Student’s t-Kernel-Based Maximum Correntropy Kalman Filter
Abstract
:1. Introduction
- A novel maximum correntropy Kalman filter is developed in which the Student’s t kernel function is used to replace the conventional Gaussian kernel function.
- Considering the fixed-point iteration method is used to update the posterior estimates of the state in STKKF, the convergence analysis under a certain condition is given.
- The comparative simulations with other filters are conducted to demonstrate the superiority of STKKF.
2. Preliminaries
2.1. Correntropy
2.2. Kalman Filter
- One-step state prediction: The priori state estimate and the corresponding error covariance matrix can be given by
- Measurement update: The posteriori state estimate and the corresponding error covariance matrix can be given by
3. Student’s t Kernel-Based Maximum Correntropy Kalman Filter
- Initialization: The parameters v and in the Student’s t kernel function are chosen appropriately, and a small number used as an iterative iteration termination condition is given. The initial state and error covariance matrix are set.
- State prediction: The one-step state prediction and the corresponding error covariance matrix are the same as those in KF, which can be obtained by Equation (7).
- Posterior state estimate:
- (a)
- Calculate the matrix and by the Cholesky decomposition of and , respectively.
- (b)
- Let represent the state estimate of the lth fixed-point iteration. At the first iteration, .
- (c)
- Calculate the state estimate at the th iteration by the following equations
- (d)
- Check whether the state estimate in this iteration meets the iteration termination condition by Equation (24). If the termination condition is not met, set , return to step (c), and continue the next iteration. Otherwise, set the final state estimate , and go to step 4.
- Posterior error covariance update: calculate the corresponding posteriori error covariance matrix by Equation (22). Set and return to step 2.
4. Convergence Analysis of STKKF
Algorithm 1: The implementation pseudocode for one time-step of the STKKF. |
Inputs:, , , , v, , . Time update: 1. . 2. . Measurement update: 1. , . 2. . 3. , . 4. . 5. . 6. . 7. Check , where if the termination condition is met, then set and go to Step 8; otherwise, set and return to Step 2, and continue the next iteration. 8. . Outputs:, . |
5. Simulations and Results
- The process noise and measurement noise are both Gaussian noises.
- The process noise is a Gaussian distribution and the measurement noise is a Gaussian mixture noise.
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
KF | Kalman filter |
EKF | Inertial Measurement Unit |
UKF | Unscented Kalman filter |
QKF | Quadrature Kalman filter |
CKF | Cubature Kalman filter |
HKF | Huber-based Kalman filter |
MCKF | Maximum correntropy Kalman filter |
MEEKF | Minimum error entropy Kalman filter |
CKKF | Cauchy kernel-base maximum correntropy Kalman filter |
STKKF | Student’s t kernel-based maximum correntropy Kalman filter |
MCC | Maximum correntropy criterion |
UT | Unscented transformation |
MSE | Mean square error |
Probability density function |
References
- Duník, J.; Biswas, S.K.; Dempster, A.G.; Pany, T.; Closas, P. State estimation methods in navigation: Overview and application. IEEE Aerosp. Electron. Syst. Mag. 2020, 35, 16–31. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Shi, P.; Wu, Z.; Qian, J.; Chambers, J.A. Robust Kalman filters based on Gaussian scale mixture distributions with application to target tracking. IEEE Trans. Syst. Man Cybern. Syst. 2017, 49, 2082–2096. [Google Scholar] [CrossRef]
- Bizeray, A.M.; Zhao, S.; Duncan, S.R.; Howey, D.A. Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter. J. Power Sources 2015, 296, 400–412. [Google Scholar] [CrossRef] [Green Version]
- Deng, R.; Xiao, G.; Lu, R.; Liang, H.; Vasilakos, A.V. False data injection on state estimation in power systems—Attacks, impacts, and defense: A survey. IEEE Trans. Ind. Inform. 2016, 13, 411–423. [Google Scholar] [CrossRef]
