
����������
�������

Citation: Gvozdarev, A.S.

A Novel Unified Framework for

Energy-Based Spectrum Sensing

Analysis in the Presence of Fading.

Sensors 2022, 22, 1742. https://

doi.org/10.3390/s22051742

Received: 24 January 2022

Accepted: 18 February 2022

Published: 23 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Novel Unified Framework for Energy-Based Spectrum
Sensing Analysis in the Presence of Fading
Aleksey S. Gvozdarev

Intelligent Information Radiophysics Systems Department, P. G. Demidov Yaroslavl State University,
150003 Yaroslavl, Russia; asg.rus@gmail.com

Abstract: This paper studies the performance of the energy-based sensing procedure in the presence
of multipath fading and shadowing effects in terms of its average probability of detection (APD),
average receiver operating characteristic (AROC) and the area under the AROC curve (AUC). A
new generalization for the class of the fading channel moment generating functions (MGFs) (i.e.,
factorized power type (FPT) MGF) was proposed and applied for the construction of the unified
framework for the analytical treatment of the formulated problem. The contiguity of the proposed
model with the existing classical ones (Rayleigh, Nakagami-m, Hoyt, η − µ, κ − µ shadowed and
Mixture-Gamma) was demonstrated. Within the assumed MGF representation, the novel closed-form
solutions and computationally efficient approximation for APD and AUC are derived. The obtained
general expressions were then applied for derivation of the new results for the recent generalized
fading channel models: Fluctuating Beckmann and Beaulieu-Xie shadowed. For each of the models,
high-SNR asymptotic expressions were obtained. Lastly, numeric simulation was performed to verify
the correctness of the derived results, to establish the dependencies of the sensing performance
quality from the channel parameters and to identify the specific ranges of their asymptotic behavior.

Keywords: fading channel; Beaulieu-Xie shadowed; Fluctuating Beckmann; area under the curve;
probability of detection

1. Introduction

Currently, the implementation of cognitive principles in internet of things (IoT) appli-
cations and various ad hoc communication systems leads to the simplification of involved
mobile devices (M2M, D2D communications, etc.), and thus to the requirement of computa-
tional load reduction. It leads to the fact that in most cases energy-based detection (ED) [1],
as one of the simplest and most straightforward methods for the practical implementation
of the white-space detection strategies [2], is favored. Although the most general ED quality
description is well known since the pioneering work of [3] and is given in terms of the
average probability of detection (APD), average receiver operating characteristic (AROC)
and the area under the AROC curve (AUC) (see [1]), the exact expressions for a specific
communication system fully depend on the assumed microwave wireless propagation
channel model, which incorporates such effects as multipath fading and shadowing. For
modern communication systems, the increased amount of communicating mobile machines
and devices leads to the contraction of the coverage area (for instance, as in 5G) and the im-
pairment of the signal-to-noise/interference (SNR/SINR) environments. Thus, the existing
classical wireless channel fading models (i.e., Rayleigh, Rician, Nakagami-m, Hoyt, etc.) do
not fully comply with real-life measurements.

The solution of the problem is usually sought involving the so-called generalized chan-
nel models [4–6] (such as η − µ, κ − µ, Generalized Gamma, Fading Beckmann, etc.), that
inherently include as specific limiting cases the simplified classical models (Rayleigh, Rician,
Nakagami-m, Hoyt, etc.). In most cases, their flexibility is obtained at the expense of the
higher analytic and computational complexity [7]. However, from a practical perspective,
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it is highly desired for scientific researchers and engineers to have at hand closed-form ex-
pressions for ROC/AUC that can be used for the design of efficient optimization strategies
in terms of link quality and reliability.

Numerous studies have proposed a variety of forms of representation for the ROC,
AROC and AUC for several generalized channel models (as well as for the majority of
simplified models) [1,8–17], but in many cases, they do not yield closed-form expressions
and are presented in terms of infinite series of hypergeometric functions of multiple vari-
ables (such as H-Fox function) (see, for instance, [14,18]), multidimensional nested infinite
series (see, for instance, [19]) or parametric integrals, which are of limited usefulness for
further generalization and practical implementation, or assume only integer-valued fading
parameters [20], restricting their applicability. Moreover, the approaches that were used
to derive those solutions were generally quite isolated and the obtained representations
had dissimilar mathematical structures and notations. Over the years, several attempts
have been made for the unification of the analytical solution of the problem. For instance,
ref. [21,22] proposed a solution by exploiting the exponential-type integral for the Marcum
Q-function and demonstrated numerical results for η − µ, κ − µ and Nakagami-m fading
channels. Although the derived result is claimed to be uniformly applicable (if the MGF
expression is at hand) no closed-form solutions were presented for the specific models.
Moreover, the existing representation was valid for the integer sensing base (which is a
common limitation for most of the solutions) and had to be performed numerically. Almost
in parallel, ref. [23] proposed a similar solution with exactly the same drawbacks and
limitations. The more sophisticated and promising approach was proposed in an excellent
paper [24], where the average probability of a false alarm was derived in terms of the Mellin
transform of the instantaneous SNR probability density function and exponential-type
integral representation of the Marcum Q-function, which eventually led to the solutions
(obtained in terms of multivariate Fox H-functions) for Rayleigh, Maxwell, Nakagami-m,
Weibull, Generalized Gamma and EKG fading channels. Although a substantial step to-
wards the unification of the derived closed-form results was achieved, it possesses several
drawbacks, including analytical, as even though some results were derived it was still hard
to predict the solutions for the similar types of fading distributions, and numerical, as, for
high APDs, the solution was subjected to numerical underflow and thus only asymptotic
expressions were used in those cases.

