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Abstract: Anaerobic digestion (AnD) is a process that allows the conversion of organic waste into a
source of energy such as biogas, introducing sustainability and circular economy in waste treatment.
AnD is an intricate process because of multiple parameters involved, and its complexity increases
when the wastes are from different types of generators. In this case, a key point to achieve good
performance is optimisation methods. Currently, many tools have been developed to optimise a
single AnD plant. However, the study of a network of AnD plants and multiple waste generators,
all in different locations, remains unexplored. This novel approach requires the use of optimisation
methodologies with the capacity to deal with a highly complex combinatorial problem. This paper
proposes and compares the use of three evolutionary algorithms: ant colony optimisation (ACO),
genetic algorithm (GA) and particle swarm optimisation (PSO), which are especially suited for this
type of application. The algorithms successfully solve the problem, using an objective function that
includes terms related to quality and logistics. Their application to a real case study in Catalonia
(Spain) shows their usefulness (ACO and GA to achieve maximum biogas production and PSO for
safer operation conditions) for AnD facilities.

Keywords: anaerobic co-digestion; ant colony optimisation; particle swarm optimisation; genetic
algorithms; waste management; circular economy

1. Introduction

In the context of global climate change with rising and more extreme events—such
as droughts and floods—which will likely provide growing uncertainty to water demand
and jeopardise the availability of specific resources, there is a growing interest in the
adaptation and use of technologies related to the circular economy that promote environ-
mental sustainability. In this framework, resource recovery is a key issue for industrial
and environmental processes and shows a wide spectrum of study possibilities. In water
sanitation, wastewater treatment plants (WWTPs) offer a wide range of possibilities for
resource recovery, mainly related to sludge treatment processes [1–7] as biogas generation
via the substrate co-digestion process, which can be an alternative source for thermal and
electrical energy production [8–14]. This potential for biogas generation could be translated
as well to a source of renewable natural gas, which has specific composition requirements
that demand high-tech sensors to assure its quality no matter its origin, as those developed
in [15,16]. Due to their potential for resource recovery and the further implications in
the water–food–energy nexus, WWTPs have been a research focus from different areas of

Sensors 2022, 22, 1857. https://doi.org/10.3390/s22051857 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22051857
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9281-6407
https://orcid.org/0000-0001-8673-9866
https://orcid.org/0000-0002-6364-6429
https://orcid.org/0000-0002-2593-9298
https://orcid.org/0000-0001-9525-1790
https://doi.org/10.3390/s22051857
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22051857?type=check_update&version=1


Sensors 2022, 22, 1857 2 of 20

expertise: from modelling and engineering design [17–24] to process dynamics, simulation
and integration [25–28].

Anaerobic digestion (AnD), a complex process involved in biogas production, has
a delicate balance of substrate composition. The optimal performance requires avoiding
process inhibition and maximising biogas generation. The optimal balance may be achieved
with the correct mixture of available substrates, but this task is challenging and difficult
to achieve manually due to the high combinatorial possibilities and changing availability
of substrates of heterogeneous nature. The complexity increases when the process is co-
digestion, with the addition of residual substrates produced by agro-food and similar
industries, each with its own dynamics of substrate generation and composition [29–32].
Additionally, not all WWTPs have an anaerobic digester. Therefore, optimisation also
requires logistical challenges to process a maximum volume of the available substrates in
a certain geographical area and its travel logistics (of sludge and co-substrates) from its
origin to the destination digester.

Hence, dealing with such complexity is a former step to tackle optimal co-digestion
in a complex network composed of many substrate sources—including WWTPs without
AnD processes and industrial producers—and several co-substrate receptors. These will
be located in different geographical places. As a result, the logistics of substrates will be
affected by the geographical distance between actors involved and the restrictions related
to the receptors.

Optimisation of the individual digester feed requires optimal blending of different
co-substrates in order to fulfil the volumetric and compositional requirements of the
anaerobic procedure. This problem can be understood as a multidimensional knapsack
problem (MKP) [33–35]. The MKP is an NP-hard problem [36] and has been widely studied
in the literature. To solve this type of problem, the use of combinatorial optimisation
metaheuristics is proposed in [37,38], mainly when a high number of restrictions are
presented [39].

Many tools have been developed to this end, either focused on modelling, control of
the optimum co-substrate blending, or system operation, as shown in [37,39–43]. In [37,40],
identification and modelling of critical parameters are performed; in [39] control schemes
based on the composition qualities are developed; and in [42,43], optimised control strate-
gies are implemented according to blend composition. In [41], logistics are also included to
optimise the performance of a single anaerobic digester with co-digestion strategies.

However, in real-world installations, most of these systems are managed and super-
vised not in a single fashion but in a network fashion. Thus, proper system management
requires simultaneous consideration of the entire AnD network to select which combination
is the best for each digester to maximise the potential of the overall infrastructure. Besides,
literature on this matter is relatively scarce due to its ad-hoc nature. There is literature
related to optimised placement of new AnD plants, such as in [44], but it lacks optimisation
of the operational part involved in the feeding of the anaerobic digesters. Very specific
works can be found about optimisation of supply chain networks in the field of waste val-
orisation, such as in [45], where an integrated geographical information system (GIS)-based
optimisation is performed, but it requires highly detailed and tailored data, so its implemen-
tation becomes time-consuming and highly dependent on data availability; furthermore,
it does not tackle process optimisation regarding waste processing facilities. Regarding
logistics, other works can be found for path planning optimisation such as in [46], where
truck routes are traced based on GIS-oriented algorithms, or in [47], where a smart waste
bin prototype is developed for sensor-based waste classification. As it can be seen, there
is a gap in the literature regarding network optimisation of existing waste management
facilities (such as AnD plants) that would include both logistics (i.e., minimising route
impact and length) and quality (i.e., improving process performance) optimisation. This
is a necessary gap to fulfil, since, as stated before, AnD networks are currently managed
in an ad-hoc, manual fashion by the practitioners, which is dramatically time-consuming
and needs highly qualified personnel. Although there are currently different approaches
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that could help overcoming specific parts of this challenge (i.e., those observed in [44–47]),
none of them can currently successfully accomplish the overall task.

The approach presented in this study continues the work introduced in [48] where the
optimisation problem of blending in anaerobic co-digestion (AnCD) is handled by an ant
colony optimisation (ACO) algorithm in a synthetic case study with realistic conditions,
simulating a centralised AnD single-stage reactor that received feed once a day. In [41],
the work is extended while considering the quality, social and travel logistics of the co-
substrates, analysing its importance to the overall optimisation. In addition, ACO has
been implemented in real-world waste sector case studies, e.g., [48,49]. Here, the work is
extended to a similar real-world case study considering multiple receptors in the geograph-
ical area of the Besòs River basin (Catalonia, Spain). The data used correspond to the real
operation conditions of this area. For these conditions, the authors have also evaluated the
results obtained using different optimisation approaches such as ACO, genetic algorithms
(GA) and particle swarm optimisation (PSO).

