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Abstract: Vibration dampers can greatly eliminate the galloping phenomenon of overhead trans-
mission wires caused by wind. The detection of vibration dampers based on visual technology is
an important issue. The current vibration damper detection work is mainly carried out manually.
In view of the above situation, this article proposes a vibration damper detection model named
DamperYOLO based on the one-stage framework in object detection. DamperYOLO first uses a
Canny operator to smooth the overexposed points of the input image and extract edge features, then
selectees ResNet101 as the backbone of the framework to improve the detection speed, and finally
injects edge features into backbone through an attention mechanism. At the same time, an FPN-based
feature fusion network is used to provide feature maps of multiple resolutions. In addition, we built
a vibration damper detection dataset named DamperDetSet based on UAV cruise images. Multiple
sets of experiments on self-built DamperDetSet dataset prove that our model reaches state-of-the-art
level in terms of accuracy and test speed and meets the standard of real-time output of high-accuracy
test results.

Keywords: power transmission lines; vibration dampers detection; unmanned aerial vehicle (UAV);
deep neural networks; attention mechanism

1. Introduction

The main function of a power line vibration damper is to reduce the vibration of the
wire caused by wind galloping. High-voltage transmission towers have large spacing,
which makes it easy for the wires to vibrate when subjected to wind. The periodic bending
of the suspension caused by the vibration of the wire leads to fatigue damage to the metal
wire. In severe cases, accidents such as wire breakage and power tower collapse will be
induced. The use of a vibration damper on high voltage transmission lines can reduce the
vibration of the wires caused by the wind, thereby reducing the probability of accidents.
Therefore, vibration damper detection is an important topic in the inspection of overhead
transmission lines [1]. Vibration damper detection refers to obtaining the specific position
of the vibration damper in the inspection image. This task is an important prerequisite for
the work of vibration damper displacement detection, damage detection, and corrosion
detection. At present, vibration damper detection has attracted the attention of researchers
in the fields of smart grid and machine vision, with certain progress made [2].

UAV technology has developed rapidly in recent years. UAV has the advantages of
convenient operation, easy portability, and low cost [3]. Multi-UAV systems based on
wireless sensor networks [4] are used in crop yield estimation [5], object detection [6], and
other fields. UAVs have rapidly developed into important auxiliary equipment.

At present, the inspection of overhead transmission lines still mainly relies on visual
inspection by staff, which can produce omissions and incorrect judgments for the vibration
damper located at a high place; therefore, the use of UAVs for transmission line inspection
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is an issue of great research value. Researchers have used UAVs for equipment detection
and other tasks [7,8]. This article focuses on the issue of vibration damper detection using
UAV aerial images.

In early research work, traditional image processing techniques were most widely
used in power line inspection scenarios [2,9]. Researchers would select appropriate feature
extraction operators according to the actual situation and complete the task of object
detection through a threshold setting. Machine learning algorithms were also selected
to achieve better detection results [10]. However, such methods are very susceptible to
interference from background information, especially when using UAV aerial photography
data, as the similar color properties of vibration dampers and power towers can easily
cause missed detection.

In recent years, with the exponential growth of machine computing power and data
volume, it has become a research hotspot again. Deep learning technologies, especially con-
volutional neural networks, have opened new research directions in the field of computer
vision. There is much research on power components using the state-of-the-art method
in the field of object detection [11,12]. However, at present, these works are mainly based
on the simple application of the framework, there is no targeted improvement for the
characteristics of the vibration damper, and high accuracy of the model requires a large
amount of computing resources.

In addition, some studies have used special equipment for imaging or for the physical
properties of the device [13,14]. The results of these works are usually excellent, but the
extra equipment overhead and high usage cost make such methods unsuitable for power
line patrol scenarios.

Aiming at the research status of image-based vibration damper detection, this article
proposes a vibration damper detection model based on the one-stage algorithm in target
detection. The main contributions of this paper are as follows:

• A proposed vibration damper detection model called DamperYOLO based on the
YOLOv4 framework, which is more robust than traditional methods and can achieve
a good balance between speed and accuracy, and a vibration damper detection dataset
called DamperDetSet based on UAVs aerial images.

• To enhance images, Gaussian filtering is used to smooth the overexposed points in the
aerial image and the Canny algorithm is used to extract the contour information in
the image.

• Introduction of an attention-based structure in the backbone of DamperYOLO. This
module can introduce the edge information extracted by Canny into the forward
propagation process of the model and provide semantic guidance for the feature
extraction of the network.

• Addressing the problem that the vibration damper is small and difficult to detect in the
UAVs aerial image, we used a feature fusion network based on FPN after the backbone.
While outputting feature maps of different resolutions, the semantics and underlying
feature information of each layer are maintained, which provides a high-quality data
basis for the identification of vibration dampers.

The remainder of this article is organized as follows. Section 2 briefly introduces the
related work of vibration damper detection. Section 3 introduces the basic framework used
in the method proposed in this article. In Section 4, this article introduces the details of
DamperYOLO. In Section 5, this article introduces the damper dataset, the experimental
details, and a series of comparative experiments. Section 6 provides a brief summary of
the work.

