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Kubovčík, M.; Pospíchal, J. Wearable

Sensor-Based Human Activity

Recognition with Transformer Model.

Sensors 2022, 22, 1911. https://

doi.org/10.3390/s22051911

Academic Editor:

Mario Munoz-Organero

Received: 4 February 2022

Accepted: 25 February 2022

Published: 1 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Wearable Sensor-Based Human Activity Recognition with
Transformer Model
Iveta Dirgová Luptáková , Martin Kubovčík and Jiří Pospíchal *
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Abstract: Computing devices that can recognize various human activities or movements can be
used to assist people in healthcare, sports, or human–robot interaction. Readily available data
for this purpose can be obtained from the accelerometer and the gyroscope built into everyday
smartphones. Effective classification of real-time activity data is, therefore, actively pursued using
various machine learning methods. In this study, the transformer model, a deep learning neural
network model developed primarily for the natural language processing and vision tasks, was
adapted for a time-series analysis of motion signals. The self-attention mechanism inherent in the
transformer, which expresses individual dependencies between signal values within a time series,
can match the performance of state-of-the-art convolutional neural networks with long short-term
memory. The performance of the proposed adapted transformer method was tested on the largest
available public dataset of smartphone motion sensor data covering a wide range of activities, and
obtained an average identification accuracy of 99.2% as compared with 89.67% achieved on the same
data by a conventional machine learning method. The results suggest the expected future relevance
of the transformer model for human activity recognition.

Keywords: transformer; human activity recognition; time series; sequence-to-sequence prediction

1. Introduction

Human activity recognition is an important and popular research area in time series
classification. Essentially, it aims at identifying human behavior based on data from sensors,
available from personal devices such as smartphones, tablets, or smartwatches that can
collect data from a wide sample of users and classify the signals using machine learning
methods [1]. The technology of detecting human activities using mobile devices has great
potential in medicine where it is possible to monitor patients with various diagnoses [2–5]
and control compliance with treatment procedures or to use it as prevention against
performing prohibited activities [6–9]. In addition to health monitoring and rehabilitation,
this technology can be used in gaming [10], human–robot interaction and robotics [11,12],
and sports [13].

A lot of effort has been focused on human activity recognition by deep neural networks.
Several types of deep neural networks are typically used for time series classification
of sensor signals, such as convolutional neural networks [14–16], fully convolutional
neural networks [17], multiscale convolutional neural networks [18], time-LeNet [19],
stacked denoising autoencoder [20], deep belief neural networks [21], Long Short-Term
Memory (LSTM) deep recurrent neural network [22], echo state networks [23], or inception-
ResNet [24].

Among the many previous studies on the application of deep learning on smartphone
motion sensor data, several studies have been selected here to be discussed more deeply
and compared to the approach proposed in the present study. Zebin et al. [22] applied
exclusively LSTM layers with the addition of Batch Normalization layers. In this configura-
tion, the time series could only be traversed in one direction, from zero to the maximum
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time step. However, the transformer model in the present study allows one to traverse the
time series arbitrarily, since all the contextual relationships are calculated in parallel. When
the attention mask is defined, the transformer model can search for connections among
the features in the time series both in the direction from past to future, as well as in the
opposite direction from future to past, according to the trained attention matrix.

Quin et al. [25] transformed the measured signal time series into a polar coordinate
system, and formed a pair of Gramian Angular Field images. Then, these images were
classified by a ResNet-based convolutional deep neural network. Compared to their
approach, the present study focuses on the direct application of measured signals to the
input of a neural network, eliminating the need for any complex pre-transformation of data.
Moreover, the model in this study is much smaller than ResNet used in [25]. The overall
transformation and subsequent classification are ensured within the trained model, and
therefore, it is possible to achieve higher speeds during prediction and it is not necessary to
use demanding calculation models such as ResNet. Normalization is ensured, therefore,
the mean is close to zero and the standard deviation is 1.0 as compared with the min–max
method used by Qin et al. [25].

Wang et al. [26] primarily focused on the application of one-dimensional (1D) CNN
and LSTM. This combination could handle long time series, but it was not as effective as
the transformer model in massive parallelization of calculations. The transformer itself can
process long time series at high speed without the need to combine multiple neural network
approaches. Although the dataset used in [26] contained several times more examples
than the dataset used here, it focused only on basic activities and transition activities, not
on more complex movements such as pick, jump, push-up, or sit-up used in the present
study. Moreover, in this study, a data augmentation method is introduced for extending a
dataset by manipulating existing data, making it possible to produce many new examples
to supplement an existing dataset.