ACO, GA and PSO algorithms were selected as convenient approaches to tackle a
problem of the nature stated here after reviewing applications of similar nature in the
literature. In [50], a review of nature-inspired algorithms is performed, including GA, ACO
and PSO—among others—for AnD modelling and optimisation, showing how in the field
of AnD, PSO obtains better performance in substrate feed optimisation for agricultural
biogas plants than other evolutionary methods. For example, in [51] genetic algorithms
are used to minimize the environmental impact caused by mine water. The main draw-
back for PSO pointed out in [50] is premature convergence, since particles may become
trapped in local optima or suffer stagnation, but this may be solved by a partial restart
of the process introducing new particles in the search space. In [52], ACO and GA are
applied to optimise the route of waste collection vehicles for municipal waste collection
and transportation—the highest cost of the entire waste management system—with similar
performance attained by both algorithms; however, only the problem of travel logistics
is considered, not the blending of municipal waste. Ref. [53] proposes a nonlinear model
predictive control strategy using the MATLAB BioOptim toolbox, developed by the same
authors, for optimal control of substrate feed to AnD operation of an agricultural biogas
plant, with a graphical user interface (GUI) integrating a fitness function including differ-
ent operating constraints and parameters such as pH, solids or methane concentration,
and using evolutionary optimisers such as PSO, covariance matrix adaptation evolution
strategy (CMAES). Alternatively, they propose differential evolution (DE), which achieved
better performance with PSO but without considering the substrate travel logistics in the
optimisation. Ref. [54] presents a prediction and optimisation method using a multi-layer
perceptron artificial neural network (ANN) and PSO for the maximisation of biogas genera-
tion in a real wastewater treatment facility. A similar approach is presented in [55], where
modelling and optimisation of biogas production with mixed substrates are obtained with
a combination of ANN and GA methods.

Additionally, ref. [55] and references therein point out how stochastic global optimi-
sation algorithms (SGOAs), such as PSO, the ACO, and GA, among others, are consid-
ered efficient alternatives in the design of optimal production media and optimal process
operating conditions in fermentation research and can significantly reduce the process
development time. Regarding the comparison of the optimisation algorithms selected here
solving combinatorial optimisation (CO) problems, in [56], ACO and GA are compared,
both achieving good performance but with GA exhibiting slightly better performance than
ACO. In the latter reference, it is also mentioned how trimming of specific parameters for
both optimisers—e.g., number of iterations, evaporation coefficient and number of ants
for ACO, or chromosome population, crossover and mutation probabilities for GA—is
required to achieve good performance in both cases. In [57], relationships between GA
and ACO-type algorithms are detailed, presenting their similitudes and showing how they
use similar principles to succeed in CO problems with globally convex structure of its
solution space. Overall, SGOAs such as ACO, GA or PSO have shown good performance
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in the type of applications presented and hence demonstrated suitability for non-convex
nonlinear multidimensional optimisation problems, as presented here. Optimal blending
for AnCD is considered, e.g., in [40,55], but to the knowledge of the authors, the optimisa-
tion of such blending combined with the travel logistics of co-substrates in a centralised
multi-receptor co-digestion strategy has not yet been studied. Additionally, a comparison
between different suitable optimisation algorithms for such applications, i.e., ACO, GA
and PSO, is presented.

The application of optimisation strategies in AnD allows a significant enhancement of
co-digestion strategies [30] maximising biogas production and minimising associated risks
to each AnD operation (e.g., overdosing or acidification). In this work, the performance
of each optimisation approach considered is evaluated on a real case study in the area of
the Besòs River basin in Catalonia, including a network of substrate generators and three
anaerobic digesters. Hence, the objective of this study is to develop a tool that is able to
optimise the centralised digestion process of an AnD network with multiple waste sources
and waste receptors by means of three evolutionary optimisation algorithms—namely,
ACO, GA and PSO. Such a tool is tested in a real case study to further analyse and compare
the performance of each algorithm in the overall AnD network optimisation.

2. Material and Methods
2.1. Optimisation Algorithms Considered

The optimisation algorithms presented here fall within the set of SGOA, concretely in
the subset of evolutionary algorithms (EA) for GA—which use mechanisms inspired by
biological evolution, e.g., mutation or recombination to achieve the goal of optimisation—
and in the subset of swarm intelligence methods for ACO and PSO based on the collective
behaviour of self-organised decentralised systems, respectively. SGOA algorithms have
been widely used to solve NP-hard combinatorial optimisation problems, such as that
presented in this study, which deterministic optimisation methods fail to handle due to
their complexity.

Regarding each proposal, ACO is a metaheuristic approach that has been shown to
be effective in solving a variety of NP-hard problems [58]. The algorithm is based on
simulation of the behaviour of real ants in their search for food. When ants find food,
they leave a pheromone trail on their path. Then, new ants follow that trail. In this way,
an increasing number of ants are concentrated in places where there is food. In a similar
way, the virtual ants construct a solution moving through the graph that represents the
search space of solutions. Their paths are guided by a probabilistic state transition rule,
which is based on pheromone trails and specific heuristic information. The algorithmic
procedure is iterative. At each iteration, the pheromone trails are updated by applying an
evaporation coefficient (when the value selected is not part of a feasible solution). To avoid
rapid stagnation of the solution, the ACO algorithms can use several strategies [59], such
as that related to the limitation of the pheromone trails between maximum and minimum
values. Max–Min Ant System [60] uses this procedure.

The GA is a metaheuristic approach also used in combinatorial optimisation problems.
It is based on the mechanics of natural selection and natural genetics. GA applications cover
a range of combinatorial optimisations, e.g., hydraulic model calibration [61], performance
of photovoltaic systems under variable atmospheric conditions [62], and sensor placement
for leak detection in water distribution networks [39,63]. The GA is based on three main
parameters: selection, crossover and mutation. The population matrix is randomly gen-
erated and consists of the design variables, and the best variables are selected according
to their fitness value. From these solutions, new solutions are produced via the crossover
operator [64]. The mutation operator is finally employed to avoid the algorithm converging
to local optima (i.e., to maintain the genetic diversity).