Motivated by the above works, the present research studies the possible construction of
the unified framework for the analytical treatment of energy-based sensing in the presence
of multipath fading. The major contributions of this work can be summarized as follows:

• For the unification of the wide range of existing channel models, a new moment-
generating function model (i.e., the factorized power-type (FPT) representation) was
introduced. It is demonstrated that such a generalization can easily handle non-line-
of-sight and shadowed line-of-sight models widely applied in communication theory.

• Under this assumption, applying the contour-integral transformation technique,
closed-form analytic expressions for the average probability of detection and area
under the receiver operating characteristic curve are derived, and their simple inter-
connections are established.

• Based on the high signal-to-noise ratio assumption, asymptotic expressions for the
FTP models’ APD and AUC, useful for numeric computation, are derived.

• Capitalizing on the obtained results, the novel closed-form representations of the
aforementioned detection quality metrics and their asymptotic versions for the Fluc-
tuating Beckmann and the Beaulieu-Xie shadowed models were evaluated. Lastly,
the validating numeric simulation was executed to establish the dependencies of the
sensing performance from the channel parameters and identify the ranges of their
asymptotic behavior.
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The remainder of the paper is organized as follows: Section 2 provides some prelim-
inaries that include the formal definition of the energy-based detection procedure and
its quality metrics; Section 3 introduces the model of the FPT MGF, demonstrates how it
degenerates into most widely used simplified cases (Rayleigh, Nakagami-m, Hoyt, η − µ,
κ − µ shadowed, Mixture-Gamma), derives the closed-form and asymptotic expressions
of the APD and AUC for the FTP model and applies them to obtain novel results for the
Fluctuating Beckmann and Beaulieu-Xie shadowed channel models; Section 4 presents
some numerical results that demonstrate the correctness of the proposed solutions and ana-
lyzes the performance of energy-based detection quality for the Fluctuating Beckmann and
Beaulieu-Xie shadowed channel models depending on the parameter values; Section 5 dis-
cusses possible generalizations and extensions of the proposed results and computational
aspects; and conclusions are drawn in Section 6.

2. Preliminaries

The classical energy-based detection of an unknown deterministic signal in the pres-
ence of additive white Gaussian noise is usually regarded as a hypothesis testing problem,
quantitatively described [1] by the probability of detection PD and false alarm PF and
expressed in terms of the generalized Marcum-Q function Qu(a, b) and the regularized
upper incomplete Gamma function Γ̃(a, b) [25]:{

PD = Qu(
√

2γ,
√

λ),

PF = Γ̃
(

u, λ
2

)
,

(1)

where λ is the decision threshold.
For a wireless multipath fading channel with the probability density function of the

instantaneous SNR wγ(γ), the averaged probability of detection is given by

PD =

ˆ ∞

0
PD(γ)wγ(γ)dγ. (2)

Evaluating λ for a fixed level of PF as λ = 2Γ̃−1(u, PF) (where Γ̃−1(·, ·) is the inverse
regularized upper incomplete Gamma function [25]), substituting into (2) and integrating
over the whole range yields the expression for the AUC:

AUC=

ˆ 1

0
PD(PF)dPF. (3)

The main problem is that (2) and (3) have closed-form solutions only for a limited
number of channel models. Moreover, the known results are too diversiform in notation
and could not be straightforwardly unified and generalized.

3. Derived Results
3.1. Channel Model with FPT MGF

To solve the aforementioned problem, let us define a generalized fading channel model
with the MGF (i.e., Mγ(s) = E{eγs}) that has a factorized power-type representation
as follows:

MFPT
γ (s) , Ap

N

∏
j=1

δj
(
αj − s

)β j , (4)

with a set of coefficients Ap, δj, αj, β j, N (it should be emphasized that this definition is close
to the monomial/posynomial MGF defined in [26] (see Section 5 for discussion)). It can
be seen that defining those coefficients in a specific way reduces (4) to various simplified
models, including Rayleigh, Nakagami-m, Hoyt, η − µ, κ − µ shadowed, Gamma, Mixture-
Gamma, etc. Moreover, one can notice that those models encompass non-line-of-sight
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(NLoS) and shadowed line-of-sight models, hence covering a wide range of possible

applications. It can be observed that Ap ∏N
j=1 δjα

β j
j =Mγ(0) = 1, hence, for most of the

further results, such a multiplier is omitted.

3.2. Special Simplified Cases of the FPT MGF Model. Models’ Connections

In general, as was stated, (4) encompasses a wide variety of the existing fading chan-
nel models. Thus, N can be assumed as a parameter defining the order of the model, the
normalizing coefficient Ap and coefficients αj, ∀j = 1, N depend on the average signal-to-
noise ratio γ̄ (usually being inversely proportional to γ̄, i.e., αj ∼ 1/γ̄) and channel-specific
parameters: the number of multipath clusters, number of line-of-sight (LoS) components,
shadowing intensity, amount of energy within the dominant components, relative to the
multipath waves, total energy in dominant components etc. Coefficients β j, ∀j = 1, N are
described in terms of channel parameters only. The coefficients δj are specific numerical mul-
tiplicative coefficients (in most cases equal to unity). Let us define the interrelations between
the channel physical parameters and coefficients in (4) for the specific channel models.

• Rayleigh. The Rayleigh fading channel model is the classical one and is among the
most frequently used in cases of NLoS situations. In can be seen that to be in full
compliance with the Rayleigh MGF, defined, for instance, as in [4], one has to perform
the following set of substitutions in (4): N = 1, Ap = 1/γ, δ1 = 1, α1 = 1/γ, β1 = −1.