- Zhao, J.; Mili, L. Robust unscented Kalman filter for power system dynamic state estimation with unknown noise statistics. IEEE Trans. Smart Grid 2017, 10, 1215–1224. [Google Scholar] [CrossRef]
- Sturm, J.; Ennifar, H.; Erhard, S.V.; Rheinfeld, A.; Kosch, S.; Jossen, A. State estimation of lithium-ion cells using a physicochemical model based extended Kalman filter. Appl. Energy 2018, 223, 103–123. [Google Scholar] [CrossRef]
- Khamseh, H.B.; Ghorbani, S.; Janabi-Sharifi, F. Unscented Kalman filter state estimation for manipulating unmanned aerial vehicles. Aerosp. Sci. Technol. 2019, 92, 446–463. [Google Scholar] [CrossRef]
- Bar-Shalom, Y.; Li, X.R.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software; John Wiley & Sons: Hoboken, NJ, USA, 2004; pp. 381–394. [Google Scholar]
- Julier, S.J.; Uhlmann, J.K. Unscented filtering and nonlinear estimation. Proc. IEEE 2004, 92, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Arasaratnam, I.; Haykin, S.; Elliott, R.J. Discrete-time nonlinear filtering algorithms using Gauss–Hermite quadrature. Proc. IEEE 2007, 95, 953–977. [Google Scholar] [CrossRef]
- Arasaratnam, I.; Haykin, S. Cubature kalman filters. IEEE Trans. Autom. Control 2009, 54, 1254–1269. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K. Major development under Gaussian filtering since unscented Kalman filter. IEEE/CAA J. Autom. Sin. 2020, 7, 1308–1325. [Google Scholar] [CrossRef]
- Huang, Z.; Zhou, N.; Diao, R.; Wang, S.; Elbert, S.; Meng, D.; Lu, S. Capturing real-time power system dynamics: Opportunities and challenges. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar]
- Wang, S.; Zhao, J.; Huang, Z.; Diao, R. Assessing Gaussian assumption of PMU measurement error using field data. IEEE Trans. Power Deliv. 2017, 33, 3233–3236. [Google Scholar] [CrossRef]
- Kulikov, G.Y.; Kulikova, M.V. Estimation of maneuvering target in the presence of non-Gaussian noise: A coordinated turn case study. Signal Process. 2018, 145, 241–257. [Google Scholar] [CrossRef]
- Guangcai, W.; Xu, X.; Zhang, T. MM estimation-based robust cubature Kalman filter for INS/GPS integrated navigation system. IEEE Trans. Instrum. Meas. 2020, 70, 1–11. [Google Scholar] [CrossRef]
- Chang, L.; Hu, B.; Chang, G.; Li, A. Huber-based novel robust unscented Kalman filter. IET Sci. Meas. Technol. 2012, 6, 502–509. [Google Scholar] [CrossRef]
- Chen, B.; Liu, X.; Zhao, H.; Principe, J.C. Maximum correntropy Kalman filter. Automatica 2017, 76, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Principe, J.C. Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; pp. 123–126. [Google Scholar]
- Chen, B.; Zhu, Y.; Hu, J.; Principe, J.C. System Parameter Identification: Information Criteria and Algorithms; Newnes: Oxford, UK, 2013; pp. 51–55. [Google Scholar]
- Chen, B.; Dang, L.; Gu, Y.; Zheng, N.; Príncipe, J.C. Minimum error entropy Kalman filter. IEEE Trans. Syst. Man Cybern. Syst. 2021, 6, 5819–5829. [Google Scholar] [CrossRef] [Green Version]
- Erdogmus, D.; Principe, J.C. An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems. IEEE Trans. Signal Process. 2002, 50, 1780–1786. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, B.; Liu, X.; Yuan, Z.; Principe, J.C. Convergence of a fixed-point minimum error entropy algorithm. Entropy 2015, 17, 5549–5560. [Google Scholar] [CrossRef]
- Liu, X.; Chen, B.; Xu, B.; Wu, Z.; Honeine, P. Maximum correntropy unscented filter. Int. J. Syst. Sci. 2017, 48, 1607–1615. [Google Scholar] [CrossRef] [Green Version]
- Dang, L.; Chen, B.; Wang, S.; Ma, W.; Ren, P. Robust power system state estimation with minimum error entropy unscented Kalman filter. IEEE Trans. Instrum. Meas. 2020, 69, 8797–8808. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, W.; Sun, S.; Li, L. Robust information filter based on maximum correntropy criterion. J. Guid. Control Dyn. 2016, 39, 1126–1131. [Google Scholar] [CrossRef]
- Wang, G.; Li, N.; Zhang, Y. Maximum correntropy unscented Kalman and information filters for non-Gaussian measurement noise. J. Frankl. Inst. 2017, 354, 8659–8677. [Google Scholar] [CrossRef]