Gao et al. [27] introduced a new approach—attention for learning multiscale features
among multiple kernels of 1D convolution layers in HAR issues. In a similar way, the
signals were preprocessed to zero mean and one standard deviation, but their focus was on
using special 1D convolution layers for the prediction of one label for the entire time series
(window). One-dimensional convolutional networks and recurrent neural networks, or a
combination of both are among the most used approaches, see [28]. In the present study, the
window size limit is restricted only by the memory capacity, and labels are assigned to each
time step, using the previous steps in the time series. This study also offers an alternative
in signal processing to that of 1D convolution in the form of entirely fully connected layers.

Li et al. [29] joined 2D convolution layers followed by a BiLSTM layer. The BiLSTM
allows the time series to move in two directions, from the past into the future and from the
future into the past. However, unlike the transformer model, it works on the principle of
two LSTM layers within one, when the other layer is presented with a reverse copy of the
original time series. When merging this pair of layers into one output of the bidirectional
layer, it is possible to use the following methods: Sum, multiple, concat, and average [30].
With the transformer model, this is a natural feature and there is no need to make reverse
copies or look for the most convenient method of merging LSTM pairs of bidirectional
layers within the hyperparameters.

Gupta [31] described the classification of simple as well as complex activities by widely used
models such as InceptionTime or DeepConvLSTM. The activities were captured using sensors
in smartphones, similar to the present study, and smartwatches. Combined convolutional and
recurrent neural networks were used for evaluation. Gholamiangonabadi et al. [32] focused
on comparing feed-forward neural networks and convolutional neural networks in terms of
cross-validation on unseen subjects. The present study offers an alternative that directly focuses
on using attention mechanisms to find connections in the time series between features.

Alemayoh et al. [16] converted the features in a time series into a grayscale image
with shades of gray expressing the measured value from the sensor. The merging of data
from all axes of the accelerometer and the gyroscope produced a 2D image, which was
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processed by a 2D convolutional neural network. Its input could be arranged into one
common frame or, when each sensor was processed separately, the frame was specified
by a channel (similarly to the RGB frame, where there were three channels). In the case
of the J48 decision tree method, Fourier and wavelet transform preprocessing as well as
feature acquisition were used. This allowed the signal to be divided into portions of high
frequencies representing noise and low frequencies representing real activities. In contrast,
the present study focuses on finding advantageous alternatives to classical approaches
such as convolutional neural networks or recurrent neural networks. Using attention
blocks, the transformer directly focuses on predicting the intensity of the gain/loss of the
feature during the feed-forward phase based on the context found during the learning
process. Two-dimensional convolutional networks work directly on the principle of the
image classifier, and thus learn to recognize hidden patterns in signal frames and predict
activities from them. The transformer model is a universal architecture used similarly to
convolutional neural networks in NLP, vision, or signal processing tasks.

The present study compares directly with the Sikder and Nahid method [30], as it
is based on their measurements. Each activity was recorded in a 300-time step window
width with a sampling frequency of 100 Hz, which corresponded to 3 s of human activity.
However, the data in [33] required complex preprocessing and extraction of significant
features, which allowed methods such as random forest to classify activities relatively
accurately. When preprocessing signals, it is possible to use fast Fourier transform, which
extracts frequency-domain features from the input signal and at the same time suppresses,
to some extent, the effect of noise on the classification [33].

The current manuscript deals with the application of deep neural networks directly to
the normalized time series of the signal from the sensors. This study employs an alternative
approach to processing time series based purely on the attention mechanisms, called
transformer. The transformer model directly focuses on using attention mechanisms to
find correlations in the time series between features and allows massive parallelization of
time series calculations, which is different as compared with recurrent neural networks that
iterate serially through a time series. Another advantage of the transformer is the longer
path length between features in the time series, which allows for more accurate learning
of the context in long time series, an assertion stated by Vaswani et al. [34]. Computation
speed, as well as prediction accuracy, are key elements in working with human activities,
where prediction can be performed directly on the mobile device. The sequence-to-sequence
method is used in the prediction of activities [35], where all time steps from the transformer
output are considered and activity designations are assigned to them. In this way, it is
possible to assign activity to each time step that the user has taken when measuring live
values from a mobile device.

A comparison of the selected methods, data preprocessing, datasets, and accuracy for
wearable sensor-based human activity recognition from seminal and state-of-the-art papers
is provided in Table 1.