The GA cycle is repeated through a number of generations until a stopping criterion is
met. It is worth noting that elitism is not generally considered an operator in the canonical
GA. However, it is deemed a robust and effective operator because it leads the optimisation
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procedure towards the optimal solution. Accordingly, this operator stops the best solutions
from being mutated. In this way, the best solutions of each generation would pass to
the next, unaltered. Over the course of the algorithm and through a sufficient number of
generations, the traits of these solutions would transfer to their offspring, increasing the
chance of producing new solutions whose fitness function values might be better than their
parents [64]. Some drawbacks of GAs are noted in [61], e.g., achieving a global optimum
for large and complex systems is not guaranteed, which is also a drawback for ACO. In [57],
the relation between GAs and ACO is noted.

PSO is a recently developed EA that includes features such as easy implementation for
solving practical problems, high accuracy and fast convergence of the solution as some of
its main advantages [65,66]. While similarities exist in the iterative nature of PSO and GAs,
conversely, in PSO, there are no, e.g., “crossover” or “mutation” operations. Instead, PSO
is based on a population of candidate solutions, defined as particles. The set of particles
composes a swarm, where each individual flows through the parameter space. The flow of
such particles is defined by trajectories, which are driven by the best performance of the
particle and the neighbouring particles in the parameter space. The initialization of particle
swarm is random. The initial solution of each particle represents an alternative solution;
that is, each particle has its own initial position and speed and is randomly distributed
in each position of the feasible solution space to be searched. Therefore, the initialization
of the particle swarm represents the preparation of the particle swarm search. Its size is
determined by its speed and position, and the particle update is based on the comparison
of the fitness values between each search particle and its neighbouring search particles
to determine the necessity of updating a particle. The updated particle adjusts its speed
and position according to the particle’s new flight path model, which is based on the best
results achieved by its neighbouring particles. These conditions yield different optimal
experiences for different particle subgroups, which dynamically evolve according to the
current position of particles, the particle current velocities, the distance between each
particle of the subgroup and its best position and the distance between each particle of the
subgroup and the best position of the whole subgroup.

The PSO algorithm does not need cross-mutation or other genetically inspired op-
erations, so the algorithm has fewer parameters and is still high efficiency [65]. These
properties are suitable for both engineering applications and scientific research, and a
significant number of research results have been produced in recent years [67]. For exam-
ple, in [68], PSO is applied for function optimisation regarding eco-economics modelling
and assessment; in [69], it is used as part of fuzzy systems developed to optimise fuel
consumption of hybrid vehicles; and in [70], PSO is used to train neural network models
and perform real-time optimisation.

2.2. Centralised Co-Digestion as an Optimisation Problem

Mathematical optimisation involves the selection of one solution amongst a set, accord-
ing to some criterion and constraints (that is, the optimisation problem). This optimisation
problem can be stated as:

min
x∈X

f (x) subject to g(x), (1)

where f (x) is the objective or cost function, X is a feasible region and g(x) are the constraints
that have to hold to find a minimiser x* of f (x) such that f (x∗) = minx∈X f (x). ACO, GA
and PSO introduced in Section 2.1 are algorithms aimed at finding the optimal solution
of the optimisation problem posed in (1)—i.e., minimise the objective function f (·) subject
to the set of constraints g(x) that apply—which here consists of the selection of the best
substrates and volumes according to a set of restrictions related to the operation of the
anaerobic digester. In addition, the cost function allows quantifying each alternative
potential solution according to (1), involving the calculation of a value or “cost” associated
with each alternative considered to find the optimal solution.

The problem statement is similar to that presented in [41], although the number of
waste receptors increases from one to three, thus making necessary a reformulation of
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the optimisation problem involved. Specifically, it is required to increase the dimensions
of all data vectors that define each generator-receptor interaction and their subsequent
calculations. In addition, matrix operations are repeated per new dimension (i.e., waste
receptor) added.

This optimisation problem, which can be understood as a MKP and is of combinatorial
nature, can be represented as a matching problem. It is defined with a graph G = (N, E) that
summarises all the possible combinations. The graph consists of N vertices (or nodes) and
E edges or pairs of vertices. Specifically, for the case of AnD optimisation, a bipartite graph
can be used to represent the posed optimisation problem to differentiate between the set of
waste generators (N1), containing W nodes, and the set of waste receptors (N2), containing
R nodes. For the specific optimisation problem, all W nodes are connected to each R node,
thus resulting in a total of W·R = E edges. Figure 1 shows a generic representation of the
defined matching problem applied to AnD co-digestion optimisation.
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A set of substrate generators w ∈ {1, . . . , N} is considered. The volume of each sub-
strate Vw can be selected as a contribution to any of the AnD systems. The binary decision
variable ys

w allows generating array volumetric possibilities (Vs
w, with s ∈ {0 . . . , lw} that

are determined as a multiple of a number (e.g., 1000 by default) such that 1000lw = Vw.
The selection of each volumetric possibility is determined by the corresponding value of
the binary decision variable, ys

w, where y ∈ {0, 1}, with ys
w = 0 when the corresponding

volumetric configuration is not selected, and ys
w = 1 when it is selected. Note that for each

waste generator w, there are lw different volumetric configurations in ys
w, but only one is

selected at a time, i.e., ∑lw
s=1 ys

w = 1 ∀w ∈ {1 . . . , N}.
To normalise the objective function, selected volumes Vs

w are divided by the maximum
volume from their corresponding waste generator (Vw). This approach provides values of
the cost function between 0 and 1, where the closest to 1 the better the solution. However,
note that the ACO algorithm looks for a maximum of the objective function, while GA and
PSO look for a minimum. This behaviour is considered using the constant K ∈ {−1, 1},
which depends on the algorithm considered: for the ACO algorithm K = 1 and for the
GA and PSO algorithms K = −1. Hence, cost index B would take positive values between
0 and 1 for ACO and negative values between 0 and −1 for GA and PSO. Instead, the
absolute value is taken for all three algorithms.

Fc
w (c = 1, . . . , 3) and Tw are the set of dimensionless coefficients corresponding to the

substrate characterisation and the quality term
(

∑3
c=1 Fc

w

)
ρq, already used and explained

previously in [41,46] and defined as shown in Figure 2.
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w and (D) Tw equations used for dimensionless coefficient calculation.

F1
w is a coefficient related to the potential biogas production, measured as a function of

the Chemical Oxygen Demand (COD) content. F2
w indicates the ratio of COD/TN (where

TN refers to Total Nitrogen), a useful measure to prevent situations of acidification and
other undesired reactions of the AnD process, as long as it is maintained around the range
of 20–60. F3

w is linked to the alkalinity (Alk) concentration, and it is associated with a
restriction ranging from 2500 to 6000 mg CaCO3/L integrated within all optimisation
algorithms. Tw is a coefficient of the utmost importance since it describes the toxicity level
of all waste fluxes, which should be kept at the lowest level possible (specifically below
2.1 mg Pb/L).