2. Related Work

This section focuses on the image-based vibration damper detection research. The
existing work is mainly divided into traditional image processing methods, deep learning-
based research, and detection methods based on auxiliary equipment.
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2.1. Traditional Method

Traditional image processing algorithms use edge detection, color space conversion,
and clustering algorithms to extract damper information in images, usually combined with
machine learning algorithms for iterative classification tasks.

Wu et al. [2] used the snake model to extract the edge of the vibration damper, but due
to the helicopter airborne imaging equipment required, the cruise cost was high. Huang
et al. [9] performed corrosion and displacement detection on the vibration damper based
on rusty area ratio and color shade index, involving grayscale processing, edge detection,
threshold segmentation, morphological processing, and other technologies. Similarly, Song
et al. [15] detected the rust problem of the vibration damper based on the histogram. Jin
et al. [10] used Harr-like features and a cascade adaboost classifier to classify and detect
vibration dampers on overhead lines. Yang et al. [16] performed exponential transformation
on the S and V components in the HSV color space to improve the contrast between the
front and background. Liu et al. [17] used the canny operator and Hough transform method
to detect the displacement of the vibration damper on the high-voltage line. Similarly, Chen
et al. [18] used random Hough transformation for the vibration damper detection task.
Miao et al. [19] used the wavelet modules maximum method to locate the shock hammer on
the transmission line. Pan et al. [20] used a simple extraction operator to monitor the state
of the vibration damper. Jin et al. [21] used the Adaboost algorithm to conduct real-time
monitoring of the line vibration damper through drones.

Traditional methods use operators and classifiers to identify the vibration damper
on the line; the detection accuracy is limited by the complexity of the environmental
background, but its advantage lies in its fast detection speed, which is suitable for real-
time detection.

2.2. Deep Neural Networks

With the rapid development of deep learning technology, the detection of power line
components based on neural networks such as CNNs has gradually become a popular
research direction.

Based on YOLOv4, Bao et al. [1] used k-means to analyze the aspect ratio of the anchor
to detect damage, corrosion, and displacement faults of the vibration damper. Zhang
et al. [11] also used Faster R-CNN to detect damage and corrosion defects of the vibration
damper twice, in which the first detection result was used as the second proposal, thereby
improving the detection effect. Bao et al. [12] used the Cascade R-CNN framework to locate
and detect the damage of the vibration damper. Yang et al. [16] performed the detection
task of vibration dampers using Faster R-CNN based on HSV color space transformed
images. Guo et al. [22] used YOLOv4 to improve the detection effect of damaged vibration
damper. Wang et al. [23] investigated insulator defects in overhead transmission lines,
damage to vibration dampers, and foreign objects in bird’s nests. Zhang et al. [24] switched
to VGG16 as the basic backbone network and performed detection tasks for shockproof
hammers and other foreign objects on power towers.

The detection of power line components and foreign objects using deep neural net-
works has also attracted the attention of researchers. For example, the YOLO framework
is used to detect insulators on transmission lines [25] and icing detection [26], change the
anchor setting of Faster R-CNN according to the shape characteristics of the insulator [27],
using Mask R-CNN to detect line foreign objects [28], defect detection for high-speed rail
catenary insulators [29], and detection of wet insulators using infrared images [30]. Usually,
these studies are only simple applications of power components datasets, and most of the
studies lack targeted transformation for specific environments and scenarios; the solutions
provided are mostly trick stacking.

2.3. Auxiliary Equipment

In addition to using common optical images, there is also research that uses other
imaging equipment and auxiliary devices to perform detection tasks. For example, a robot
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is used to reset the vibration damper [14,17,31], and the damage of the vibration damper
is detected based on LiDAR data [13]. The damping of the vibration damper is detected
based on sensors such as optical ground wire (OPGW) and an all-dielectric self-supporting
(ADSS) optical cable [32]. In addition, some researchers [33] designed a rotation-free spacer
damper to improve the anti-galloping ability of power lines.

2.4. Researches Summary

There is still room for improvement in the detection of vibration dampers for overhead
transmission lines. A summary of these research is as follows:

• Traditional methods based on image processing technology. The detection accuracy
is mostly dependent on the quality of the image. If the background in the image
is too complex, this leads to the problem that the used feature operator does not
cover all situations, which inevitably leads to a decrease in the detection accuracy.
The advantage of the traditional method is that it consumes less resources and the
calculation speed is fast. Therefore, at present, this type of method is still the most
important when the scene is relatively simple, background interference is low, and the
real-time requirement is high.

• The method based on deep neural network is the hottest research direction in the field
of vibration damper detection. By relying on powerful computing equipment and a
large amount of training data, an end-to-end network model can be obtained; on this
basis, it is very easy to carry out detection tasks. However, there is currently no public
dataset for the vibration damper of overhead transmission lines, and the detection
effect of the model is often limited by the lack of computing power of edge devices.