The primary contribution of the present study is a better deep learning model with an
attention mechanism for activity recognition from mobile data. The model itself is not our
invention, but we proposed its adaptation for application in human activity recognition,
which is outside its typical scope of use. The results fully support the proposed suitability
of the transformer model for human activity recognition.

The remainder of this paper is organized as follows: In Section 2, we present the
details of the general transformer model, the vision transformer model, the used KU-HAR
database of smartphone motion sensor data, our adaptation of the transformer model for
human activity recognition, data augmentation of the KU-HAR dataset, and optimization
of the metaparameters of our model; the results and their analysis are described in Section 3;
in Section 4, we discuss the results and compare them with the state-of-the-art methods;
we draw conclusions and outline directions for future research in Section 5.
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Table 1. Comparison of selected methods, preprocessing, and resulting accuracy over different
datasets for HAR based on mobile sensors data.

Standard Dataset Paper Data Structure Method Accuracy

KU-HAR [33] This study Standardization HAR transformer 99.2
Sikder et al. [33] fast Fourier transform Random forest 89.67

MHEALTH [36] Qin et al. [25] Gramian angular fields GAF and ResNet 98.5

PAMAP2 [37] Li et al. [29] Standardization 2D Conv + BiLSTM 97.15
Gao et al. [27] Standardization Conv + SKConv 93.03

WISDM [38] Alemayoh et al. [16] Segmentation into a grayscale image
that represents the time serie of signal SC-CNN 97.08

Gupta [29] RAW CNN-GRU 96.54
Alemayoh et al. [16] Heuristic features J48 decision tree 90.04

HAPT [39] Wang et al. [26] Splice into two-dimensional matrix
(like a picture) CNN-LSTM 95.87

UK Bio-bank [40] Zebin et al. [22] RAW LSTM + BN 92

2. Methods

In this section, we describe the deep neural network method, the transformer model,
and its extension, and the vision transformer model, which form the foundation for the
method described here. Then, the details about the used KU-HAR dataset are further
provided. Adaptation of the transformer method designed, here, for human activity
recognition is followed by augmentation of the used dataset for combined couples of
activities. The analysis of the hyperparameters of the proposed transformer method
adaptation leads to their optimization.

2.1. Transformer Model

A transformer model is a deep learning neural network, where the attention mecha-
nism provides context for any position in the time series. Similar to recurrent or convolu-
tional networks [41], transformers efficiently handle time series classification and employ
correlations between features within time steps. They are frequently used to work with
natural language, where they achieve higher scores than recurrent neural networks. Before
the transformer model was introduced, the cutting-edge systems for complex time series
problems such as natural language processing were based on gated recurrent neural net-
works with a superimposed attention mechanism [42]. The transformer model shows that
the attention mechanism does not need to use recurrent units to achieve equivalent perfor-
mance. Moreover, the transformer model is much easier to parallelize than convolutional
neural networks.

In the present study, the principle of the transformer model was not modified as
compared with that in [34], only its input and output were changed. The transformer
model consists of multi-head attention layers, fully connected layers, normalization layers,
and dropout layers [34]. It also contains residual connections that help with the gradient
backpropagation in a deep neural network.

The attention mechanism is crucial to the transformer model, where each attention
head in multiple attention heads can search for a different definition of relevance or a
different correlation. Multi-head attention [34] is based on the principle of mapping a query
and a set of key-value pairs to an output. The output of the network is the weighted sum
of values, where the weight is assigned to each value (V) based on the calculation of the
compatibility function from the query (Q) and the corresponding key (K). Dot products of
the query and all keys are calculated, and then the softmax function is applied to normalize
the obtained weights, which are multiplied by values, see Equation (1). Softmax is the basis
for categorical distribution prediction, where its output values define the probabilities of
individual categories. Normalization comes in the sense of conversion from the interval
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[-infinity, infinity] to the interval [0, 1]. Values in the interval [0, 1] can be directly understood
as some volume intensity of the features (comparable in a sense gain/mute) obtained in a
given time step. With softmax, it is not true that only one output has a high probability and
the other outputs have low probability. In the present model, it is a continuous distribution
of intensities of different values, where, after matrix multiplication with values, these
intensities determine what information is to be further propagated by the neural network.

Multi-head attention contains several modules called heads that have their own
queries and a set of key value pairs expressed by fully connected layers from the original
queries and a set of key value pairs fed to the input layer, see Equation (2). The advantage
of using multiple heads lies in the ability to combine the different contexts found from each
of the heads into one complex output.