The N different substrate generators are located at different distances (dw) from each
anaerobic digester. The conveyance of the selected volumes implies a travel distance dw (in
km) with an economic cost xw (in €/km) and a social impact Iw = 1, . . . , 3 (dimensionless).
The higher the value of Iw, the higher the social impact of the related route (e.g., proximity
to sensitive areas due to pollution, traffic density, or pedestrian presence). Since each route
is different for each generator, different values are assigned to approach the logistic impact
of the corresponding waste generator, so a value for Iw is assigned for each sludge/substrate
generator depending on its route to the ST.

The coefficient weight ρq (dimensionless) is related to the quality term
(

∑3
c=1 Fc

w

)
ρq,

and the coefficient ρx (dimensionless) is the coefficient that weights the logistics term
ρx

Xwdw Iw
. Each weight is given a value of 0.5 to provide a balance between the quality and

logistics terms in the optimisation. Selected volumes of each substrate to each receptor
contribute to the input to the AnD network, and the aforementioned parameters constitute
the objective or cost function f (x).

Additionally, the optimisation problem presented considers a set of restrictions g(x)
related to each of the total inputs to each of the receptor systems, based on those presented
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in [41,48]. The first restriction is the sum of accepted substrates ∑N
w=1 ∑lw

s=0 ys
wVs

w must not
exceed the maximum acceptable volume V for each AnD system. Moreover, the COD/TN
ratio, related to the dimensionless coefficient F2

w, must be kept within the range
[
C2

min, C2
max

]
.

The alkalinity concentration, related to the dimensionless coefficient F3
w, must also be kept

within the range
[
C3

min, C3
max

]
. The toxicity level, related to Tw, does not require restriction

since the corresponding coefficient Tw is considered to be restrictive enough, as shown in
Figure 2.

In addition, an estimation of the produced biogas is made assuming a conversion
factor of 0.268 m3 biogas/kg COD. Finally, note that the cost function presented in this
work is adapted from [41,48], where the ACO algorithm was used for waste management
optimisation in a similar fashion but limited to one AnD receptor.

The objective function f (x) for the presented optimisation problem is as follows in (2).
However, note that the performance comparison of the ACO, GA and PSO algorithms
is not conducted directly on the value of the optimised objective function, B′, but on its
absolute value, B, as shown in (3).

B′ = K
{

∑N
w=1∑lw

s=0ys
w

Vs
w

Vw
Tw

[(
∑3

c=1Fc
w

)
ρq +

ρx

Xwdw Iw

]}
(2)

B =
∣∣B′∣∣ (3)

3. Results
3.1. Case Study

The case study includes a network of 19 organic waste generators and three organic
waste receptors. These 22 locations (i.e., 19 generators and 3 receptors) are part of the
wastewater treatment system managed by Consorci Besòs Tordera (CBT), a public local
water administration composed of 64 municipalities in four different regions of Catalonia
(Spain) with a population of approximately 470,000 inhabitants. This case study and its
anaerobic network system were also considered in [41]. Figure 3 shows the corresponding
bipartite graph of the case study.
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The three organic waste receptors (R1–R3, or nodes 1–3 of Figure 3) refer to three
separate WWTPs that produce their own sewage sludge, but that also have available AnD
technology. Due to oversized design, which is a usual practice in WWTP design [71], these
AnD systems in R1–R3 have available capacity. This free excess capacity can be used to
accept wastes from external sources, such as the undigested sewage sludge of W1–W12 or
the industrial substrates from C1–C7.

The 19 waste generators consist of 12 WWTPs that produce undigested sewage sludge
(W1–W12, or nodes 4–15 of Figure 3) and seven industrial substrate generators (C1–C7,
or nodes 16–22 of Figure 3), which were considered suitable sources of organic waste for
the AnD network under study. Each of these locations is a separate and independent
system that must manage its own waste produced as best as possible. Additionally, seven
industrial substrate generators have been previously verified as feasible substrates for AnD
by CBT technical services.
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3.2. Simulation Methodology

The algorithms used in this work have been implemented in the MATLAB environ-
ment. Simulations were performed with a Lenovo ThinkPad (Lenovo Group, Ltd., Girona,
Spain) L14 Gen1-20U10016SP ×64 using the OS Microsoft Windows 10 Pro and an In-
tel(R) Core(TM) i7-10510U CPU processor (1.80 GHz, 2304 MHz) consisting of four main
processors and eight logic processors.

The main optimisation parameters of both GA and PSO algorithms were trimmed in
an attempt to select the most suitable array to provide reliable results. Accordingly, the
same procedure was already performed for the ACO algorithm to determine the values of
its corresponding optimisation parameters in [48], where the same optimisation parameters
are used in this work.

For the ACO algorithm, an initial population of 100 individuals (or ants) and 500 itera-
tions per repetition is set, and the values used for the algorithm optimisation parameters
are α = 1, β = 2 and ρ = 0.98, each corresponding to the importance assigned to the
pheromone trail, the importance assigned to the heuristic information and the persistence
degree or pheromone evaporation, as explained in [38,58,60]. For GA, the initial population
is set to 100, the total number of iterations (or generations) is set to 500, the crossover
fraction is set to 0.8 and the fraction of elite children is set to 5% of the corresponding total
children. For PSO, the initial population was set to 100, the total number of iterations was
set to 500, cognitive attraction was set to 0.8 and the social attraction factor is set to 1.25.
Tables 1 and 2 summarise trimming tests for GA and PSO, respectively, where the best
results are obtained for higher values of objective index B.

Table 1. Summary of trimming tests for the GA.

Tested Parameters Best Index (B) Time(s)

Crossover Fraction
0.2 0.0274 525.73
0.5 0.0295 574.46
0.8 0.0304 537.98

Elite Count
0.05 0.0309 541.48
0.15 0.0300 536.15
0.3 0.0291 554.83

Table 2. Summary of trimming tests for PSO.

Tested Parameters Best Index (B) Time(s)

Cognitive Attraction
0.2 0.0293 82.86
0.5 0.0304 62.93
0.8 0.0322 57.26

Social Attraction
1.05 0.0301 55.78
1.25 0.0329 74.98
1.95 0.0308 63.45

For the sake of performance comparison, some parameters were fixed for the three
algorithms. The fixed parameters are the number of independent simulations (set to 10, the
best result is selected), the population (set to 100 individuals), and the maximum number
of iterations (set to 500). With these constraints on algorithm trimming, a performance
comparison of ACO, GA and PSO was conducted.

The comparison of ACO, GA and PSO performances is based on the value of the
fitness function, execution time and an array of technical variables related to the total
expected performance of the optimised AnD network: total daily biogas production (in
Nm3), average organic load (in kg of COD per m3 of volume of the digestion system and
day), average carbon to nitrogen ratio (C/N), and average alkalinity (in mg of CaCO3).
All algorithms are tested with data from a real case study as the main simulation scenario.
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However, other synthetic scenarios are tested to further compare the performance of each
algorithm under different scenario conditions.