• There is some research work based on auxiliary equipment. Such research uses the
characteristics of ultrasonic or infrared imaging equipment to perform the task of
vibration damper breakage detection. However, these devices are often inconvenient
for use along complex overhead lines, and the maintenance and use costs of the devices
are much higher than those of drones.

Combining the characteristics of the abovementioned research work, we not only hope
to obtain excellent detection results, but also hope that the model can run in real time on
devices lacking computing resources, such as drones. A one-stage method using deep
neural network is the most suitable choice. One-stage object detection utilizes the powerful
feature extraction capabilities of CNNs to cope with complex application scenarios. At
the same time, the detection result does not depend on the proposal, and its calculation
speed is fast enough. Therefore, in the following work, based on the one-stage model, we
propose a detection method based on the visual characteristics of the vibration damper in
the real scene.

3. Basic Knowledge of YOLO

YOLO [34] proposed by Redmon et al. in 2016 is a classic one-stage object detection
method. YOLOs [34–37] solves the target detection problem as a regression problem. After
an inference of the input image, the positions of all objects in the image, their categories,
and corresponding confidence probabilities can be obtained. YOLO divides the input image
into SxS grids, and each grid is responsible for detecting objects that fall into the grid. If the
coordinates of the center position of an object fall into a grid, then the grid is responsible
for detecting the object.

The difference between the backbone in YOLOv4 [37] is that it is based on the Darknet
structure in YOLOv3 [36] and borrows the structure of the CSPNet network [38] to propose
a network structure called CSPDarknet. The loss function used in training is CIOU [39].

Since the objects to be detected in this paper are only vibration dampers, an overly
complex network structure will have a negative impact on feature extraction; therefore,
this paper selects the classic ResNet101 [40] as feature extraction network. The objective
function of YOLOv4 is as follows:
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Ldet = Lbox + Lobj + Lcls (1)

where Lbox, Lobj, and Lcls represent the regression loss, confidence loss, and category loss of
the box, respectively. The expression of the box regression loss is as follows:

Lbox = λcoord

S2

∑
i=0

B

∑
j=0

1obj
i,j

(
1−

(
IoU − Distance_22

Distance_C2 −
v2

(1− IoU) + v

))
(2)

where λcoord is the weight of box regression loss, S2
i represents the ith grid of S×S size, Bj

represents the jth predicted box of S2
i , and 1obj

i,j indicates that there is a target center of the
prediction category in the box. IoU is the Intersection-of-Union of the predicted box and
ground truth, the calculation formula of IoU is Equation (3), Distance_2 is the Euclidean
distance between the center coordinates of Boxp and Boxgt, Distance_C is the diagonal
length of the smallest bounding rectangle of Boxp and Boxgt, v is a parameter to measure
the consistency of the aspect ratio of Boxp and Boxgt, and the calculation formula of v is
Equation (4).

IoU =

∣∣Boxp ∩ Boxgt
∣∣

|Boxp ∪ Boxgt|
(3)

where Boxp and Boxgt represent the predicted box and ground truth, respectively.

v =
4

π2

(
arctan

wgt

hgt − arctan
wp

hp

)2

(4)

where wgt and wp represent the width of the ground truth and predicted box, respectively,
while hgt and hp represent their respective heights.

Similar to the regression loss, the loss function for the target prediction confidence is
as follows:

Lobj = λnoobj

S2

∑
i=0

B

∑
j=0

1noobj
i,j (ci − ĉi)

2 + λobj

S2

∑
i=0

B

∑
j=0

1obj
i,j (ci − ĉi)

2 (5)

where λnoobj and λobj, respectively, represent the weight of the confidence loss when the
object is not included and when it is included. ci and ĉi, respectively, represent the true
value and predicted value of whether there is an object of category i in the current box. The
other parameters have the same meaning as in the regression loss.

The category prediction loss uses the classic cross-entropy loss, and its calculation
formula is as follows:

Lobj = λnoobj

S2

∑
i=0

B

∑
j=0

1noobj
i,j (ci − ĉi)

2 + λobj

S2

∑
i=0

B

∑
j=0

1obj
i,j (ci − ĉi)

2 (6)

where λclass represents the weight of the category loss; p̂i(c) represents the predicted value
of the confidence of the current category; and pi(c) is a conditional probability, which is
obtained by obtaining a value of 0 or 1, depending on whether S2

i contains the target center,
and then multiplying it with IoU.

YOLOv4 uses CSPDarknet53 [38] as its feature extraction network, but CSPDarknet53
has lots of parameters. In addition, the only object to be detected in this paper is the
damper. As shown in Table 1, ResNet101 is composed of multiple groups of residual
blocks. ResNet has excellent feature extraction ability, which overcomes the problem of low
learning efficiency caused by excessive network depth. Therefore, the classic ResNet101 is
used as the backbone in this article.
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Table 1. Applied kernels of ResNet101 in DamperYOLO.