• Nakagami-m. The Nakagami-m fading channel is usually assumed to be more versatile
than the Rayleigh model, including scenarios with fading that is heavier and lighter
than Rayleigh. Following the same procedure as before and matching the definition of
the Nakagami-m MGF (given, for example, in [4]) with (4), the substitutions will look
like: N = 1, Ap = (m/γ)m, δ1 = 1, α1 = m/γ, β1 = −m.

• Hoyt. The Hoyt fading channel model distribution is typically employed to model the
enriched multipath fading [17] (for instance, in cases of strong ionospheric scintillation
in satellite links or mobile satellite channels being simulated in the form of a two-state
process). Contrary to Rayleigh and Nakagami-m, the application of the Hoyt MGF
definition given in [4] leads to N = 2, δ1,2 = (−1)1/2, and other parameters will be
Ap = −(1 + q2)/2γq, α1 = (1 + q2)/2γ, α2 = (1 + q2)/2γq2, β1,2 = −1/2.

• η−µ. The η−µ is usually the extension of the abovementioned models, thus matching
the definition, given, for example, in [5], with (4) leading to the following substitutions:

N = 2, Ap =
(

γ2

4µ2(h2−H2)

)−µ
, δ1,2 = 1, α1 = 2µ(h−H)

γ , α2 = 2µ(h+H)
γ , β1,2 = −µ.

• κ − µ shadowed. The κ − µ shadowed fading channel model, that has recently drawn
much attention [27], was first presented in [28], and defines a generalized model
accounting for the most of the abovementioned cases (with the exception of the Hoyt
model, see [6]) combined with the shadowed LoS situation. The parameters γ, m, κ, µ,
defined as in [28] and connected with (4), are as follows: N = 2, Ap = (−µ)µmm(1+κ)µ

γµ(µκ+m)m ,

δ1,2 = 1, α1 = µ(1+κ)
γ , α2 = µ(1+κ)

γ
m

(µκ+m)
, β1 = m− µ, β2 = −m.

• Mixture-Gamma. Amidst the existing channel models, Mixture-Gamma stands out
and is regarded as having paramount importance, since it can successively approxi-
mate a wide a range of the existing models, including the aforementioned ones and
their generalizations (see [11]). The principal difference between (4) and the Mixture-
Gamma MGF (defined in [11] in terms of parameters α̃n, β̃n, ζn) is that the latter can
be viewed as a linear combination of Np versions of (4) with a specific treatment of

normalization constants (i.e., ∑
Np
n=1

α̃nΓ(β̃n)
(ζn)

β̃n
= 1). For each of the Np summands, the

substitutions are as follows: N = 1, Ap = α̃nΓ(β̃n), δ1 = 1, α1 = ζn, β1 = −β̃n. More-
over, ref. [29] states Mixture-Gamma as an approximation model for such composite
fading channels as κ − µ/Gamma, η − µ/Gamma and α− µ/Gamma, thus expanding
the applicability of the proposed FPT MGF model.
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3.3. General Results

Capitalizing on the proposed FPT MGF model, it is possible to derive closed-form
solutions for (2) and (3).

Theorem 1. For energy-based detection in the presence of a multipath fading channel with the
factorized power-type moment generating function, the average probability of detection and area
under the receiver operating characteristic curve are given by

PFPT
D = Ap

N

∏
j=1

δjα
β j
j

1− (λ/2)ue−λ/2

Γ(u + 1)

N

∏
j=1

(
1 +

1
αj

)β j

Φ(N+1)
2

(
1,−β1, . . . ,−βN ; u + 1;

λ

2
,

λ/2

1 + α1
, . . . ,

λ/2

1 + αN

) (5)

AUCFPT = Ap

N

∏
j=1

δjα
β j

j

1−
N

∏
j=1

(
1 +

1
αj

)β j Γ
(

u + 1
2

)
2
√

πΓ(u + 1)
F(N+1)

D

(
2u; 1,−β1, . . . ,−βN ; u + 1;

1
2

,
1/2

1 + α1
, . . . ,

1/2

1 + αN

) (6)

Proof of Theorem 1. For proof, see Appendix A.

As was noted above, from the connections of the FPT MGF model with classical ones,
it can be easily verified that the parameters αj are usually inversely proportional to the SNR
(instantaneous or average), thus the case when αj → 0 can be regarded as the high-SNR
regime. In such a situation, some simplifications of the general solutions (5) and (6) can
be derived.

Theorem 2. The asymptotic versions of the APD and AUC for the FPT MGF model (for the case
of αi → 0 ∀i ∈ [1, N]) are given by

PFPT
Das '

(
Ap

N

∏
j=1

δjα
β j
j

)1−
N

∏
j=1

(
1 +

1
αj

)β j
(λ/2)ue−λ/2

Γ(u + 1) 1F1

(
1−

N

∑
i=1

βi; u + 1;
λ

2

)
+

(7)

AUCFPT
as '

(
Ap

N

∏
j=1

δjα
β j
j

)1−
N

∏
j=1

(
1 +

1
αj

)β j Γ
(

u + 1
2

)
2
√

πΓ(u + 1) 2F1

(
2u, 1−

N

∑
i=1

βi; u + 1;
1
2

)
+

(8)

where 1F1(·) is the confluent hypergeometric function, 2F1(·) is the Gauss hypergeometric function
and [a]+ is the positive part of a, i.e., [a]+ = max(0, a).

Proof of Theorem 2. For proof, see Appendix B.

It should be specifically noted that, contrary to several adopted approaches, the
proposed one and hence the derived results are valid for arbitrary values of channel
parameters and sensing base, which in most studies are assumed to be integer-valued.

