A Novel Physical Fatigue Assessment Method Utilizing Heart Rate Variability and Pulse Arrival Time towards Personalized Feedback with Wearable Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Group
2.3. Test Battery Design
2.4. Fatigue Questionnaire
2.5. Reaction Time Measurement
2.6. Hand Grip Strength Measurement
2.7. Countermovement Jump Measurement
2.8. Veloergometer Test
2.9. Heart Electrical Activity Measurement
2.10. Pulse Arrival Time Measurement
2.11. Statistical Analysis
2.12. Grouping Based on Fatigue Levels
3. Results
3.1. Average Parameter Values
3.2. Correlation
3.3. Grouping Subjects Based on Fatigue States
- Relative change of the resting SDNN value normalized with the average recovery phase value between the rested-state and the physically-fatigued-state SDNN_DIF_N_AVG (F-score 0.842, accuracy 0.813) (Figure 5).
- Resting PAT value normalized with the lowest recovery phase value during the physically-fatigued-state PAT_PFS_N_MIN (F-score 0.875, accuracy 0.875) (Figure 6).
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohan, J.; Lamshe, R.; Poonguzhali, S.; Adalarasu, K.; Jagannath, M. Assessment of Human Fatigue during Physical Performance using Physiological Signals: A Review. Biomed. Pharmacol. J. 2017, 10, 1887–1896. [Google Scholar] [CrossRef]
- Shortz, A.E.; Franke, M.; Kilic, E.S.; Peres, S.C.; Mehta, R.K. Evaluation of Offshore Shiftwork using Heart Rate Variability. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2017, 61, 1036–1039. [Google Scholar] [CrossRef]
- Dawson, D.; Chapman, J.; Thomas, M.J. Fatigue-proofing: A new approach to reducing fatigue-related risk using the principles of error management. Sleep Med. Rev. 2012, 16, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Shahraki, S.; Bin Abu Bakar, N. Effects of nervous fatigue on workforce productivity. Int. J. Acad. Res. 2011, 3, 370–378. [Google Scholar]
- Yu, Y.; Li, H.; Yang, X.; Kong, L.; Luo, X.; Wong, A.Y. An automatic and non-invasive physical fatigue assessment method for construction workers. Autom. Constr. 2019, 103, 1–12. [Google Scholar] [CrossRef]
- Finsterer, J.; Mahjoub, S.Z. Fatigue in Healthy and Diseased Individuals. Am. J. Hosp. Palliat. Med. 2014, 31, 562–575. [Google Scholar] [CrossRef]
- Stadje, R.; Dornieden, K.; Baum, E.; Becker, A.; Biroga, T.; Bösner, S.; Haasenritter, J.; Keunecke, C.; Viniol, A.; Donner-Banzhoff, N. The differential diagnosis of tiredness: A systematic review. BMC Fam. Pr. 2016, 17, 147. [Google Scholar] [CrossRef] [PubMed]
- Saito, K. Measurement of Fatigue in Industries. Ind. Health 1999, 37, 134–142. [Google Scholar] [CrossRef]
- Hughes, S.; Chapman, D.W.; Haff, G.G.; Nimphius, S. The use of a functional test battery as a non-invasive method of fatigue assessment. PLoS ONE 2019, 14, e0212870. [Google Scholar] [CrossRef]
- Thompson, B.J. Does work-induced fatigue accumulate across three compressed 12 hour shifts in hospital nurses and aides? PLoS ONE 2019, 14, e0211715. [Google Scholar] [CrossRef]