The outputs from each head of multi-head attention layers are combined into one
fully connected output layer, see Equation (3). This layer is followed by the position-wise
feed-forward network block, which is composed of a pair of fully connected layers linked
by the nonlinear activation function RELU (rectified linear unit), see Equation (4). Typically,
the number of neurons in the first fully connected layer is 4 times higher than that in the
following layer, where the number of neurons is equal to the number of features entering
this block. The entry determining the position of the features within the series is also added
to the network input, because the transformer does not know the order of the features, for
example, within the processed sentence [34]:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (1)

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(2)

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (3)

FFN(x) = max(0, xW1 + b1)W2 + b2 (4)

2.2. Vision Transformer Model

For image classification tasks, the transformer model replaces the typically used
convolutional networks with satisfactory results. The image is divided into patches forming
a sequence of features to which attention mechanisms are applied. However, a very large
dataset of images of 14–300 million examples is needed for the transformer model to achieve
excellent results. The advantage of using a transformer in image classification tasks is its
speed and scalability. In contrast to the original transformer encoder [34], the normalization
layer is applied before each block and residual connections after each block. The nonlinear
activation function used in the position-wise feed-forward network block is the Gaussian
error linear unit. The position of individual patches within the overall processed image is
determined by the parameters that are adapted in the learning process together with the
neural network [43].

2.3. KU-HAR Dataset

The KU-HAR dataset used in the current manuscript was published by Sikder and
Nahid [33]. It was chosen here among other data sources, because it contains a lot of
examples divided into 18 classes (activities). The human activity recognition (HAR) data
were obtained from 90 participants aged 18 to 34 years. The ratio of women to men
among the participants was 1:5. The weight range of the participants was from 42.2 to
100.1 kg. The dataset contains 20,750 preprocessed examples, where each example captures
3 s of the performed activity, i.e., one whole time series of the signal represents just one
performed activity and has only one label assigned to it. The measurements used sensors in
a smartphone (accelerometer and gyroscope [33]) placed in a waist bag on each participant.
The smartphone was facing the left side in the bag and the screen was pointing in the same
direction as the participant. The first 11 activities presented in Table 2 were recorded inside
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a classroom because they did not need a large space to perform. The other 4 activities,
described next, were recorded outside the classroom, but within the university building.
The run activity was recorded in the corridor in front of the classroom, stair-up and stair-
down activities were recorded on the staircase between the ground floor and the third floor,
where there were 3 staircases between each floor. The table-tennis activity was recorded in
the common room located on the ground floor.

Table 2. Description of the activity classes in the KU-HAR dataset, amended from [33].

Class Name ID Performed Activity Duration Repetitions No. Subsamples

Stand 0 Standing still on the floor 1 min 1886

Sit 1 Sitting still on a chair 1 min 1874

Talk-sit 2 Talking with hand movements while sitting on a chair 1 min 1797

Talk-stand 3 Talking with hand movements while standing up or
sometimes walking around within a small area 1 min 1866

Stand-sit 4 Repeatedly standing up and sitting down (transition activity) 5 times 2178

Lay 5 Laying still on a plain surface (a table) 1 min 1813

Lay-stand 6 Repeatedly standing up and laying down (transition activity) 5 times 1762

Pick 7 Picking up an object from the floor by bending down 10 times 1333

Jump 8 Jumping repeatedly on a spot 10 times 666

Push-up 9 Performing full push-ups with a wide-hand position 5 times 480

Sit-up 10 Performing sit-ups with straight legs on a plain surface 5 times 1005

Walk 11 Walking 20 m at a normal pace ~12 s 882

Walk-backward 12 Walking backwards for 20 m at a normal pace ~20 s 317

Walk-circle 13 Walking at a normal pace along a circular path ~20 s 259

Run 14 Running 20 m at a high speed ~7 s 595

Stair-up 15 Ascending on a set of stairs at a normal pace ~1 min 798

Stair-down 16 Descending from a set of stairs at a normal pace ~50 s 781

Table-tennis 17 Playing table tennis 1 min 458

Total 20,750

The preprocessing consisted of deleting the part of the data recorded before the start
of the performed activity because the first seconds of the recording did not correspond
to the actual start of the performed activity. Similarly, the unrelated part of a record was
removed at the end of an activity scan.

The next step of the preprocessing was to unify the sampling frequency from all
measurements to 100 Hz. Because different smartphones with different computing powers
were used, not all measurements were identical concerning sampling frequency, and
therefore, one-dimensional interpolation of recorded time data was used when a particular
measurement was recorded. The last step was to divide the measured activities into time
series with a fixed length of 3 s. Each time series contains a unique portion of the original
measurements [33].