In the approach presented here, simulated scenarios are based on the waste generator
data in Table 3, alongside route distance and receptor system characterisation. For all the
19 waste generators (i.e., the 12 WWTPs without AnD and the seven substrate generators),
the addition to the AnD network is optimised. For each of the three AnD systems (i.e.,
receptors R1, R2 and R3), different volume constraints have been determined, according to
operational data and assuming a limit to the hydraulic retention time of 20 days (below
that retention time, AnD efficiency is expected to greatly decrease).

Table 3. Waste generator dataset, including distance between waste generators and receptors and
characterisation of each receptor of the case study (Baseline Scenario or Scenario 0).

Waste
Generator ID

Vw
(L by Day)

COD
(mg/L) C/N

Alk
(mg/L)

Tw
(mg/L)

R1 R2 R3
Distance to

R1 (km)
Distance to

R2 (km)
Distance to

R3 (km)

W1 27,600 19,900 17.8 4300 1.55 5.3 20.5 9.5
W2 47,000 16,900 20.6 3200 1.36 35.9 33.9 45.7
W3 46,300 18,600 19.4 10,100 1.42 21.8 16.6 28.9
W4 20,200 23,400 15.6 3400 1.38 30.4 43.2 19.7
W5 38,400 21,100 17.9 4500 1.35 19.7 24.7 12.4
W6 34,400 18,800 14.0 3800 1.61 14.8 19.9 15.9
W7 13,800 22,600 15.3 2700 1.57 32.1 44.9 18.4
W8 4400 22,100 15.2 1800 2.30 26.5 31.6 27.7
W9 10,800 21,700 15.1 5300 0.93 20.3 33.1 8.8

W10 9500 20,400 15.5 2500 1.28 30 24.8 37.1
W11 17,000 23,300 14.8 7800 0.98 36.9 31.7 44
W12 6500 20,100 16.5 3100 1.40 20.5 33.3 8.7
C1 9000 667,400 42.5 250 0.01 15.9 11.1 23
C2 9000 497,400 461.8 330 0.01 7 12 17.9
C3 9000 155,900 3118.1 60 0.02 27.9 40.7 17.2
C4 9000 459,100 274.1 660 0.10 16.2 11.1 22.9
C5 9000 657,200 2330.6 630 0.01 52.8 65.6 43.8
C6 9000 266,200 2832.4 20 0.01 56.1 33 21
C7 9000 262,100 32,768.4 110 0.01 36.7 24.1 66.4

Maximum
Volume (L/day) 122,000 146,000 111,000

COD (mg/L) 18,600 19,100 18,200
C/N 19.1 20.3 18.4

Alk (mg/L) 3100 2900 3400
Tw (mg/L) 1.41 1.68 1.53

Each simulation for ACO, GA and PSO is repeated 10 times since these algorithms
have probabilistic, iterative-based search methods. The best solution among these runs
is selected for further analysis, although the average fitness function is also registered
for discussion.

The data obtained for ACO, GA and PSO (each comprising 10 repetitions of the
corresponding algorithm) are compared for every simulated scenario. The baseline scenario
(i.e., Scenario 0) corresponds to the real case study, as described in Table 3. Additional
synthetic Scenarios 1–4 are simulated, and their corresponding data are created from
alterations of the baseline scenario, as described in Table 4.
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Table 4. Synthetic scenarios created from original Scenario 0 in Table 3. Description of data alter-
ation procedure.

ID Description

Baseline (Scenario 0) scenario Scenario based on data form real case study (see Table 3)
Scenario 1 High COD (×10 COD concentration)

Scenario 2a Linear modification of distances: ×10 distances

Scenario 2b Nonlinear modification of distances: square root of
original distance

Scenario 3 High volumes (×3 volumes)

Scenario 4 C/N variations (increase of W1–W12 C/N ratio to the
50–60 range)

While for Scenarios 1 and 2 any modification is viable, for Scenario 3, an increase in
volume involves a significant increase in execution time. This is because the optimisation
problem works around combinations of fixed volumes, and an increase in volume would
involve a higher number of possible combinations for the algorithms to consider (i.e., an
increase in the search space), hence the expected increase in execution time. Thus, volume
modification for Scenario 3 was limited to a triple increase in the baseline scenario volume.
Alternatively, for Scenario 4, the C/N ratios were modified while being kept below 60 to
facilitate the algorithms in finding a viable solution. This measure was adopted because
the C/N ratio was the most limiting optimisation parameter in previous applications of
a similar optimisation problem in [41]. Scenario 2 was designed with both linear and
nonlinear distance modifications (Scenarios 2a and 2b, respectively) to discuss the effect of
distance distribution, as pointed out in [41]. Note that trimming tests were carried out only
for GA and PSO using the baseline scenario, assuming that trimmed parameters would
suffice for simulation of other synthetic scenarios similar to the baseline scenario.

The optimisation results are presented as a sequence of contributions from all the
generators to each anaerobic digester. This optimised contribution sequence can be con-
sidered a suggested logistic plan for the co-substrate distribution as follows: once enough
substrate has been produced and stocked on a waste generator, a truck of 20 metric tonnes
capacity would be fully loaded with substrate from the corresponding waste generator,
disregarding the truck waiting time before starting each route; once fully loaded, the truck
is assumed to travel to the waste receptor without further stops (assuming it always follows
the same route). As long as the cycle of supply routes of all involved waste generators
is completed within the AnD retention time of 20 days, the properties of the resulting
blending should not vary significantly, especially considering that every waste receptor
would have a receiving system for these external organic substrates, where they would be
stored and blended before being added to the AnD system. The specific start and finish time
for each route along the day have not been considered; this does not affect the optimisation,
although it has been noted that it has considerable impact on real-world implementation.

3.3. Algorithm Performance Comparison and Scenario Analysis

The simulation results for each scenario are shown in Table 5. For every scenario
and for ACO, GA and PSO, this table shows the best cost index (B) achieved, elapsed
optimisation time, and additional parameters related to the performance of the AnD
systems: total biogas production, average organic load, average carbon/nitrogen ratio and
average alkalinity.

In the baseline scenario, ACO and GA show higher biogas production than PSO (23%
and 30% higher, respectively). However, they show a slightly lower B index achieved
(4% and 11% lower). This result indicates that although one of the main goals of AnD
optimisation involves maximising biogas production, it is not all that matters because
there are other parameters also subjected to optimisation. PSO appears to find a solution
with lower biogas production but better optimises other quality parameters, such as the
C/N ratio and alkalinity. However, it is remarkable that out of the three algorithms, ACO
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and GA find a “similar solution” (prioritising high biogas production), and PSO fins a
significantly different solution (prioritising other quality-related parameters).