As was stated, the model (4) generalizes a wide range of intensively used simplified
channel models. Hence, Theorems 1 and 2 provide a solid ground for the unification
of the derived quality metrics (APD and AUC) of those models. The APD and AUC
expressions for the models included in Section 3.2, that can be derived directly from (5) and
(6), with some exceptions, were generally reported in the literature, but in differing forms
(see [8,16] for Rayleigh, [8] for Nakagami-m, [17] for Hoyt, [9,13] for η − µ, [14,30,31] for
κ − µ shadowed) and hence are of limited interest, mainly for illustrative purposes and
notation unification.

On the other hand, Theorems 1 and 2 can be applied to the recently proposed channel
models for which the results are not present. Among them, one can focus upon the two
novel generalized models: Fluctuating Beckmann (see [32–36]) and Beaulieu-Xie shadowed
(see [37–40]).
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3.4. Application of the Derived Results
3.4.1. Exact and Asymptotic APD and AUC for the Fluctuating Beckmann Channel Model

For the Fluctuating Beckmann fading channel model, the MGF is given by

MFB
γ (s) =

(−1)µ

pµ

α
m− µ

2
2

γ̄µαm
1

(
1− µ(1 + η)(1 + κ)

2ηγ̄p

)m− µ
2
×

×
(

1− µ(1 + η)(1 + κ)

2γ̄p

)m− µ
2
(

1− c1

γ̄p

)−m(
1− c2

γ̄p

)−m
, (9)

with the parameters γ, η, m, κ, µ, c1, c2 defined as in [32] and connected with (4) as follows:

N = 4, Ap =
α

m−µ
2

γµαm
2

, δ1−4 = 1, α1 = µ(1+κ)(1+η)
2ηγ , α2 = α1η, α3 = c1, α4 = c2, β1,2 = m− µ

2 ,
β3,4 = −m.

Corollary 1. The APD and AUC for this model in the most general form are given by

PFB
D = 1−

(
λ
2

)u
e−

λ
2

Γ(u + 1)

(
1 + 2ηγ̄

µ(1+η)(1+κ)

)m− µ
2
(

1 + 2γ̄
µ(1+η)(1+κ)

)m− µ
2(

1 + γ̄
c1

)m(
1 + γ̄

c2

)m ×

×Φ(5)
2

(
1,

µ

2
−m,

µ

2
−m, m, m; u + 1;

λ

2
,

λ

2

(
2ηγ̄

2ηγ̄ + µ(1 + η)(1 + κ)

)
,

λ

2

(
2γ̄

2γ̄ + µ(1 + η)(1 + κ)

)
,

λ

2

(
γ̄

γ̄ + c1

)
,

λ

2

(
γ̄

γ̄ + c2

))
, (10)

AUCFB = 1− Γ(u + 1/2)

2
√

πΓ(u + 1)

(
1 + 2ηγ̄

µ(1+η)(1+κ)

)m− µ
2
(

1 + 2γ̄
µ(1+η)(1+κ)

)m− µ
2(

1 + γ̄
c1

)m(
1 + γ̄

c2

)m ×

×F(5)D

(
2u, 1,

µ

2
−m,

µ

2
−m, m, m; u + 1;

1
2

,
1
2

(
2ηγ̄

2ηγ̄ + µ(1 + η)(1 + κ)

)
,

1
2

(
2γ̄

2γ̄ + µ(1 + η)(1 + κ)

)
,

1
2

(
γ̄

γ̄ + c1

)
,

1
2

(
γ̄

γ̄ + c2

))
. (11)

and their asymptotic versions can be represented as

PFB
Das '

1−

(
1 + 2ηγ̄

µ(1+η)(1+κ)

)m− µ
2
(

1 + 2γ̄
µ(1+η)(1+κ)

)m− µ
2(

1 + γ̄
c1

)m(
1 + γ̄

c2

)m

(
λ
2

)u
e−

λ
2

Γ(u + 1) 1F1

(
µ + 1; u + 1;

λ

2

)
+

(12)

AUCFB
as '

1−

(
1 + 2ηγ̄

µ(1+η)(1+κ)

)m− µ
2
(

1 + 2γ̄
µ(1+η)(1+κ)

)m− µ
2(

1 + γ̄
c1

)m(
1 + γ̄

c2

)m

Γ
(

u + 1
2

)
2
√

πΓ(u + 1) 2F1

(
2u, µ + 1; u + 1;

1
2

)
+

(13)

Proof. Proof of Corollary 1 can be directly obtained via the successive application of the
results derived in Theorems 1 and 2.

3.4.2. Exact and Asymptotic APD and AUC for the Beaulieu-Xie Shadowed Channel Model

For the Beaulieu-Xie shadowed fading channel model, the MGF is given by

MBX
γ (s) =

(
mYΩX

mXΩY + mYΩX

)mY
(

mX
ΩX

)mX ∞

∑
n=0

Γ(mY + n)
n!Γ(mY)

×

×
(

m2
XΩY

ΩX(mXΩY + mYΩX)

)n(
mX
ΩX
− s
)−(mX+n)

, (14)

with the parameters mX , mY, ΩX , ΩY defined as in [39].
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Lemma 1. The moment-generating function of the Beaulieu-Xie shadowed channel model can be
represented in the following form:

MBX
γ (s) =

(
mYΩX

mXΩY + mYΩX

)mY
(

mX(ΩX + ΩY)

γ̄ΩX

)mX

×

×
(

mX(ΩX + ΩY)

γ̄ΩX
− s
)mY−mX

(
mXmY(ΩX + ΩY)

