0.219 ± 0.047 0.421 ± 0.066 0.385 ± 0.075 0.393 ± 0.074
slow 0.659 ± 0.031 0.494 ± 0.063 0.778 ± 0.017 0.654 ± 0.048 0.4 ± 0.053 0.794 ± 0.051 0.813 ± 0.047 0.805 ± 0.041

all 0.602 ± 0.032 0.557 ± 0.068 0.697 ± 0.034 0.602 ± 0.034 0.348 ± 0.061 0.441 ± 0.128 0.41 ± 0.121 0.405 ± 0.128

HOG1D

fast 0.628 ± 0.023 0.274 ± 0.041 0.639 ± 0.029 0.609 ± 0.017 0.654 ± 0.009 0.567 ± 0.076 0.632 ± 0.066 0.571 ± 0.055
mid 0.603 ± 0.033 0.319 ± 0.037 0.59 ± 0.027 0.598 ± 0.024 0.74 ± 0.022 0.649 ± 0.012 0.677 ± 0.019 0.662 ± 0.021
slow 0.638 ± 0.045 0.544 ± 0.037 0.674 ± 0.042 0.63 ± 0.042 0.735 ± 0.024 0.724 ± 0.03 0.745 ± 0.014 0.724 ± 0.026

all 0.538 ± 0.042 0.313 ± 0.054 0.576 ± 0.042 0.552 ± 0.043 0.642 ± 0.028 0.759 ± 0.039 0.776 ± 0.034 0.782 ± 0.033

3.3. Stride Segmentation with Compound Shape Descriptors

We concatenated HOG1D as a fluctuation-capturing-descriptor and all three magnitude-
award-descriptors with equal weights, resulting in three compound descriptors:
HOG1D + RAW = (HOG1D, RAW), HOG1D + DWT = (HOG1D, DWT),
HOG1D + PAA = (HOG1D, PAA).

Then, we evaluated stride segmentation with all sensor axis plans. The results
are showing in Table 6. We discovered that the best combination of magnitude-aware-
descriptors (RAW, PAA, and DWT) with HOG1D is RAW + HOG1D, rather than
DWT + HOG1D, in which DWT owned the best performance among magnitude-aware-
descriptors. This result confirms the idea that combining the magnitude-aware-shape
descriptors and the fluctuation-capturing-descriptors might boost algorithm performance.

We compare SDATW with two stride segmentation methods commonly used in cur-
rent wearable devices. msDTW uses a grid search algorithm to optimize the thresholds
while fusing data from multiple sensor data axes, thus ensuring both the accuracy of
stride detection and good cross-individual and wide speed domain adaptability. The
wavelet-based algorithm extracts features of the signal based on multi-scale analysis, so the
thresholds in the algorithm also have good adaptability to different pedestrian individuals
and different walking speeds [45]. The comparison results for stride segmentation on
the diverse gait dataset is shown in Table 7. According to [8], grid search method must
be applied to find the optimal threshold for each of the different speed groups, so it is
reasonable that msDTW performs slightly better than the best result of our algorithm in fast
and slow speed tests. However, when applied in real scenarios, our method could maintain
accuracy and robustness with no preparation while msDTW might not. Compared with
the wavelet-based method, SDATW generally performed slightly better, except in the slow
speed test.
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Table 6. Stride segmentation results of compound descriptor of different sensor axis combination
schemes in F-measure values. Best results for each speed group are highlighted in bold numbers.