Layer Output Size Kernel Size

conv1 304 × 304 7 × 7, 64

conv2_x 152 × 152
 1× 1, 64

3× 3, 64
1× 1, 256

× 3

conv3_x 76 × 76
 1× 1, 128

3× 3, 128
1× 1, 512

× 4

conv4_x 38 × 38
 1× 1, 256

3× 3, 256
1× 1, 1024

× 23

conv5_x 19 × 19
 1× 1, 512

3× 3, 512
1× 1, 2048

× 3

4. DamperYOLO

In this section, a new framework named DamperYOLO is proposed for the vibration
damper detection task of overhead transmission lines based on YOLOv4 [37], Canny
algorithm [41], attention mechanism [42] and FPN [43] structure.

4.1. Edge Extraction

The quality of the input image is very important as it is the first step of the whole
network detection, which directly affects the subsequent detection process. Although,
strong noise immunity is one of the advantages of deep neural networks, no network
would want to receive a high-quality input, so that the trained model parameters have more
powerful attention to our target. Therefore, we decided to use edge detection techniques
to improve the semantic information in images for the purpose of image enhancement,
detailed in this subsection.

The canny algorithm is used to extract edge information from UAV aerial images. The
canny algorithm is mainly divided into four parts: Gaussian smooth image, gradient mag-
nitude and direction calculation, gradient magnitude nonmaximum suppression, double
threshold algorithm detection and edge connection.

Our images are obtained by unmanned aerial photography and are highly susceptible
to light reflections to generate exposure points. To reduce the influence of these bright
white points, a Gaussian kernel is used to smooth the image.

Compared with the median filter [44] and the mean filter [45], the Gaussian filter
assigns different calculation weights to different fields of the current element, which can
achieve the purpose of denoising while preserving the gray distribution characteristics of
the image. Gaussian filtering is usually implemented by iterative operations on the image
with (2k + 1) × (2k + 1) convolution kernels. The kernel generation equation is shown in
Equation (7).

Hij =
1

2πσ2 exp

(
− (i− (k + 1))2 + (j− (k + 1))2

2σ2

)
; 1 ≤ i, j ≤ (2k + 1) (7)

where k represents an integer, (2k + 1) represents the size of the convolution kernel, and
(i, j) represents the coordinates of one of the points.

The size of the convolution kernel is usually set to an odd number for the convenience
of calculation. The larger the kernel, the stronger the processing ability for local noise. In
our experiments, kernels with sizes of 3 × 3, 5 × 5, and 9 × 9 were selected for comparison.
The experimental results show that the kernel of 5 × 5 has the smallest effect.

After Gaussian smoothing, the background part still contains overexposed points.
There is no need to worry about the negative impact this brings to the model, as the network
focuses on the ground truth part during training. What must pay attention to is if the



Sensors 2022, 22, 1892 7 of 19

feature of the vibration damper is improved, and edge detection is one of the important
means of image enhancement. The parts of the image with high gradient variation in the
canny algorithm task image represent a higher probability of edges. Therefore, our next
step is to extract the gradient information of the image.

Gradients reflect the intensity of local pixel transformations. The greater the gradient
change, the greater the change in the corresponding region. The gradient needs to calculate
the direction and size of two parts, usually by calculating the gradient of the horizontal
and vertical directions to represent a complete gradient. Its calculation formula is shown in
Equations (8) and (9).

∂ f
∂x
≈ f (x + 1, y)− f (x− 1, y)

2
(8)

∂ f
∂y
≈ f (x, y + 1)− f (x, y− 1)

2
(9)

The direction a and increment b of the gradient can be obtained based on the gradients
in the horizontal and vertical directions, as shown in Equations (10) and (11).

θ = tan−1(
∂ f
∂y

/
∂ f
∂x

) (10)

‖∇ f ‖ =

√(
∂ f
∂x

)2
+

(
∂ f
∂y

)2
(11)

Gradient images contain all grayscale variations. Therefore, the canny algorithm uses
the nonmaximum suppression method [41] to propose the lower gradient variation in
the region.

The nonmaximum suppression algorithm calculates in eight areas around the pixel,
retaining the parts with the largest grayscale changes in the horizontal, vertical, and
diagonal directions while eliminating other parts with smaller changes by changing the
broad-side gradient map to a single pixel width of the side.

The method of the nonmaximum suppression algorithm can only enhance the edge
information and cannot guarantee that the remaining part is foreground information.
Therefore, the last step of the canny algorithm is to use the double threshold algorithm to
separate the foreground and background based on our prior knowledge.

In the double-threshold algorithm, the pixels above the strong edge threshold represent
edge information, and the pixels below the weak edge threshold represent background
information. The threshold between the two is the pending element, and if there is a strong
edge in the eight-neighborhood of these pixels, the pixel is also classified as an edge pixel.
Through comparison experiments of 200, 300, and 400 strong edge thresholds, it was found
that the threshold of strong edge is best when the threshold is 300, and the weak edge
threshold is set to 0.5 times of the strong edge. The formula for classifying gradient map
pixels is shown in Equation (12).

f (i) =


strong edge ; i > 300
weak edge ; 150 ≤ i ≤ 300
non− edge ; i < 150

(12)

To verify the effect of edge detection, we compared the performance of several classical
edge detection operators on vibration dampers. As shown in Figure 1, the edge extracted
by the Canny operator is the clearest.
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Figure 1. Test examples of edge detection algorithm.