γ̄(mXΩY + mYΩX)
− s
)−mY

. (15)

Proof of Lemma 1. It should be mentioned that the MGF (14) is defined (see [39]) in
terms of instantaneous power (not SNR, as for the abovementioned models), which is
not suitable for further calculations, hence proper rescaling is needed. To do this, one
can start with the envelope pdf wR(r) (see [39], Section III, Equation (7)) and defining
the average power E{R2} = (ΩX + ΩY) (by means of Equation (12) from [39]) to per-
form the change in variable γ , γ̄r2/E{R2}, deriving the instantaneous SNR pdf as [4]:

wγ(γ) = wR

(√
γ(ΩX+ΩY)

γ̄

)/
2
√

γγ̄
(ΩX+ΩY)

. The latter part of the proof relies upon the

series summation in (14) by using the identity ∑∞
n=0

Γ(n+m)
n!Γ(m)

αn = (1− α)−m and factorizing
the terms containing argument s.

Corollary 2. Based on Expression (15), the APD and AUC for this model are derived:

PBX
D = 1−

(
1 +

mX
mY

ΩY γ̄

(mX(ΩX + ΩY) + ΩX γ̄)

)−mY
(

1 +
ΩX γ̄

mX(ΩX + ΩY)

)−mX

(
λ
2

)u
e−

λ
2

Γ(u + 1)
×

×Φ(3)
2

(
1, mX −mY , mY ; u + 1;

λ

2
,

λ

2

(
ΩX γ̄

(ΩX γ̄ + mX(ΩX + ΩY))

)
,

λ

2

(
(mXΩY + mYΩX)γ̄

(mXmY(ΩX + ΩY) + (mYΩX + mXΩY)γ̄)

))
(16)

AUCBX = 1− Γ(u + 1/2)

2
√

πΓ(u + 1)

(
1 +

mX
mY

ΩY γ̄

(mX(ΩX + ΩY) + ΩX γ̄)

)−mY
(

1 +
ΩX γ̄

mX(ΩX + ΩY)

)−mX

×

×F(3)D

(
2u, 1, mX −mY , mY ; u + 1;

1
2

,
1
2

(
ΩX γ̄

(ΩX γ̄ + mX(ΩX + ΩY))

)
,

1
2

(
(mXΩY + mYΩX)γ̄

(mXmY(ΩX + ΩY) + (mYΩX + mXΩY)γ̄)

))
(17)

and their asymptotic versions are given by

PBX
Das =

1−

(
λ
2

)u
e−

λ
2

Γ(u + 1)

(
mX
mY

ΩY γ̄

(mX(ΩX + ΩY) + ΩX γ̄)

)−mY
(

1 +
ΩX γ̄

mX(ΩX + ΩY)

)−mX

1F1

(
µ + 1; u + 1;

λ

2

)
+

(18)

AUCBX
as =

[
1− Γ(u + 1/2)

2
√

πΓ(u + 1)

(
1 +

ΩX γ̄

mX(ΩX + ΩY)

)−mX
(

mX
mY

ΩY γ̄

(mX(ΩX + ΩY) + ΩX γ̄)

)−mY

2F1

(
2u, µ + 1; u + 1;

1
2

)]
+

(19)

Proof. Proof of Corollary 2 can be directly obtained via the successive application of the
results derived in Theorems 1 and 2.

3.5. Models’ Connections

The derived results for the generalized channel model with FPT MGF ((5) and (6))
and for the Fluctuating Beckmann ((10) and (11)) and Beaulieu-Xie shadowed models ((16)
and (17)) and their asymptotic versions can help to gain a better insight into the physical
meaning of the channel parameters and their connections with the known cases. First of
all, one can see that the complexity of the obtained representation for the Beaulieu-Xie
shadowed model is the same as for the κ − µ shadowed or η − µ model, or Hoyt model
(in all the cases we observe the hypergeometric function of three variables), thus for these
models to yield exactly the same results the parameters should be equal. This helps to
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establish the following chain of connections. Starting with the newest model (Beaulieu-Xie
shadowed), one can connect it with the κ − µ shadowed in the following way:

mX = µ, mY = m,
ΩY
ΩX

= κ. (20)

Thus, one can view Beaulieu-Xie shadowed as an extended version of the κ − µ
shadowed model since in the former one can handle ΩX and ΩY independently and in the
latter only their combination κ = ΩY

ΩX
. Thus, up to the substitutions (20), the results for the

κ− µ shadowed model (derived via (5) and (6) with parameters defined in Section 3.2) and
(16) and (17) are equivalent, hence one can gain a better understanding of how to reach the
desired level of APD/AUC.

It can be easily noticed that by performing the following changes: m = µ, µ = 2µ,
(1 + κ) = (h− H), 1+κ

1+2κ = (h + H), one can connect the results for κ − µ shadowed and

η − µ models. Finally, setting µ = 1
2 , (h− H) = 1+q2

2 , (h + H) = 1+q2

2q , one can relate the
results for the Hoyt model to all of the abovementioned ones. It should be noted that, earlier,
it was widely accepted [6] that the Hoyt model itself does not follow directly from the κ− µ
shadowed model, but since the proposed expressions extend and unify those models into
the FPT MGF one, the APD and AUC expressions are related up to the aforementioned
substitutions.

4. Simulation and Results

To gain a better understanding of the energy-based spectrum sensing performance
and the impact of various channel parameters upon the communication link quality for the
two assumed models a comparative numerical analysis was carried out. The evaluation
was performed for the case of arbitrary values of the parameter u (generally non-integer
and non-half-integer, the cases that are usually addressed in literature). In order to conform
with the existing studies, we assume the range of parameters to be as in [32] (for Fluctuating
Beckmann) and [39] (for Beaulieu-Xie shadowed).