Shape
Dscriptor

Single
Axis AccX AccY AccZ GyroX GyroX GyroZ

(HOG1D,
RAW)

fast 0.515 ± 0.028 0.584 ± 0.031 0.325 ± 0.064 0.339 ± 0.046 0.566 ± 0.022 0.815 ± 0.021
mid 0.409 ± 0.067 0.721 ± 0.008 0.28 ± 0.071 0.305 ± 0.041 0.676 ± 0.043 0.83 ± 0.021
slow 0.438 ± 0.068 0.835 ± 0.008 0.253 ± 0.063 0.438 ± 0.068 0.732 ± 0.029 0.824 ± 0.009

all 0.427 ± 0.061 0.641 ± 0.034 0.276 ± 0.057 0.311 ± 0.052 0.636 ± 0.072 0.823 ± 0.015

(HOG1D,
DWT)

fast 0.443 ± 0.05 0.557 ± 0.039 0.301 ± 0.069 0.361 ± 0.043 0.599 ± 0.011 0.771 ± 0.038
mid 0.317 ± 0.051 0.703 ± 0.027 0.259 ± 0.056 0.36 ± 0.037 0.629 ± 0.038 0.798 ± 0.021
slow 0.399 ± 0.051 0.747 ± 0.034 0.267 ± 0.043 0.423 ± 0.04 0.702 ± 0.032 0.788 ± 0.012

all 0.372 ± 0.061 0.598 ± 0.038 0.3 ± 0.056 0.312 ± 0.054 0.625 ± 0.059 0.795 ± 0.017

(HOG1D,
PAA)

fast 0.295 ± 0.048 0.647 ± 0.04 0.355 ± 0.072 0.352 ± 0.061 0.598 ± 0.014 0.758 ± 0.059
mid 0.307 ± 0.059 0.765 ± 0.015 0.334 ± 0.075 0.404 ± 0.048 0.68 ± 0.038 0.817 ± 0.022
slow 0.413 ± 0.062 0.758 ± 0.026 0.206 ± 0.039 0.398 ± 0.041 0.744 ± 0.019 0.741 ± 0.03

all 0.291 ± 0.056 0.623 ± 0.041 0.299 ± 0.067 0.311 ± 0.056 0.652 ± 0.058 0.776 ± 0.033

Fuse
axis AccXY AccXZ AccYZ AccXYZ GyroXY GyroXZ GyroYZ GyroXYZ

(HOG1D,
RAW)

fast 0.583 ± 0.031 0.454 ± 0.05 0.612 ± 0.019 0.572 ± 0.023 0.533 ± 0.03 0.175 ± 0.039 0.352 ± 0.076 0.188 ± 0.049
mid 0.546 ± 0.037 0.389 ± 0.058 0.67 ± 0.034 0.542 ± 0.041 0.616 ± 0.033 0.528 ± 0.092 0.609 ± 0.083 0.584 ± 0.097
slow 0.631 ± 0.03 0.424 ± 0.065 0.796 ± 0.021 0.653 ± 0.017 0.626 ± 0.038 0.799 ± 0.032 0.837 ± 0.015 0.803 ± 0.032

all 0.59 ± 0.048 0.38 ± 0.068 0.619 ± 0.035 0.571 ± 0.052 0.521 ± 0.054 0.399 ± 0.113 0.409 ± 0.114 0.385 ± 0.116

(HOG1D,
DWT)

fast 0.574 ± 0.033 0.386 ± 0.062 0.572 ± 0.027 0.562 ± 0.033 0.538 ± 0.035 0.206 ± 0.038 0.341 ± 0.061 0.259 ± 0.056
mid 0.518 ± 0.036 0.359 ± 0.058 0.516 ± 0.039 0.529 ± 0.042 0.626 ± 0.023 0.49 ± 0.043 0.494 ± 0.061 0.511 ± 0.04
slow 0.598 ± 0.038 0.366 ± 0.066 0.72 ± 0.031 0.596 ± 0.036 0.626 ± 0.042 0.72 ± 0.04 0.776 ± 0.026 0.766 ± 0.027

all 0.518 ± 0.061 0.319 ± 0.057 0.565 ± 0.043 0.512 ± 0.058 0.55 ± 0.052 0.465 ± 0.087 0.434 ± 0.098 0.416 ± 0.092