4.2. Attention Mechanism

After obtaining the edge information in the image using the canny algorithm, it can be
used to produce positive effects. The attention mechanism [42] originated in the field of
NLP and has been introduced into computer vision in recent years. As shown in Figure 2,
by introducing additional convolution operations, the attention mechanism can focus on
the additional information being added.

Figure 2. Schematic diagram of the attention mechanism.

The attention mechanism is based on the edge information obtained by the canny
algorithm, and performs a convolution operation to obtain the attention weight matrix a.
The expression of the convolution operation is shown in Equation (13).

Ii
A = Softmax(IiWi

A + bi
A), for i = 1, 2 (13)

where Ii represents the input image,
{

Wi
A, bi

A
}2

i=1 represents the parameter of the convolu-
tion operation, and Softmax(·) represents the SoftMax function used for normalization.

We multiplied the resulting attention weight matrix with the corresponding input
image to obtain the final output:

IA = (I1
A ⊗ I1)⊕ (I2

A ⊗ I2) (14)

where IA represents the final output result of the attention mechanism, I1 and I2 represent
the input images, and the symbols ⊗ and ⊕ represent the multiplication and addition
elements of the matrix.

Attention mechanism is used in ResNet101 to send the edge image output by the
canny algorithm to the network to enhance the network’s ability to focus on the ground
truth region during feature extraction. We used an attention mechanism in layers 1, 2,
and 3 of ResNet because the network focuses on the low-level features of the input image
in the early stage of feature extraction. At the fourth and fifth layers, the output is a
feature map with highly abstract semantics. At this time, the introduction of the attention
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mechanism containing the edge map interferes with the effect of the feature map. A follow-
up sensitivity analysis on where the attention mechanism is introduced proves our point.

4.3. Feature Fusion Network

After introducing edge detection and attention mechanisms, our framework improved
to a certain extent. However, in the inspection data of overhead transmission lines captured
by UAVs, the vibration damper is a small target object. When ResNet101 performs feature
extraction, the deep network responds easily to semantic features and the shallow network
responds easily to image features. This feature leads to a problem: although the high-level
network can respond to semantic features, due to the small size of the Feature Map it does
not contain much geometric information, which is not conducive to object detection. This
problem is more pronounced for small-sized object detection. The vibration damper easily
disappears in the feature map output by the fifth layer of ResNet because the target is small.

The disappearance of the vibration damper feature leads to a decrease in detection accuracy.
It is natural to think that a feature map that combines deep and shallow features can

be used to meet the needs of small target detection. FPN [43] is a network structure that
adopts this idea. FPN uses the idea of image pyramid to solve the problem of difficulty
in detecting small-sized objects in object detection scenes. The traditional image pyramid
method uses a multiscale image input to construct multiscale features. The biggest problem
with this approach is that the recognition time is k times the recognition time of a single
image, where k is the number of scaled dimensions.

To improve the detection speed, methods such as Faster R-CNN [46] use a single-scale
Feature Map, but the single-scale feature map limits the detection capability of the model,
especially for samples with extremely low coverage in the training set (such as larger
and smaller samples). Unlike Faster R-CNN, which only uses the top-level Feature Map,
SSD [47] uses the hierarchical structure of convolutional networks, starting from conv4_3 of
VGG [48], and obtains multiscale Feature Maps through different network layers. Although
this method can improve accuracy and does not increase the test time, while it does not
use the low-level Feature Map, these low-level features are very helpful for detecting small
objects. In response to the above problems, FPN adopts the form of a Feature Map in the
pyramid of SSD.

Different from SSD, FPN not only uses deep Feature Map in VGG, but also applies
shallow Feature Map. These Feature Maps are efficiently integrated through bottom-up,
top-down, and lateral connections, which improve the accuracy without greatly increasing
the detection time. Therefore, as shown in Figure 3, this article refers to these practices and
introduce a structure composed of FPN and bottom-up after the third, fourth, and fifth
layers of ResNet101 so that the semantics and lines of the final output feature maps of the
three scales’ layer features are more abundant.

Figure 3. The Feature Fusion Network used for feature transfer containing two parts: the FPN and
the Bottom-up module.

DamperYOLO was trained after all framework components were introduced. The
training process is as described in Algorithm 1. As shown in Figure 4, the Edge Detec-
tion module, the ResnNet101 backbone, Attention Mechanism, the FPN and Bottom-up
framework are used to construct the entire vibration damper detection process.
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Figure 4. The realization of detection of vibration dampers is divided into three parts: Edge Detection,
Feature Extraction, Feature Fusion. First, Edge Detection is used to provide edge information. then
Feature Extraction and Feature Fusion are used to obtain feature maps for vibration dampers. Finally,
the detection results can be obtained from classifier of YOLOv4.

Algorithm 1: The Training Process of DamperYOLO.