The direct comparison of APD for the Fluctuating Beckmann and the Beaulieu-Xie
shadowed models (see Figures 1 and 2) demonstrates the difference in the performance
for the high and low false alarm rate regions (which are common, for instance, in wireless
cognitive networks). The increase in the number of multipath clusters and decrease in
shadowing with some power imbalance of in-phase/quadrature components (ρ 6= 1) and
LoS/NLoS components leads to the increase in APD. For both models, the improvement in
SNR increases PD as predicted, but the increment rate drastically differs. To demonstrate
this, both plots are supplied with a second (upper) horizontal axis that depicts the functional
dependence PD = f (PF) (i.e., the average receiver operating characteristic) for two γ̄ and
two cases: poor propagation conditions (case 1) and improved conditions (case 2). Red and
green dashed lines represent the derived approximating expressions. It can be seen that the
approximations perform excellently for severe propagation conditions: high shadowing,
a small number of multipath clusters and weak dominating components. Their quality
degrades with the channel improvement but is still satisfactory (loses no more than 1 dB)
for γ̄ ≥ 10 dB, which constrains the effective applicability of the derived approximations.

It was established that for the Beaulieu-Xie shadowed model improvement in multi-
path component shadowing (mX = 2 instead of mX = 1), balancing the LoS/NLoS average
power but downgrading the desired level of false alarm probability helps to maintain the
same APD (for some SNR, e.g., γ̄ = 18 dB, see the existing cross point).

One should note that the simulation parameters for the presented plots were chosen in
such a way as to conform with the existing studies on the one hand and to incorporate the
opposing fading scenarios on the other: heavy and light fading, with LoS/NLoS imbalance
and without.
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Figure 1. PFB
D comparison for various PD and u = 2.2: black lines (case 1)—κ = 0.1, m = 2, µ = 1,

η = 0.1, ρ2 = 0.1, blue lines (case 2)—κ = 1, m = 2, µ = 2, η = 10, ρ2 = 0.1, dashed red and green
lines—proposed approximations.
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As for the AUC, the improvement in the propagation conditions (see Figures 3 and 4),
as expected, increases the AUC for both models. However, again, the rate of AUC change
differs with the increase in the sensing base (see the upper horizontal axis and the pink
lines): for the Fluctuating Beckmann channel with good propagating conditions and u ≥ 5
or bad conditions with u ≥ 10, a further increase in u mostly does not impact AUC, but
this is not the case for the Beaulieu-Xie shadowed model, where the AUC saturation region
(in terms of u) shifts to the very high sensing bases. Here, one assumes a strong imbalance
of the LoS/NLoS component power ratio with dominating LoS (blue lines) and NLoS
(black lines) and different numbers of multipath clusters (0.5 with high shadowing versus 1
with smaller ones) for the Fluctuating Beckmann model. For the Beaulieu-Xie shadowed
channel, the cases of the several LoS components (being a unique property of this model)
and almost total blockage of LoS with mY < 0.5 (a specific trait of (14)) were accounted for.
The overall increase in the sensing base decreases the AUC values for both models but the
rate of the decrease is different: the smaller power imbalance of LoS/NLoS components
leads to a greater spread of the curves (κ = 0.1 or 1 for Figure 3 and ΩX = ΩY = 1 dB or
ΩX = −1 dB, ΩY = −1 dB, which can be recalculated via (20) to κ = 1.5 or 1 for Figure 4).

Figure 5 considers the impact of LoS (i.e., variable ρ) and NLoS (i.e., variable η)
component imbalances on the Fluctuating Beckmann model and demonstrates that the
increase in such an imbalance (regardless of the component type) actually improves AUC.
One interesting effect that was found is the existence of AUC saturation regions (when
ρ ≥ 2 or ρ ≤ 0.1), which practically means that it is insensitive to LoS in-phase/quadrature
component balance fluctuations when one of them becomes highly predominant.
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Figure 3. Average AUC comparison for Fluctuating Beckmann model and various u: black lines
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µ = 1, η = 1, ρ2 = 0.1, dashed red and green lines—proposed approximations.
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Figure 4. Average AUC comparison for Beaulieu-Xie shadowed model and various u: black lines
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The analysis of AUC for the Beaulieu-Xie shadowed model depending on its parame-
ters (see Figure 6) demonstrated that, in the case of small SNR and balanced LoS/NLoS
components, the AUC is practically insensitive to the change in mX (for mX > 1.5) irre-
spective of mY and u. Furthermore, the increase in mY (for mY > 2) does not introduce
any sufficient gain in AUC. Thus, in the low-SNR regime, those values can be assumed
as almost asymptotic (from a computational point of view). For the case of high SNR,
this saturation region is extended and is highly dependent on the value of the sensing
base, which introduces a pronounced impact upon the AUC. Moreover, the derived results
can help to understand the possible adaptation strategies of the sensing procedure and
signal processing: for instance, one can see that AUCs for the cases of mY = 5, u = 5 and
mY = 0.1, u = 1 (for mX > 1.5) almost coincide, which means that the effects of the increase
in LoS component shadowing can be balanced out by the appropriate reduction in the
sensing base.
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Figure 6. Average AUC comparison for the Beaulieu-Xie shadowed model for various mX and
γ̄ = 10 dB, ΩX = 1 dB, ΩY = 1 dB: solid lines show u = 1, dashed lines show u = 5.