(HOG1D,
PAA)

fast 0.564 ± 0.023 0.315 ± 0.054 0.63 ± 0.017 0.529 ± 0.024 0.536 ± 0.029 0.262 ± 0.059 0.34 ± 0.061 0.301 ± 0.058
mid 0.496 ± 0.046 0.349 ± 0.067 0.567 ± 0.051 0.512 ± 0.04 0.707 ± 0.02 0.447 ± 0.051 0.536 ± 0.034 0.45 ± 0.055
slow 0.515 ± 0.051 0.379 ± 0.055 0.764 ± 0.016 0.492 ± 0.046 0.714 ± 0.022 0.721 ± 0.036 0.781 ± 0.02 0.756 ± 0.029

all 0.46 ± 0.059 0.287 ± 0.054 0.616 ± 0.03 0.468 ± 0.054 0.585 ± 0.034 0.436 ± 0.093 0.503 ± 0.085 0.508 ± 0.094

Table 7. Stride segmentation results of msDTW, wavelet-based method and SDATW in F-measure.

msDTW Wavelet Based Method SDATW

fast 0.813 0.714 0.811
mid 0.818 0.781 0.847
slow 0.829 0.815 0.806

all 0.822 0.773 0.835

3.4. Gait Recognition with Optimal Shape Descriptor and Sensor Type

In this part of the work, we evaluated the gait division based on the stride segmentation
of the optimal scheme. The results in Table 8 show the effect of walking speed on the gait
recognition. The boundaries between gait patterns are blurred due to the relatively weak
amplitude of foot movements during slow walking, so F-measures in the slow group are
smaller than those in other groups.

Table 8. Detailed results of gait phase recognition with different walking speed types given in
F-measure values.

Walking Speed Stance Pushoff Swing Heel-Strike

Fast 0.8046 0.8522 0.8596 0.7884
Middle 0.7784 0.8461 0.8835 0.8056

Slow 0.701 0.6958 0.8399 0.7180
Full Range 0.7548 0.7925 0.8597 0.7674

4. Discussion

In a PDR system, the pedestrian’s position could be updated by

Pt =

[
PN

t
PE

t

]
=

[
PN

t−1
PE

t−1

]
︸︷︷︸
Pt−1

+ SLt

[
cos(φt)
sin(ϕt)

]
(10)
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where Pt and Pt−1 are the current and latest positions, respectively; PN
t and PE

t are the
displacements in the north and east directions of PDR’s coordinate system, respectively.
Based on the known stride boundaries, we may divide a stride into four gait phases
based on the stride boundaries: stance, pushoff, swing, and heel-strike phases. From the
perspective of gait analysis, the total of the foot-moving distances of the pushoff, swing, and
heel-strike phases, also known as dynamic gait phases, determines the walking distance
of the foot in a stride time range. It is also necessary to estimate the direction of foot
motion during the stride time based on IMU data and magnetometer data. This problem
is outside the scope of this paper, but we found that there has been extensive research
in the field of localization for direction estimation based on IMU data [6,15,56–59]. The
SDATW proposed in this literature is expected to produce accurate stride segmentation
and strong robustness in cross-individual and wide speed domain walking scenarios due
to its threshold independence and adaptability.

For the choice of shape descriptors, we employed two kinds of shape descriptors
for stride segmentation; however, it was found that the fluctuation-capturing-descriptors
did not work well as the magnitude-aware-descriptors. We infer that this result stems
from their properties. Our template is generated by randomly selecting 30% of the strides
from each speed group. This process is itself a smoothing of the stride signal, leading to a
smoother segment to stand for a typical stride signal for each axis of IMU data. However,
the fluctuation-capturing-descriptors (SLOPE, DERIVATIVE, HOG1D) essentially record
the fluctuations of the input signal, while the fluctuations in the template signal have
already been weakened, which makes them weaker than magnitude-aware-descriptors in
matching the template both on acceleration data and gyroscope data.

Among SLOPE and DERIVATIVE, each item is a gradient obtained by linear regression
on a small set consisting of sample points and their neighbors. However, linear regression
is easily subject to outliers, whereas HOG1D obtains a histogram of the slope distribution-
oriented gradient (HOG) descriptor [60], which means that HOG1D retains more knowl-
edge about the slope than linear regression and could be more tolerant to outliers.