Input: Original damper image set I = {I1, · · ·, IN} that each image contains dampers.
Output: DamperYOLO after training.
1: Initialize DamperYOLO with random weights;
2: repeat
3: for i in 1~epochs do
4: for j in 1~N do
5: Image augment for Ij;
6: Extract feature map using ResNet101;
7: Output detection results using YOLO;
8: Calculate the penalty value via Formula (2), (5) and (6);
9: Minimize Formula (1) to update the parameters of DamperYOLO;
10: end for
11: end for
12: until DamperYOLO completes convergence
13: return

5. Experiments and Analysis
5.1. Experiment Description
5.1.1. Dataset

A dataset of vibration dampers for overhead transmission lines is required for the
proposed theoretical validation and experimental analysis. At present, although there is
a lot of research work on vibration dampers, but there is no completely public vibration
damper detection dataset. Moreover, most of the vibration damper data in the article were
obtained by geometric transformation methods such as flipping, cutting, and scaling. An
insufficient number of vibration dampers would make it difficult to verify the correctness of
the proposed theory. Therefore, a dataset was made for vibration damper detection based
on the real UAV cruise video of overhead transmission lines, and named DamperDetSet. In
the process of making the DamperDetSet dataset, LabelMe was used as a data labeling tool
to label the positions of all existing line vibration dampers in the original image. The callout
box was kept as close as possible to the smallest enclosing rectangle of the target area.

DamperDetSet contains a total of 3000 images, each of which contains vibration
dampers, and the types of vibration dampers are not unique, such as hippocampus antislip
vibration dampers, hook wire vibration dampers, etc. We randomly divided all 3000 images
into a training set and a test set. The training set contains 2500 images and the test set
contains 500 images. The ratio of training set and test set is 5:1. In addition, as the dataset
is obtained by shooting with UAVs, the presentation angle of the vibration damper in the
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image is not unique, which also puts forward higher requirements for the robustness of
the model.

5.1.2. Experiment Configuration

In terms of hyperparameter settings in the experiment, we trained DamperYOLO for
a total of 200 epochs. The learning rate of the first 100 epochs remained unchanged, and
the learning rate of the last 100 epochs gradually decreased to 0. In terms of experimental
software settings, all our programs were written in Python language and integrated based
on the Pytorch 1.4 platform. In the system environment of the experimental platform,
Ubuntu18.04 was used as the operating system. In terms of the hardware environment of
the experimental platform, an NVIDIA RTX 2080 GPU was used as the main equipment for
training calculation, matched with an AMD R5-3600X CPU and 32 GB RAM.

5.2. The Baselines

In the following experiments, we chose one-stage, two-stage, and anchor-free methods
as comparison methods.

YOLOv4 [37]: This method is the latest achievement of the YOLO series. After
continuing the advantages of the previous work, it introduces the structure of FPN + PAN,
which improves the transferability of features in the network; it is also the basis of our
proposed model.

Cascade R-CNN [49]: This framework is the latest achievement of the R-CNN series.
It creatively introduces a cascade structure. The detection accuracy is state-of-the-art, but
its excellent performance consumes a lot of computational resources.

CenterNet [50]: This method is a heatmap-based detection method rather than anchor-
based, which has the advantage of fast testing and low space occupancy.

SSD [47]: SSD is another classic one-stage object detection method. It initially utilizes
multiple detectors.

RetinaNet [51]: RetinaNet is based on FPN [43], and its contribution is to propose focal
loss to solve the problem of category imbalance.

5.3. Qualitative Evaluation

To visually compare the difference between the detection effect of DamperYOLO and
other baselines, we conducted qualitative analysis and comparison experiments based
on the DamperDetSet dataset. The experimental results are shown in Figure 5. As can
be seen from Figure 5, under the same test image, the detection effect of CenterNet is
not stable enough. This proves that calculation of the heat map will be greatly disturbed
by the current anchor-free algorithm in the face of complex scenes such as transmission
lines. The performance of the two-stage Cascade R-CNN is very superior. As the latest
framework of the R-CNNs series, the results obtained by the second iteration based on the
proposal are more accurate. There is also room for improvement in the performance of a
single-level SSD. And using VGG16 as a backbone may be weaker than the ResNet-like
feature extraction network in feature extraction. RetinaNet and YOLOv4 perform better.
Both of them benefit from the latest research results in one-stage. They can obtain high
performance with only one calculation, but the edge detection effect of vibration damper
still needs to be improved. Finally, DamperYOLO outperforms other one-stages. The
detection result image of DamperYOLO proves that our proposed improvement strategy is
effective, and its performance is no less than that of Cascade R-CNN.
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Figure 5. Test examples of each model on the DamperDetSet dataset. Experimental results show
that the performance of DamperYOLO is similar to Cascade R-CNN, better than SSD, RetinaNet and
YOLOv4 in one-stage class, and CenterNet.