Table 5. Summary of algorithm performance. The best value B is highlighted. Scenario 2a feasible
results (*) are associated with a poor solution, so no direct comparison is conducted.

Scenario Baseline Scenario Scenario 1

Optimisation Method ACO GA PSO ACO GA PSO

Best Index (B) 0.0336 0.0313 0.0349 0.0330 0.0328 0.0211
Time (seconds) 595.46 325.37 90.20 1825.34 1035.53 221.74
Total Biogas Production (Nm3/d) 25,657 27,133 20,852 114,870 198,284 102,927
Avg Organic Load (kg COD/m3·d) 2.32 2.59 2.09 9.67 17.46 9.73
Avg C/N ratio
(limited below 60) 50.5 56.1 46.4 24.1 54 32.4

Avg Alkalinity (g CaCO3/m3) 3079 3141 3245 3183 3193 3282

Scenario Scenario 2a Scenario 2b

Optimisation Method ACO GA PSO ACO GA PSO

Best Index (B) - 0.0001 * 0.0001 * 0.0287 0.0333 0.0319
Time (seconds) - 62 60 669.56 193 63.61
Total Biogas Production (Nm3/d) - 14,278 12,325 17,468 25,404 19,237
Avg Organic Load (kg COD/m3·d) - 1.6 1.4 1.69 2.5 2.24
Avg C/N ratio
(limited below 60) - 45.9 32.8 23.4 55.2 32.4

Avg Alkalinity (g CaCO3/m3) - 3298 3319 3338 3174 3221

Scenario Scenario 3 Scenario 4

Optimisation Method ACO GA PSO ACO GA PSO

Best Index (B) 0.0077 0.0324 0.0300 0.0339 0.0319 0.0354
Time (seconds) 671.03 548.46 68.10 1824.94 350.89 86.47
Total Biogas Production (Nm3/d) 17,224 33,657 35,395 20,770 23,326 19,524
Avg Organic Load (kg COD/m3·d) 1.70 2.79 2.92 2.02 2.23 1.90
Avg C/N ratio
(limited below 60) 19.1 26.3 32.9 35.9 56.4 37.8

Avg Alkalinity (g CaCO3/m3)
(limited above 2500)

2985 3020 3233 3217 3199 3272

In Scenario 1, the COD concentration was increased tenfold. This was done to com-
pare the efficiency of algorithms to optimise substrates with high organic loads, which
is especially meaningful for maximisation of biogas production. For this scenario, ACO
and GA have better performance, according to the best index B achieved. As a natural
consequence of substantial COD increases, biogas production also dramatically increases.
However, PSO is unable to achieve a competitive solution in relation to both ACO and GA
within this scenario and the baseline scenario, respectively.

In Scenario 2a, a tenfold lineal increase in the geographical distances between facilities
was conducted. This scenario allows comparing how well each algorithm can handle
situations where most substrates have long distances. For this scenario, ACO is unable
to find a feasible solution. On the other hand, GA and PSO find a solution, but the
corresponding biogas production is far lower than that obtained in the baseline scenario
(48% and 41% lower biogas production for GA and PSO, respectively).

Alternatively, Scenario 2b shows the optimisation results when nonlinearly modifying
geographical distances between facilities by the square root of the original distances. This
modification allows understanding which algorithm would be more favoured by a more
equally distributed geographic location of plants. All the algorithms tested are able to find
a feasible solution, showing that GA has the best performance (both in terms of best B and
biogas production). On the other hand, ACO shows the worst best index B achieved.
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Scenario 3 was modified by a threefold increase in available volume from all sources.
The presented modification allows studying the performance of each algorithm when
the total number of possible solutions is much greater. ACO shows noticeably poor
performance, below the best index B achieved by ACO in former scenarios. Although
GA shows better performance than PSO in terms of the best index B achieved, biogas
production appears similar to that in other scenarios.

In Scenario 4, an increase in the C/N ratio for waste generators W1–W12 was con-
ducted. This modification would test the ability of each algorithm when one of the re-
strictions (i.e., C/N ratio) requires more adjustments. In this case, PSO shows the best
index B achieved, although it presents the lowest biogas production. Similar to the baseline
scenario, ACO shows slightly better performance than GA in terms of the best B achieved,
but GA still has slightly better biogas production.

Geographical distance modification was performed with two alternative scenarios.
Scenario 2a includes a lineal modification of the distance matrix (tenfold), and Scenario 2b
considers a distance modified by the square root of the original distance. The relative loca-
tions of all involved waste generators and receptors in the case study are shown in Figure 4.
For the baseline scenario, waste generators are homogeneously geographically distributed,
but receptors are located in a relatively small area—i.e., the geographical distance difference
of each receptor from the emitters might be negligible by the optimisation—which may be
interpreted as a single receptor with higher volume capacity, caused by the geographical
overlapping of waste receptors, or the “big dot” effect. The linear modification of geo-
graphical distances in Scenario 2a does not alter this relative distribution, but the nonlinear
modification in Scenario 2b does so, avoiding this “big dot” effect by dispersing Receptors
A, B, and C in the geographical space. It is important to note that for Scenario 2a, ACO was
unable to find a viable solution, and both GA and PSO achieved a relatively poor solution
compared to the corresponding solutions for the baseline scenario.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 21 
 

 

increases. However, PSO is unable to achieve a competitive solution in relation to both 
ACO and GA within this scenario and the baseline scenario, respectively. 

In Scenario 2a, a tenfold lineal increase in the geographical distances between 
facilities was conducted. This scenario allows comparing how well each algorithm can 
handle situations where most substrates have long distances. For this scenario, ACO is 
unable to find a feasible solution. On the other hand, GA and PSO find a solution, but the 
corresponding biogas production is far lower than that obtained in the baseline scenario 
(48% and 41% lower biogas production for GA and PSO, respectively). 

Alternatively, Scenario 2b shows the optimisation results when nonlinearly 
modifying geographical distances between facilities by the square root of the original 
distances. This modification allows understanding which algorithm would be more 
favoured by a more equally distributed geographic location of plants. All the algorithms 
tested are able to find a feasible solution, showing that GA has the best performance 
(both in terms of best B and biogas production). On the other hand, ACO shows the worst 
best index B achieved. 

Scenario 3 was modified by a threefold increase in available volume from all 
sources. The presented modification allows studying the performance of each algorithm 
when the total number of possible solutions is much greater. ACO shows noticeably poor 
performance, below the best index B achieved by ACO in former scenarios. Although GA 
shows better performance than PSO in terms of the best index B achieved, biogas 
production appears similar to that in other scenarios. 