- Li, M.; Jing, Z.; Leung, H. Robust Minimum Error Entropy Based Cubature Information Filter With Non-Gaussian Measurement Noise. IEEE Signal Process. Lett. 2021, 28, 349–353. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Li, N.; Chambers, J. Robust Student’st based nonlinear filter and smoother. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 2586–2596. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Yue, H.; Xing, Y.; Ren, M. Multipath Estimation Based on Modified ε-Constrained Rank-Based Differential Evolution with Minimum Error Entropy. IEEE Access 2018, 6, 61569–61582. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Zhao, Y.; Shi, P.; Chambers, J.A. A novel outlier-robust Kalman filtering framework based on statistical similarity measure. IEEE Trans. Autom. Control 2020, 66, 2677–2692. [Google Scholar] [CrossRef]
- Wang, J.; Lyu, D.; He, Z.; Zhou, H.; Wang, D. Cauchy kernel-based maximum correntropy Kalman filter. Int. J. Syst. Sci. 2020, 51, 3523–3538. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Bi, D.; Xie, X.; Xie, Y. A Robust Student’s t-Based Kernel Adaptive Filter. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 3371–3375. [Google Scholar] [CrossRef]
- Santamaría, I.; Pokharel, P.P.; Principe, J.C. Generalized correlation function: Definition, properties, and application to blind equalization. IEEE Trans. Signal Process. 2006, 54, 2187–2197. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Pokharel, P.P.; Principe, J.C. Correntropy: A localized similarity measure. In Proceedings of the The 2006 IEEE International Joint Conference on Neural Network Proceedings, Vancouver, BC, Canada, 16–21 July 2006; pp. 4919–4924. [Google Scholar]
- Chen, B.; Wang, J.; Zhao, H.; Zheng, N.; Principe, J.C. Convergence of a fixed-point algorithm under maximum correntropy criterion. IEEE Signal Process. Lett. 2015, 22, 1723–1727. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Meehan, M.; O’regan, D. Fixed Point Theory and Applications; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Simon, D. Kalman filtering with state constraints: A survey of linear and nonlinear algorithms. IET Control Theory Appl. 2010, 4, 1303–1318. [Google Scholar] [CrossRef] [Green Version]
Filters | ARMSE (m) | ARMSE (m/s) | Average Iteration Number | Time (ms) |
---|---|---|---|---|
KF | 0.8459 | 0.3037 | 0 | 0.0140 |
STKKF() | 0.8585 | 0.3091 | 3.5356 | 0.1386 |
STKKF() | 0.8461 | 0.3073 | 2.3422 | 0.1008 |
STKKF() | 0.8459 | 0.3073 | 2.0124 | 0.0887 |
STKKF() | 0.8528 | 0.3083 | 2.3100 | 0.1314 |
STKKF() | 0.8460 | 0.3073 | 2.2833 | 0.0954 |
STKKF() | 0.8459 | 0.3073 | 2.0083 | 0.0877 |
Filters | ARMSE (m) | ARMSE (m/s) | Average Iteration Number | Time(ms) |
---|---|---|---|---|
KF | 2.1938 | 0.4118 | 0 | 0.0138 |
HKF | 1.4792 | 0.3784 | 0 | 0.0214 |
MCKF () | 1.4662 | 0.3777 | 2.5260 | 0.0820 |
STKKF () | 1.3965 | 0.3768 | 2.7070 | 0.1094 |
STKKF () | 1.4314 | 0.3769 | 2.5898 | 0.1031 |
STKKF () | 1.4575 | 0.3775 | 2.5390 | 0.1013 |
MCKF () | 1.6357 | 0.3838 | 2.4094 | 0.0797 |
STKKF () | 1.4837 | 0.3783 | 2.5420 | 0.1011 |
STKKF () | 1.5697 | 0.3812 | 2.4602 | 0.0994 |
STKKF () | 1.6201 | 0.3832 | 2.4211 | 0.0946 |
MCKF () | 1.9051 | 0.3963 | 2.2782 | 0.0745 |
STKKF () | 1.7110 | 0.3871 | 2.3907 | 0.0980 |
STKKF () | 1.8318 | 0.3927 | 2.3236 | 0.0964 |
STKKF () | 1.8890 | 0.3955 | 2.2883 | 0.0937 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Zhang, H. Student’s t-Kernel-Based Maximum Correntropy Kalman Filter. Sensors 2022, 22, 1683. https://doi.org/10.3390/s22041683
Huang H, Zhang H. Student’s t-Kernel-Based Maximum Correntropy Kalman Filter. Sensors. 2022; 22(4):1683. https://doi.org/10.3390/s22041683
Chicago/Turabian StyleHuang, Hongliang, and Hai Zhang. 2022. "Student’s t-Kernel-Based Maximum Correntropy Kalman Filter" Sensors 22, no. 4: 1683. https://doi.org/10.3390/s22041683
APA StyleHuang, H., & Zhang, H. (2022). Student’s t-Kernel-Based Maximum Correntropy Kalman Filter. Sensors, 22(4), 1683. https://doi.org/10.3390/s22041683