- Kumari, P.; Mathew, L.; Syal, P. Increasing trend of wearables and multimodal interface for human activity monitoring: A review. Biosens. Bioelectron. 2017, 90, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, S.; Hu, Y.; Nguyen, T.; Lan, G.; Khalifa, S.; Thilakarathna, K.; Hassan, M.; Seneviratne, A. A Survey of Wearable Devices and Challenges. IEEE Commun. Surv. Tutor. 2017, 19, 2573–2620. [Google Scholar] [CrossRef]
- Allik, A.; Pilt, K.; Viigimäe, M.; Fridolin, I. Pilot Study for Estimating Physical Fatigue Based on Heart Rate Variability and Reaction Time. In Proceedings of the 2019 15th Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON), Coimbra, Portugal, 26–28 September 2019; Volume 76, pp. 193–200. [Google Scholar]
- Sabzi, A.H. The Effect of Different Fatigue Protocols on Choice Reaction Time. MEJSR 2012, 12, 1092–1096. [Google Scholar] [CrossRef]
- Sant’Ana, J.; Franchini, E.; Da Silva, V.; Diefenthaeler, F. Effect of fatigue on reaction time, response time, performance time, and kick impact in taekwondo roundhouse kick. Sports Biomech. 2016, 16, 201–209. [Google Scholar] [CrossRef]
- Thompson, B.J.; Stock, M.; Banuelas, V.K. Effects of Accumulating Work Shifts on Performance-Based Fatigue Using Multiple Strength Measurements in Day and Night Shift Nurses and Aides. Hum. Factors J. Hum. Factors Ergon. Soc. 2017, 59, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Thomson, R.L.; Rogers, D.K.; Howe, P.R.; Buckley, J.D. Effect of acute exercise-induced fatigue on maximal rate of heart rate increase during submaximal cycling. Res. Sports Med. 2015, 24, 1–15. [Google Scholar] [CrossRef]
- Peçanha, T.; Bartels, R.; Brito, L.; Paula-Ribeiro, M.; Oliveira, R.S.; Goldberger, J.J. Methods of assessment of the post-exercise cardiac autonomic recovery: A methodological review. Int. J. Cardiol. 2017, 227, 795–802. [Google Scholar] [CrossRef]
- Guidi, A.; Greco, A.; Felici, F.; Leo, A.; Ricciardi, E.; Bianchi, M.; Bicchi, A.; Valenza, G.; Scilingo, E.P. Heart rate variability analysis during muscle fatigue due to prolonged isometric contraction. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea, 11–15 July 2017; Volume 2017, pp. 1324–1327. [Google Scholar]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Ahsberg, E.; Gamberale, F.; Gustafsson, K. Perceived fatigue after mental work: An experimental evaluation of a fatigue inventory. Ergonomics 2000, 43, 252–268. [Google Scholar] [CrossRef]
- Khitrov, M.Y.; Laxminarayan, S.; Thorsley, D.; Ramakrishnan, S.; Rajaraman, S.; Wesensten, N.J.; Reifman, J. PC-PVT: A platform for psychomotor vigilance task testing, analysis, and prediction. Behav. Res. Methods 2014, 46, 140–147. [Google Scholar] [CrossRef]