It was found that the combination of various average powers of LoS/NLoS compo-
nents (i.e., ΩY and ΩX) can lead to strictly antipodal behavior of the detection metrics.
The research demonstrated that for heavy fading and shadowing conditions (both LoS
and NLoS components) (see contour map in Figure 7), the increase in the total power of
multipath waves (for a fixed power of dominant components) increases AUC, whereas, in
the case of light fading with multiple LoS components (see contour map in Figure 8), the
effects are exactly the opposite. Moreover, the lines of constant AUC (contour lines) can be
approximated as ΩY = ΩX + bdB, where bdB is a constant shift in a log scale, representing
LoS/NLoS component power imbalance.
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Figure 7. Average AUC contour map for the Beaulieu-Xie shadowed model for various ΩX , ΩY and
γ̄ = 0 dB, u = 2, mX = 0.1, mY = 1.
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5. Discussion and Further Generalization

It is trivial that the idea of channel model unification itself, due to the existing similar-
ities in their MGF notation, is not novel, and as was mentioned earlier, the definition (4)
was first introduced in [26] (see Definition 1 for a monomial/posynomial MGF). Though
being exemplary research with a very high possible impact in various areas, it did not
have any further elaboration. Moreover, independently of this work, this definition was
revitalized in [41], that used a contour-integral approach proposed in [16] to analytically
solve the problem of the average bit/symbol error rate calculation in the presence of fading,
thus extending the results proposed in [26]. Since the approach in [16] (assumed herein)
relies on a more general formulation, the Gaussian Q-function used in [26] is only a specific
limiting case of a more general Marcum Q-function (used in [16] and herein); the presented
results cannot be deduced from [26], and thus can be assumed as its generalization that
expands the initial methodology.

Although the proposed FPT type of the MGF of the random fluctuating channel
incorporates a wide range of NLoS and shadowed LoS models, it can be further extended.
For instance, as assumed in this research, Gamma and κ − µ shadowed models were
efficiently used to describe SIMO communication systems [42,43] (with multiple receivers)
and systems with signal aggregation form several subbands (with single or multiple
receivers) [44]. It can be easily verified that the MGFs for those cases are readily represented
in form, given by (4), hence the derived representations (5) and (6) remain valid for those
cases. Moreover, the increase in the scope of the derived results can be performed via the
Mixture-Gamma model application, which can be successfully implemented to approximate
a wide range of models that are not directly covered by the FPT representation (see, for
instance, [11,45,46]).

Regardless of the fact that the closed-form solutions are obtained in terms of the
multivariate hypergeometric functions, they are quite frequently used in wireless commu-
nications. Despite not being directly implemented in modern software packages (such
as Matlab, Mathematica, Maple, etc.), their computation (efficiently performed by nu-
merical calculation of the inverse Laplace transform, for example, exhaustively discussed
in [47–50]), including truncation errors, and the required number of summands and achiev-
able computational gain (relative to the numeric integration) are frequently discussed in
the literature (see, for instance, [16,28,32,51,52]).

It should be noted that the present research claims that the FPT MGF representation
can handle a wide range of NLoS and shadowed LoS models. This is not the case with
the LoS situations, since in those cases MGFs include an exponential multiplier that is not
directly in the form (4). At the same time, it is well known (see, for instance, [28,32,39])
that in the limiting cases (when the shadowing parameter goes to infinity) shadowed LoS
models yield classical LoS ones, thus the results herein (for example, in the case of m→ ∞
for κ − µ shadowed and Fluctuating Beckmann and mY → ∞ for Beaulieu-Xie shadowed)
can handle a wider range of possible models. As an alternative approach, one can obtain
the same limiting expressions by performing a limiting operation over the exponential
multiplier in the MGF expression and rewriting it in the limiting form of (4), finally yielding
the same expressions. Although some results are derived, specific questions on performing
a limiting operation over the multivariable hypergeometric series arise with no closed-
form analytical solution to date. Even though it was verified, evaluating the limits can be
performed numerically (the regions of the parameter asymptotics derived herein are highly
valuable for that procedure), the questions of numerical stability begin to play a crucial role,
dominating over the numerical efficiency of the solution. For example, for a high signal-to-
noise regime, the expansion coefficients of the respective multivariate hypergeometric series
will prevent fast convergence, thus a large number of terms will be needed, slowing down
the solution. Moreover, some questions about the fulfilment of the dominated convergence
theorem, and the possibility of interchanging limiting and integration operation, arise.
Thus, such an extension still remains a challenging open problem.
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6. Conclusions

The present research studies the performance of energy-based detection in the presence
of multipath fading and shadowing effects. The quality of the procedure is assessed in
terms of such metrics as the average probability of detection and the area under the average
receiver operating characteristic curve. To attempt a unification of the results for the existing
channel models, a new generalization for the class of the fading channel moment-generating
functions (factorized power-type MGF representation) is proposed. It is shown that such
a formalism directly includes a wide range of existing classical and generalized models
with non-line-of-sight and shadowed line-of-sight situations. The relations between the
models are demonstrated. The derived general expressions are applied to the closed-form
analysis of new generalized models: Fluctuating Beckmann and Beaulieu-Xie shadowed.
The obtained closed-form solutions for the assumed quality metrics of those models are
then numerically analyzed for various channel parameters.

Funding: This work was supported by the Russian Science Foundation under Grant 22-29-01458
(https://rscf.ru/en/project/22-29-01458/, accessed on 18 February 2022).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A. Proof of Theorem 1

Proof. To prove Theorem 1, one starts by combining (1) and (2) and applying the contour-
integral representation of the generalized Marcum Q-function given in [16]:

QM(a, b) =
1

2πi
e−

a2+b
2

ˆ
CH

e
a2
2s +

b2s
2

sM(1− s)
ds (A1)

with the integration Hankel-type contour CH starting from−∞ in the lower half-plane, run-
ning counterclockwise and encircling the origin and ending at −∞ in the upper half-plane.