5.4. Quantitative Evaluation

We compared other baselines and performed the quantitative analysis shown in Table 2
with AP in the COCO [52] dataset as the evaluation standard. The calculation of AP is
based on the ground truth and the IOU of the prediction result. The calculation formula
is shown in Equation (3). The AP calculation results were selected when the IOU was 0.5,
0.7, and 0.9 as the evaluation basis, so that the performance difference of the model under
different pressure levels could be more comprehensively evaluated.
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Table 2. APs of the different models.

Model
DamperDetSet

FPS
AP50 AP70 AP90

YOLOv4 88.23 80.67 73.26 71
SSD 85.71 78.34 71.38 70

RetinaNet 87.18 79.62 72.70 73
CenterNet 84.38 77.25 69.42 118

Cascade R-CNN 92.26 89.52 81.43 31
DamperYOLO 92.62 89.67 81.24 74

As can be seen from Table 2, under the same test picture, thanks to the two-stage
detection strategy, the performance of Cascade R-CNN was still stable, and its performance
under various AP standards was at the forefront; however, its good score came at the cost
of great computation time.

The one-stage RetinaNet and YOLOv4 performed similarly, and YOLOv4 slightly
outperformed RetinaNet. Compared with SSD, both of them had a certain degree of
lead in terms of indicators, and the latest training tricks available from analysis confers
an advantage in accuracy. In addition, the calculation speed of these three methods is
faster than Cascade R-CNN, without the intermediate step of proposal, which shortens the
calculation time considerably.

The anchor-free based CenterNet had the lowest score; so, it can be concluded that the
calculation of the heatmap is very susceptible to interference from similar objects in the
background. However, the advantage of the anchor-free class method is that the calculation
speed is much faster than other baselines, which is a huge advantage for scenarios with
extremely high real-time requirements.

Our proposed DamperYOLO takes the lead on AP, but the score of YOLOv4 is lower
than Cascade R-CNN; therefore, the edge extraction, attention mechanism, and feature fu-
sion structure proposed in this paper are better than Cascade R-CNN. The calculation speed
of DamperYOLO was similar to other one-stage class methods. Therefore, DamperYOLO
is a model with a balance between speed and accuracy.

5.5. Sensitivity Analysis

In this section, multiple sets of sensitivity analysis are performed on each component
of DamperYOLO, which includes the choice of backbone, edge extraction, the attention
mechanism, the number of training iterations, and the minimum amount of training data.

5.5.1. Backbone

We conducted a sensitivity analysis on the backbone used by DamperYOLO while
retaining other improvements. As shown in Table 3, the CSPDarknet53 used by YOLOv4
was improved based on ResNet50, so it performed better. In addition, the only objects need
to be detected were dampers. Therefore, we believe that it may be more effective to expand
the number of network layers and improve the feature abstraction ability of the backbone.
The performance of ResNet101 also supports our idea, but if network layers such as using
ResNet152 are added, the improvement is limited, so ResNet101 is used as the backbone.

Table 3. APs of different backbones.

Backbone
DamperDetSet

FPS
AP50 AP70 AP90

CSPDarknet53 88.20 80.58 73.28 72
VGG16 82.18 76.54 67.91 71

ResNet50 84.12 77.62 70.42 78
ResNet101(ours) 92.62 89.67 81.24 74

ResNet152 93.25 89.97 82.16 68
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5.5.2. Edge Extraction

To verify the effectiveness of preprocessing, a sensitivity analysis was performed on
the image denoising, and edge detection used while retaining other improvements constant.
Table 4 shows that, compared with not using any preprocessing strategy, using image
denoising and edge extraction alone leads to a certain improvement in detection effect. If
both are used, the AP50 increase by about five percentage points, which shows that the
image augmentation method in this paper is effective.

Table 4. APs of different preprocessing methods.

Preprocessing Method
DamperDetSet

FPS
AP50 AP70 AP90

No preprocessing 87.18 79.52 71.83 79
Image denoising 88.92 81.93 73.65 78
Edge extraction 91.25 86.74 79.17 77

Image denoising + Edge extraction 92.62 89.67 81.24 74

5.5.3. Attention Mechanism

The attention mechanism is an important mechanism pioneered in the field of NLP,
and was developed in object detection in recent years. In order to verify the effect of
adding an attention mechanism in different layers of ResNet101, we conducted a sensitivity
analysis for the number of times an attention mechanism is introduced while retaining
the other conditions. As shown in Table 5, when the attention mechanism was added
to the first three layers of ResNet101, the detection effect improved to a certain extent.
However, continuing to introduce attention-blocks containing edge information to the 4th
and 5th layers caused a drop in detection accuracy. This is because there is more abstract
information in the feature maps extracted by the fourth and fifth layers in ResNet101,
and the edge information is the basic feature information. This is counterproductive and
reduces the detection performance.

Table 5. APs of different introduction times of the attention mechanism.