In Scenario 4, an increase in the C/N ratio for waste generators W1–W12 was 
conducted. This modification would test the ability of each algorithm when one of the 
restrictions (i.e., C/N ratio) requires more adjustments. In this case, PSO shows the best 
index B achieved, although it presents the lowest biogas production. Similar to the 
baseline scenario, ACO shows slightly better performance than GA in terms of the best B 
achieved, but GA still has slightly better biogas production. 

Geographical distance modification was performed with two alternative scenarios. 
Scenario 2a includes a lineal modification of the distance matrix (tenfold), and Scenario 
2b considers a distance modified by the square root of the original distance. The relative 
locations of all involved waste generators and receptors in the case study are shown in 
Figure 4. For the baseline scenario, waste generators are homogeneously geographically 
distributed, but receptors are located in a relatively small area—i.e., the geographical 
distance difference of each receptor from the emitters might be negligible by the 
optimisation—which may be interpreted as a single receptor with higher volume 
capacity, caused by the geographical overlapping of waste receptors, or the “big dot” 
effect. The linear modification of geographical distances in Scenario 2a does not alter this 
relative distribution, but the nonlinear modification in Scenario 2b does so, avoiding this 
“big dot” effect by dispersing Receptors A, B, and C in the geographical space. It is 
important to note that for Scenario 2a, ACO was unable to find a viable solution, and 
both GA and PSO achieved a relatively poor solution compared to the corresponding 
solutions for the baseline scenario. 
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distance (Y-axis) with respect to the R1 plant.

Figure 5 shows the resulting blending profile for the baseline scenario and Scenario
2b. For the baseline scenario, PSO tends to balance the blending of substrates with a low
organic load content—i.e., from W1–W12—and selects noticeably lower amounts of high
organic load substrates—i.e., from C1–C7— than ACO or GA. This observed behaviour is
similar between the three waste receptors A, B and C. On the other hand, ACO and GA
tend towards selective blending, showing similar preferences for both receptors B and C.
For receptor A, the GA algorithm tends towards slightly more homogeneous blending.
In any case, both ACO and GA include more substrates of high organic load—i.e., from
C1–C7—except for receptor C.

For Scenario 2b, the ACO blending profiles are similar to those obtained in the baseline
scenario—showing a certain tendency to include particular waste generators, —although
varying the substrates that the algorithm selects. The GA blending profiles obtained in
Scenario 2b are the most affected by geographical distance distortion. GA appears to
balance the blending of substrates from all waste generators, much like PSO for both
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scenarios 2a and 2b. Additionally, the GA blending profile for Scenario 2b accounts for
more industrial, high organic load wastes—i.e., from C1–C7—than the PSO blending profile,
which remains relatively similar between the baseline scenario and Scenario 2b.
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4. Discussion

Simulations with the optimisation algorithms ACO, GA and PSO were performed,
showing successful optimisation results in almost all scenarios. Data from a real case study
were used to carry simulations of centralised anaerobic co-digestion blending. As detailed
in Section 3, these datasets are composed of 19 organic waste generators and three organic
waste receptors within the context of a sanitation network in an area of high industrial
activity in Catalonia. This case study composes the baseline scenario. In that previous work,
the potential impacts of optimising AnD with wastes from external sources were already
demonstrated, bearing up to 77% cost savings regarding waste management. Different
modifications were made to this dataset to compare the performance of the ACO, GA, and
PSO algorithms under different conditions to assess the performance of each optimisation
algorithm in relevant situations. Regarding the optimisation problem, the C/N ratio is the
dominant restriction, as was previously seen in [41]. This is the reason why this parameter
is included in the discussion of the results, together with biogas production.

For the baseline scenario as seen in Table 5, PSO shows the best index B achieved
but also the lowest biogas production. However, PSO also shows the lowest C/N ratio,
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which might play a role in achieving the best solution, compensating for the lack of biogas
produced. If biogas production is increased by the design of a particular setup, this could
be trimmed by the corresponding weight in the objective function B as a trade-off among
the different parameters involved. The results obtained have been considered convenient
for the installation under study and improved dramatically performance obtained in the
baseline scenario [41]. However, both ACO and GA generally show higher amounts of
biogas production, but their best index B values achieved are below that of PSO, and their
C/N ratios are above 50.

As shown in Figure 5, ACO and GA show similar behaviours for the baseline scenario,
prioritising specific substrates. A first hypothesis suggests that prioritised substrates would
be those with higher COD since they would allow higher biogas production. On the other
hand, PSO shows a different strategy blending more available substrates and tends to
exclude industrial substrates. This trend may point to PSO performing a conservative
strategy where it is avoided in all cost situations where the operation of the AnD would
be put at risk. Therefore, the general trend is that ACO and GA solve the presented
optimisation problem by maximising biogas production and pushing restrictions to the
limit, while PSO tends to balance biogas maximisation and the C/N ratio trade-off. In
addition, note that PSO has the shortest execution times and ACO the largest, which is
observed for all scenarios, indicating PSO to be more computationally efficient, where even
here, the execution time is not a drawback for real implementation with the values obtained.

The similarities between ACO and GA and the differences between those and PSO
could be partially explained by the nature of these algorithms. Both ACO and GA tend to
explore the search space of solutions around the borders, thus increasing the number of non-
feasible solutions but also increasing the chances of finding a “rare” solution with a higher
best index [72,73]. Thus, these algorithms appear to be based on relatively independent
behaviour between particles so that each one can explore separate areas of the border
search space and be able to find different non-redundant solutions. On the other hand,
PSO algorithm exploration of the search space is based on dependent behaviour between
neighbouring particles, which does not encourage particles to explore the limits of the
search space. Instead, it promotes the exploration of other mid-term areas between the
centre and the borders of the search space. This could help explain why the PSO algorithm
attains solutions within shorter execution times but also with generally lower biogas
production. Hence, PSO would tend to be a conservative strategy where instead of selecting
the most promising solution, single ant or particle, it would prioritise a consensus between
the best neighbourhoods.

As detailed in Section 3, Scenario 1 is modified by increasing the organic load of
all substrates tenfold. Thus, the dominant condition, in this case, is that organic waste
valorisation is fostered, leading to higher biogas production. As observed in Table 5, ACO
and GA show better performance than PSO in this scenario, but GA is more efficient since
its attained biogas production is noticeably higher than that achieved with ACO.

Additionally, as detailed in Section 3, Scenarios 2a and 2b include a geographical
location modification of the involved facilities. As observed in Figure 4, the relative
distances between waste generators and receptors (R1, R2, R3) are not modified by lineal
modification of the distance when the map plot of the baseline scenario is compared to that
of Scenario 2a. However, nonlinear modification of geographical distances in Scenario 2b
leads to a different map plot, where waste receptors are more dispersed between them in
relation to waste generators (Figure 4). The effect of this distortion of distances is that waste
receptors are more separated, thus avoiding geographical overlapping of waste receptors,
or the “big dot” effect, i.e., assimilating closer plants as a single centralised plant from a
geographical perspective.