- Reifman, J.; Kumar, K.; Khitrov, M.Y.; Liu, J.; Ramakrishnan, S. PC-PVT 2.0: An updated platform for psychomotor vigilance task testing, analysis, prediction, and visualization. J. Neurosci. Methods 2018, 304, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Petrigna, L.; Karsten, B.; Marcolin, G.; Paoli, A.; D’Antona, G.; Palma, A.; Bianco, A. A Review of Countermovement and Squat Jump Testing Methods in the Context of Public Health Examination in Adolescence: Reliability and Feasibility of Cur-rent Testing Procedures. Front. Physiol. 2019, 10, 1384. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.; Sundaram, S.; Kadish, A.H.; Goldberger, J.J. Autonomic effects on the spectral analysis of heart rate variability after exercise. Am. J. Physiol. Circ. Physiol. 2009, 297, H1421–H1428. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, J.J.; Le, F.K.; Lahiri, M.; Kannankeril, P.J.; Ng, J.; Kadish, A.H. Assessment of parasympathetic reactivation after exercise. Am. J. Physiol. Circ. Physiol. 2006, 290, H2446–H2452. [Google Scholar] [CrossRef]
- Hamilton, P.S.; Tompkins, W.J. Quantitative Investigation of QRS Detection Rules Using the MIT/BIH Arrhythmia Database. IEEE Trans. Biomed. Eng. 1986, 33, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Achten, J.; Jeukendrup, A.E. Heart Rate Monitoring. Sports Med. 2003, 33, 517–538. [Google Scholar] [CrossRef]
- Liu, Q.; Poon, C.; Zhang, Y. Time–frequency analysis of variabilities of heart rate, systolic blood pressure and pulse transit time before and after exercise using the recursive autoregressive model. Biomed. Signal Process. Control 2011, 6, 364–369. [Google Scholar] [CrossRef]
- Mukkamala, R.; Hahn, J.-O.; Inan, O.T.; Mestha, L.K.; Kim, C.-S.; Toreyin, H.; Kyal, S. Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice. IEEE Trans. Biomed. Eng. 2015, 62, 1879–1901. [Google Scholar] [CrossRef]
- Muehlsteff, J.; Aubert, X.A.; Morren, G. Continuous cuff-less blood pressure monitoring based on the pulse arrival time approach: The impact of posture. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2008, 2008, 1691–1694. [Google Scholar]
- Mlynski, C.; Reza, A.; Whitted, M.; Cox, C.; Garsea, A.; Wright, R.A. Fatigue influence on inhibitory control: Cardiovascular and performance findings elucidate the role of restraint intensity. Psychophysiology 2021, 58, e13881. [Google Scholar] [CrossRef]
- Wright, R.A.; Shim, J.J.; Hogan, B.K.; Duncan, J.; Thomas, C. Interactional influence of fatigue and task difficulty on cardiovascular response: Demonstrations involving an aerobic exercise challenge. Psychophysiology 2012, 49, 1049–1058. [Google Scholar] [CrossRef] [PubMed]
Count | Age Mean ± SD; Range | Height Mean ± SD; Range | Weight Mean ± SD; Range | BMI Mean ± SD; Range |
---|---|---|---|---|
Total (16) | 28.3 ± 7.9; 18–48 | 173.9 ± 8.1; 163–190 | 69.9 ± 12.3; 55–91 | 23.0 ± 2.9; 18.3–30.1 |
Female (8) | 28.4 ± 7.0; 18–42 | 169.1 ± 5.9; 163–180 | 63.9 ± 10.5; 55–89 | 22.4 ± 3.5; 18.3–30.1 |
Male (8) | 28.3 ± 9.2; 18–48 | 178.6 ± 7.3; 166–190 | 75.9 ± 11.4; 60–91 | 23.7 ± 2.2; 20.4–26.4 |
Activity | Duration in Minutes |
---|---|
Resting | 5 |
Cycling @ 60 W | 3 |
Recovery | 5 |
Cycling @ 90 W | 3 |
Recovery | 5 |
Cycling @ 120 W | 3 |
Recovery | 5 |
Q (%) | RT (ms) | DYN (N) | CMJ (cm) | ||
---|---|---|---|---|---|
RS | A | 14.0 ± 7.6 | 208.7 ± 11.3 | 360.3 ± 99.1 | 38.2 ± 8.7 |
F | 12.1 ± 9.4 | 206.8 ± 13.4 | 294.2 ± 47.4 | 33.1 ± 3.3 | |