Introduced Layer
DamperDetSet

FPS
AP50 AP70 AP90

None 86.28 77.36 70.03 81
C1 87.83 80.23 71.37 80

C1, C2 91.38 84.61 77.42 77
C1, C2, C3 92.62 89.67 81.24 74

C1, C2, C3, C4 93.14 90.15 81.92 74
C1, C2, C3, C4, C5 89.27 83.32 73.52 73

5.5.4. Number of Epochs

The number of epochs for experimental training affects the performance of the model.
Because the number of training epochs is not enough, the model is under-fitted, and the
model has not yet fully learned to identify all the objects to be detected. Excessive training
epochs reduce the robustness of the model, the parameters are limited by the existing
training data, and the realization of unfamiliar data in the test set is reduced. Therefore, we
conducted an evaluation test of the number of training times for the performance of the
model, and the test results are shown in Table 6. It can be seen from the table that when the
training epoch is 200, the model is the most balanced.
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Table 6. APs of different epoch numbers.

Number of Epochs
DamperDetSet

FPS
AP50 AP70 AP90

50 71.63 60.62 41.37 79
100 80.51 72.27 65.23 77
150 84.15 80.16 74.38 75
200 92.62 89.67 81.24 74
250 93.31 88.65 80.47 74

5.5.5. Minimum Training Data Experiment

Changes in the amount of training data also affect the final performance of the model.
At the same time, by comparing the detection accuracy of the model with different amounts
of data, the feature extraction ability of the model can be judged. As shown in Table 7,
we conducted experiments with the minimum amount of data. From the results, it can
be seen that when the amount of data decreases, the performance of the model has weak
performance, which indicates that our data is sufficient. The model performance did
not drop significantly until the test set dropped to 1750. Moreover, DamperYOLO had
strong robustness and could still learn key feature information on small-scale datasets,
which overcame the shortcomings of the previous model’s poor generalization ability to a
certain extent.

Table 7. Results of minimum training data experimental.

The Amount of Training Set
DamperDetSet

FPS
AP50 AP70 AP90

2500 (100%) 92.62 89.67 81.24 74
2250 (90%) 89.51 86.28 78.83 75
2000 (80%) 85.39 81.75 75.41 74
1750 (70%) 82.41 77.40 71.68 74
1500 (60%) 73.97 69.62 64.01 72

5.6. Ablation Analysis

To analyze the functions of the different components of DamperYOLO, an ablative
analysis was performed on DamperDetSet. As shown in Table 8, Model B had better indica-
tors than Model A, which indicates that using ResNet101 as the backbone can better extract
image features. Model C uses image augmentation for preprocessing, which improves the
quality of the input image and provides the model with better training data. Compared
with other stages, the performance of Model D has the highest improvement in detection
effect. This indicates that the attention mechanism plays a sufficient role, because the
attention mechanism allows the model to focus on the edge information of the damper
when converging, with the help of the image enhancement model. In addition, it can be
seen from other comparative experiments that the additional overhead brought by it is
very low, so it is necessary for our task to add an attention mechanism to the backbone.

Table 8. The results of the ablation analysis.

Model Architecture AP50 AP70 AP90

A YOLOv4 86.21 78.45 70.96
B A + ResNet101 88.57 82.36 73.72
C B + Edge Extraction 90.82 84.24 76.50
D C + Attention Mechanism 92.62 89.67 81.24
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5.7. Computational Complexity

The network parameters and training time were recorded to evaluate the space and
time complexity of the networks. As shown in Table 9, compared with Cascade R-CNN,
DamperYOLO has a similar detection effect, but its parameters and training time are greatly
reduced. Compared with YOLOv4, the space complexity and the training time are basically
unchanged, because we only changed the backbone and added the attention mechanism on
its basis, but a higher detection effect was achieved. In addition, CenterNet still consumes
the least resources. The computational complexity of SSD is slightly higher than that of
RetinaNet, but the detection effect is slightly worse.

Table 9. Network parameters (Param.) and training time of the different models.

Model Param. Training Time (h)

YOLOv4 28 M 6.38
SSD 34 M 7.46

RetinaNet 32 M 7.03
CenterNet 14 M 4.05

Cascade R-CNN 184 M 49.84
DamperYOLO 30 M 6.92

6. Conclusions

We propose a power line vibration damper detection model named DamperYOLO
based on a deep neural network that can detect the position of the vibration damper in
drone inspection aerial images. DamperYOLO first uses the Canny algorithm to obtain the
edge information of the original image, then uses the attention mechanism to introduce
edge information into ResNet101 to guide feature extraction. Finally, it outputs a feature
map that is more conducive to small target detection with the FPN structure. The following
conclusions can be drawn through qualitative and quantitative experiments on the power
line vibration damper detection dataset built in this paper. Compared with the current
baselines in the object detection field, the DamperYOLO proposed in this paper can output
state-of-the-art detection accuracy. The results of sensitivity analysis experiments show
that edge detection, attention mechanism, and feature pyramid network all significantly
improve the detection accuracy. The ablation analysis shows that the attention mechanism
and the feature pyramid network improve the accuracy of the output detection results.
In addition, DamperYOLO consumes space similar to the computational resources and
baselines of other one-stage classes, but the detection accuracy can reach the level of
Cascade R-CNN, which shows the superiority of our model. In the future, we will continue
to introduce appropriate training tricks for the detection accuracy of DamperYOLO and
explore the application of the model to other power line components.
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