Hence, Scenario 2a is modified by tenfold increasing the geographical distances be-
tween waste generators and receptors, making geographical distance a dominant condition
for optimisation. In this case, ACO is unable to find a solution, and both GA and PSO
show extremely poor performance when compared with the baseline scenario, as shown in



Sensors 2022, 22, 1857 16 of 20

Table 5. The linear modification of distances of Scenario 2a shows the performance of each
algorithm under the pressure of cases with high geographical distances. This pressure case
of Scenario 2a was especially relevant to test because it can significantly impact the logistics
processes. On the other hand, Scenario 2b presents a different trend due to the nonlinear
modification of distances. As detailed in Table 5, GA shows the best performance, and PSO
shows better performance than ACO even in terms of biogas production.

As observed in Figure 5, ACO and PSO maintain similar blending profiles, while
GA and PSO also exhibit similar blending profiles, but including GA results in a greater
volume of industrial substrates. This shared behaviour between GA and PSO is exclusive to
Scenario 2b, but it might indicate that GA behaves similarly to PSO in this case. However,
from the operational point of view, GA solutions involve major risks since they tend to
include more industrial substrate than PSO solutions.

In Scenario 3, a threefold increase in the volume of all waste generated was performed.
First, this result implies that the search space—i.e., the total number of combinations and
possible solutions—drastically increases. In this case, Table 5 confirms a similar trend
observed for previous scenarios, where GA obtained the best performance and ACO the
worst. Again, this finding is consistent with the observation that the ACO algorithm
attains weaker performance than GA and PSO for this particular case and that GA and PSO
attain similar performance in this study, although GA appears to generally provide better
performance than PSO.

Finally, Scenario 4 was composed of increasing the C/N ratio of W1–W12 substrates.
These substrates originally conformed to sewage sludge with a low nitrogen load, but in
Scenario 4, the drastic increase in the C/N content of sewage sludge was the dominant
condition to be tested. Table 5 also presents a summary of the results for Scenario 4, where
PSO shows the best performance and GA the worst. The main observation is that the PSO
algorithm is more able than the GA to manage situations with high nitrogen loads or major
restrictions, while the GA has more potential to maximise biogas production. However,
it is more sensitive to high nitrogen loads because it reduces available space to acquire
industrial wastes with both high organic loads and high nitrogen loads.

The developed algorithms have successfully optimised the AnD network of the case
study, and their performances have been tested under different conditions (i.e., Scenarios 1–4).
Simultaneous logistics and quality optimisation of a network of existing waste management
facilities is a gap in the current state of the art due to its ad-hoc nature and its interdis-
ciplinarity: there are specialized works for logistics optimisation such as in [45,46], but
they do not include process optimisation. The present study implements this logistic
optimisation by minimising a cost function designed to this end. The reason for choosing
this approach is also based on the need for professionals who manage the AnD network
considered here to have a decision support tool capable of integrating logistics and pro-
cess performance optimisation. And, in addition, to have the ability to handle changing
operation conditions and scenarios, as it actually happens in real facilities.

It is also worth noting that it exists a variety of sensors for the determination of
physical-chemical parameters that could complement the sensor network considered in this
case study, such as a variation of the ones presented in [47]. These sensors could provide
additional insight, especially if combined with GIS and process optimisation, and also
facilitate the real-time implementation of the presented approach. Additionally, they could
also be used as control mechanisms for those cases where ACO and GA optimisation is
applied, since attained optimised outcomes pushed quality restrictions of the AnD process
close to their thresholds. However, there is a trade-off between information (i.e., data
gathered from new sensors) and resources (e.g., implementation, maintenance) which has
to be taken into account when considering new sensors.

Overall, this study presents a step forward towards the integrated optimisation of
AnD networks, making an innovative attempt to couple logistics and quality optimisation
of the centralised digestion process of a real AnD network.
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5. Conclusions

In this study, three approaches were developed for the simultaneous optimisation
of multiple AnD systems based on ACO, GA and PSO. These methods were applied to
a case study based on real data from an AnD network in the area of the Besòs River
basin in Catalonia. The performance of each optimisation approach was evaluated. All
the approaches successfully optimised biogas production for simulated scenarios while
preserving some practical restrictions in optimisation.

For the baseline scenario, ACO and GA allowed maximum biogas production by
placing restrictions on the limits of safe operations. On the other hand, PSO solved the
optimisation problem with a more conservative strategy where biogas production is lower
than that in ACO or GA solutions, in favour of the best AnD operation conditions (i.e., by
adjusting the C/N ratio and alkalinity).

In those cases with high opportunities for biogas production (i.e., Scenario 1), GA and
ACO would perform the best due to their capabilities of maximising biogas production over
that of PSO. GA would perform as the best optimisation algorithm both for cases where
distances are significantly different amongst them (i.e., Scenario 2b) and for cases where
higher volumes should be handled (i.e., Scenario 3), presumably due to GA’s computational
potential. Finally, for those cases where other quality-related parameters are restrictions
(i.e., Scenario 4), PSO would be the best performing algorithm.

The present study shows an innovative contribution to optimize the performance of
centralized AnD systems, combining logistical and quality parameters. To the authors’
knowledge, this optimization has not yet been addressed in the literature for an AnD
network. In addition, the framework has proven its effectiveness in minimizing the total
distance travelled to transport the waste and maximizing biogas production. At the
same time, the physical-chemical parameters of the process have been kept within their
operational limits.

Further work may include methodologies to improve social impact factor quantifica-
tion in the optimisation, which might allow better characterisation of the logistic impact
of each substrate generator. Additionally, the development of logistic route simulations
would be required to enhance real-world distribution planning considering daytime, travel
frequency, dynamic waste production-consumption coupled with stocking problems and
other time-related issues key to logistic planning.
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Abbreviations

WWTPs wastewater treatment plants
AnD anaerobic digestion
MKP multidimensional knapsack problem
AnCD anaerobic co-digestion
ACO Ant colony optimisation
GA Genetic algorithm
PSO Particle swarm optimisation
GUI graphical user interface
CMAES covariance matrix adaptation evolution strategy
DE differential evolution
ANN perceptron artificial neural network
SGOAs how stochastic global optimisation algorithms
CO combinatorial optimisation
EA evolutionary algorithms
COD Chemical Oxygen Demand
TN Total Nitrogen
C/N Carbon to Nitrogen ratio
CBT Consorci Besòs Tordera
GIS geographical information system
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