M | 15.8 ± 5.3 | 210.6 ± 9.4 | 426.4 ± 93.8 | 43.3 ± 9.7 | |
PFS | A | 29.2 ± 13.0 | 211.4 ± 16.9 | 349.7 ± 105.7 | 37.0 ± 9.0 |
F | 30.0 ± 17.7 | 211.7 ± 17.2 | 286.4 ± 48.7 | 31.6 ± 3.3 | |
M | 28.3 ± 6.9 | 211.0 ± 17.9 | 413.0 ± 111.3 | 42.5 ± 9.8 | |
DIF (%) | A | 15.2% * | 1.3% | −2.9% | −3.1% * |
F | 17.9% * | 2.4% | −2.7% | −4.5% * | |
M | 12.5% * | 0.2% | −3.1% | −1.9% |
HR (bpm) | SDNN (ms) | RMSSD (ms) | PAT (ms) | ||
---|---|---|---|---|---|
RS | A | 98.5 ± 10.9 | 58.0 ± 19.7 | 35.4 ± 18.9 | 273.4 ± 21.6 |
F | 100.6 ± 9.7 | 52.8 ± 13.3 | 31.7 ± 12.7 | 267.5 ± 15.7 | |
M | 96.4 ± 12.3 | 63.2 ± 24.3 | 39.0 ± 24.0 | 279.4 ± 25.9 | |
PFS | A | 107.9 ± 12.2 | 45.7 ± 15.9 | 25.0 ± 13.8 | 268.1 ± 23.8 |
F | 110.1 ± 11.4 | 40.5 ± 16.0 | 23.5 ± 17.6 | 254.8 ± 11.8 | |
M | 105.6 ± 13.4 | 50.8 ± 15.1 | 26.5 ± 9.5 | 281.3 ± 26.0 | |
DIF (%) | A | 9.5% * | −21.2% * | −29.3% * | −2.0% |
F | 9.4% * | −23.2% * | −25.9% * | −4.7% | |
M | 9.6% * | −19.6% | −32.0% | 0.7% |
RT | DYN | CMJ | SDNN | RMSSD | PAT | HR | ||
---|---|---|---|---|---|---|---|---|
Q | A | 0.36 | −0.18 | −0.43 | 0.13 | 0.02 | −0.05 | −0.13 |
F | 0.36 | −0.55 | −0.35 | 0.10 | −0.07 | 0.18 | 0.02 | |
M | 0.36 | 0.74 | −0.59 | 0.36 | 0.26 | −0.36 | −0.49 | |
RT | A | −0.24 | −0.25 | 0.11 | −0.03 | 0.03 | −0.33 | |
F | −0.8 | −0.04 | 0.56 | 0.03 | 0.41 | −0.63 | ||
M | 0.40 | −0.38 | −0.13 | 0.01 | −0.22 | −0.04 | ||
DYN | A | −0.10 | −0.24 | 0.11 | −0.39 | −0.10 | ||
F | 0.30 | −0.74 | 0.19 | −0.18 | 0.22 | |||
M | −0.59 | 0.23 | 0.12 | −0.80 | −0.53 | |||
CMJ | A | −0.09 | 0.03 | 0.35 | −0.09 | |||
F | −0.29 | 0.23 | 0.26 | −0.35 | ||||
M | −0.08 | −0.18 | 0.25 | 0.18 | ||||
SDNN | A | 0.71 | 0.30 | −0.61 | ||||
F | 0.10 | 0.24 | −0.33 | |||||
M | 0.93 | 0.23 | −0.88 | |||||
RMSSD | A | 0.24 | −0.57 | |||||
F | −0.12 | −0.31 | ||||||
M | 0.42 | −0.80 | ||||||
PAT | A | −0.35 | ||||||
F | −0.79 | |||||||
M | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allik, A.; Pilt, K.; Viigimäe, M.; Fridolin, I.; Jervan, G. A Novel Physical Fatigue Assessment Method Utilizing Heart Rate Variability and Pulse Arrival Time towards Personalized Feedback with Wearable Sensors. Sensors 2022, 22, 1680. https://doi.org/10.3390/s22041680
Allik A, Pilt K, Viigimäe M, Fridolin I, Jervan G. A Novel Physical Fatigue Assessment Method Utilizing Heart Rate Variability and Pulse Arrival Time towards Personalized Feedback with Wearable Sensors. Sensors. 2022; 22(4):1680. https://doi.org/10.3390/s22041680
Chicago/Turabian StyleAllik, Ardo, Kristjan Pilt, Moonika Viigimäe, Ivo Fridolin, and Gert Jervan. 2022. "A Novel Physical Fatigue Assessment Method Utilizing Heart Rate Variability and Pulse Arrival Time towards Personalized Feedback with Wearable Sensors" Sensors 22, no. 4: 1680. https://doi.org/10.3390/s22041680
APA StyleAllik, A., Pilt, K., Viigimäe, M., Fridolin, I., & Jervan, G. (2022). A Novel Physical Fatigue Assessment Method Utilizing Heart Rate Variability and Pulse Arrival Time towards Personalized Feedback with Wearable Sensors. Sensors, 22(4), 1680. https://doi.org/10.3390/s22041680