Combining (A1) and (2), changing the order of integration and applying the definition
of the MGF yields:

PFPT
D =

1
2πi

e−
λ
2

ˆ ∞

0
e−γ
ˆ

CH

e
γ
s e

λs
2

su(1− s)
dswγ(γ)dγ =

=
1

2πi
e−

λ
2

ˆ
CH

e
λs
2

su(1− s)

ˆ ∞

0
wγ(γ)e(

1
s−1)γdγ︸ ︷︷ ︸

Mγ( 1
s−1)

ds =

=
1

2πi
e−

λ
2

ˆ
CH

Mγ

(
1
s − 1

)
e

λs
2

su(1− s)
ds. (A2)

Closing the contour of integration CH as is done in [16] (see Section 3, Figure 2), it is
possible to represent APD in the following form:

PFPT
D = Ap

N

∏
j=1

δj(1 + αj)
β j eλ/2

[
res
s=1

{
s−(u+1)

(1− 1
s )

N

∏
j=1

(
1−

θj

s

)β j
}
−

−L−1

{
s−(u+1)(1− s−1)−1

N

∏
j=1

(
1−

θj

s

)β j

,
λ

2

}]
(A3)
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where L−1
{
·, λ

2

}
is the inverse Laplace transform evaluated at λ

2 and ress=1{·} is the
residue at point s = 1.

Making use of [53] (Equation (54), Chapter 9, p. 290), calculating the residue and
simplifying the expression accounting for the Lauricella confluent hypergeometric series
of N + 1 variables Φ(N+1)

2 (b1, . . . , bN+1; c; x1, . . . , xN+1) (see [53] Equation (8), Chapter 1,
p. 34) yields (5).

To prove (6), one can notice that the integration over the PF can be interchanged with
the integration over the threshold λ (for instance, see [12]), i.e.,

AUCFPT=

ˆ 1

0
PFPT

D (PF)dPF =

ˆ ∞

0
PFPT

D (λ)
λu−1e−

λ
2

2uΓ(u)
dλ (A4)

Substituting (5) into (A4), applying the series representation of the Lauricella func-
tion (see [53] Equation (8), Chapter 1, p. 34) and changing the order of integration and
summation yields

AUCFPT = Ap

N

∏
j=1

δjα
β j
j

1−
N

∏
j=1

(
1 +

1
αj

)β j
2−2u

Γ(u)Γ(u + 1)
×

×
∞

∑
l1=0

. . .
∞

∑
lN+1=0

(−β1)l1 . . .(−βN)lN (1)lN+1

(u + 1)lΣ

(
1

1+α1

)l1
. . .
(

1
1+αN

)lN

l1! . . . lN+1!
1

2lΣ

ˆ ∞

0
λ2u+lΣ−1e−λdλ

]
(A5)

where lΣ = l1 + . . . + lN+1 and (·)l is the Pochhammer function. The last integral equals
Γ(2u)(2u)lΣ . Thus, collecting the terms and making use of the definition of the Appell series

F(N+1)
D (a; b1, . . . , bN+1; c; x1, . . . , xN+1) (see [53] Equation (4), Chapter 1, p. 33) finalizes the

proof.

Appendix B. Proof of Theorem 2

Proof. To prove Theorem 2, one can note that

Φ(N+1)
2

(
1,−β1, . . . ,−βN ; u + 1;

λ

2
,

λ/2
1 + α1

, . . . ,
λ/2

1 + αN

)
=

=

(
λ

2

)−u
Γ(u + 1)L−1

 s−(u+1)

(1− s−1)

N

∏
j=1

1−
1

1+αj

s

β j

,
λ

2

 (A6)

Assuming that the high-SNR regime (i.e., γ→ ∞) constitutes the case when all αi → 0
and taking the limit of both sides of (A6) yields:(

λ

2

)−u
Γ(u + 1)L−1

{
s−(u+1)(1− s−1)

−∑N
j=1 β j+1,

λ

2

}
= 1F1

(
1−

N

∑
i=1

βi; u + 1;
λ

2

)
, (A7)

which completes the first part of the proof. To derive (8), one can use the integral relation
between Lauricella and Appell functions (see [53]):

F(N+1)
D

(
2u; 1,−β1, . . . ,−βN ; u + 1;

1
2

,
1/2

1 + α1
, . . . ,

1/2
1 + αN

)
=

=
1

Γ(2u)

ˆ ∞

0
e−tt2u−1Φ(N+1)

2

(
1,−β1,−βN ; u + 1;

t
2

,
t/2

1 + α1
, . . . ,

t/2
1 + αN

)
dt (A8)
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Applying the result (A7), one obtains

lim
αi→0,∀i

F(N+1)
D (·) = 1

Γ(2u)

ˆ ∞

0
e−tt2u−1

1F1

(
1−

N

∑
i=1

βi; u + 1;
t
2

)
dt. (A9)

The last integral can be regarded as the Laplace transform evaluated at 1, thus one has:

L−1

{
t2u−1

1F1

(
1−

N

∑
i=1

βi; u + 1;
t
2

)
, 1

}
= 2F1

(
2u; 1−

N

∑
i=1

βi; u + 1;
1
2

)
. (A10)

Lastly, it should be noted that the derived asymptotics do not preserve the positiveness
of the APD and AUC, thus the expressions should be supplemented with the positive-part
function.
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