In the comparison of all the axes in the IMU data, the coronal axis gyroscope data
tend to exhibit the closest periodicity and smoothness to the template, and we infer from
two perspectives. Firstly, when a pedestrian is walking, the coronal axis in the gyroscope
records the angular velocity of rotation of the ankle as it transitions back and forth from
plantar flexion to dorsiflexion. The motion pattern of the ankle is quite homogeneous under
walking state, so the signal amplitude of the coronal axis gyroscope is greater than that
of the sagittal and vertical axes. This phenomenon is most obvious when a pedestrian is
walking in a straight line. Even if the pedestrian makes a turn or other movement, plantar
extension and dorsal extension of the ankle are still the keys to generating driving force in
the lower limb. Thus, the gyroscope signal of the coronal axis should be considered as the
most essential motor information in stride segmentation and gait recognition with respect
to the other two axes. Furthermore, the gyroscope records the effect of the force driving the
rotation accumulated per unit time, while the accelerometer records the immediate effect
of the force acting on the object. Consequently, the acceleration signal during walking has
more burrs than the gyroscope signal. Additionally, the variation in walking habits between
individuals further increases the difference between the actual acceleration pattern and the
pattern within the template. We think it is harder to detect strides based on acceleration
structural features compared to that of the gyroscope. Although we use mean filtering to
smooth the acceleration signal, we still cannot get the acceleration stream to be as ideal as
shown in the template. If the size of the sliding window is large to make burrs disappear, it
destroys valuable information in the original signal, which will not be compensated by any
subsequent step, such as z-normalization or extracting shape descriptors.

We have tried all combinations of accelerations to try to improve the performance
of the acceleration-based shape descriptors for stride segmentation, but it still performed
similarly to the single-axis-data. Here, we think that the acceleration data fusion method
needs to be modified. The axis combination method in our algorithm is the calculation
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of the modulus of two-axis data or three-axis data, which is essentially calculating the
2-norm fusion of data from different axes. However, the signal along different axes records
three mutually orthogonal motion components of foot motion in space, and their noise
distributions are likely to be uncorrelated. With the implementation of axis fusion, the noise
along all axes is not eliminated, but is retained. This might bring more noise information to
shape descriptors rather than highlighting the periodic patterns of the signal.

We agree that if the tri-axis acceleration data are properly utilized and fused with
gyroscope data, it will further improve the robustness of the stride segmentation algorithm
in different individuals and under complex scenarios [8,35]. Therefore, in our future work,
we will investigate and explore IMU data fusion methods to improve the accuracy and
generalizability of stride segmentation. In addition, for the problem of pedestrian step
length estimation based on gait analysis, we have only implemented and validated it for
one subject under a free-walking scenario. By utilizing reference datasets for pedestrian
navigation as a testbed, we are going to study an adaptive step length estimation model on
the basis of gait analysis that is capable of providing distance prediction with high accuracy
and proficient adaptability for different individuals.

5. Conclusions

This paper provides a diverse gait dataset with comprehensive coverage of healthy
subjects by gender, height, and walking speed. There are 4690 strides of walking data
collected and 19,083 items annotated as gait labels. Furthermore, based on this dataset,
a novel algorithm called SDATW was proposed in the literature. With no dependence
on the threshold, the SDATW algorithm could be used for stride segmentation with no
customization for individual pedestrians and can also maintain accuracy under different
walking speeds. The best F-measure for fast walking, normal walking and slow walking
is 0.813, 0.818 and 0.829, respectively. The performance of SDATW is slightly better than
that of the conventional DTW algorithm and wavelet-based method, with no parameter
optimization process. Last but not least, a gait recognition method was evaluated on the
basis of SDATW’s output, and the detailed results could be used as the baseline for gait
recognition on the diverse gait dataset.
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