2.4. Transformer Model for Human Activity Recognition

The examples of the vision transformer model have shown how effectively transformer
models can replace existing recurrent and convolutional neural networks. The vision trans-
former model works with signals in the form of an image, which supports an assumption
that it can also process 1D time series of signals from sensors such as an accelerometer
or gyroscope. The transformer model for human activity recognition presented further
is based directly on the vision transformer model architecture [43], where, however, the
signal is fed directly as input into the encoder block along with the added information
determining the position of the features within the signal time series.
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The transformer model for human activity recognition operates in a sequence-to-
sequence mode and predicts the class for each time series feature, see Figure 1. The advan-
tage is that if there are several consecutive classes in one time series, these classes can be
easily identified, and the transformer is not limited to the features in the whole time series
belonging to one class. All fully connected layers are initialized using the truncated normal
distribution with a standard deviation of 0.02, as in BEIT [44]. Before the signal is fed as an
input to the neural network, it passes through a normalization layer that stores the mean
and variance obtained from the training data and adjusts the input to the values of 0.0 mean
and 1.0 standard deviation. The advantage of this solution is that when the model is put
into practical use, it already contains these calibration values, and it is not necessary to solve
the signal adjustment in an external way. The model is completely ready for implementation
in mobile devices, provided that the measured quantities are in the basic physical units,
the accelerometer in m/s2, and the gyroscope in rad/s. The output layer of the model is
linear, to provide a higher computational speed on less powerful devices than if the softmax
function was used. In principle, the maximum value corresponding to the predicted activity
can also be obtained before the application of softmax, which is only used during learning
in the loss function. This form is used there, due to the calculation with logarithms, since it
does not have negative numbers at the output, as the linear layer does.
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The principal task in working with the signal time series is to find the correlations in it
that will most positively affect the classification result. From the time series, the features are
mutually matched by attention mechanisms, and therefore, this transformer model ranks
among the self-attention mechanisms, the same signal is applied to the input query, key,
and value [33]. The advantage of using a transformer in signal processing is again its speed
and scalability, which has an impact on the usability of mobile devices and the accuracy
of class predictions. The experiments show that it is a suitable alternative to recurrent
and 1D convolutional networks for signal classification tasks. As with vision transformers,
a huge number of examples are required, therefore, in this study a special data augmenta-
tion method has been devised for signals expressing various human activities.

The implementation of the transformer model for human activity recognition (see
Supplementary Materials) was realized using the open-source library TensorFlow [45],
which contained a rich set of tools for neural network design, as well as its learning,
evaluation, and deployment. It contained all the basic layers for transformer model creation:
normalization layers, multi-head attention layer, dropout layer, fully connected (Dense)
layer, up to the position embedding layer that was created as a custom layer by inheriting
from the basic class layer. The encoder block was also created as an advanced custom layer
from several simpler layers for easy replication. TensorFlow was also used here for its
professional deployment in many international companies and its high performance in
mobile and embedded devices in the form of TensorFlow Lite.

2.5. Data Augmentation

To extend the KU-HAR dataset so that more training examples were available, an
algorithm was chosen to combine pairs of activities that could follow each other in real
life with a high probability. It was necessary to create all combinations of activity pairs
from the original dataset, with the provision that identical activities were excluded. These
resulting pairs had to be manually checked and their logical sense verified, see Table 3.
The next step was to combine these activities into a double-length window, which needed
to be transformed into a standard number of time steps used for previous training sam-
ples. The downsampling method was chosen, omitting every second step from the time
series [46]. Vision transformers were taught in a similar way, where randomly selected
parts of the image were replaced by noise, and the transformer model aimed to fill these
places identically to the original image [47]. For sensor data, here, it was not necessary to
replace the omitted time steps with noise, but the network must also process the signal
and correctly identify the performed activity. As can be seen in Figure 2, the numbers
of examples in the classes substantially differ, and therefore, it was necessary to choose
the method by which the examples of activity pairs would be generated. The smaller of
number of examples of both classes in pairs of activities was used. This avoids duplication
of examples of the paired activity with fewer examples, which could cause overfit [48]. The
transformer model also acquired a logical awareness of the connections between possible
successive actions, which would not be possible with the coupling of pure random pairs of
activities. In total, 83,129 examples were obtained from the original 20,750 examples. Then,
the dataset was divided into training, testing, and validation sets in a ratio of 70:15:15%.
Manipulation with the dataset was carried out by NumPy libraries [49] for working with
matrices, Pandas [50] for working with CSV files, and Scikit-learn [51] for even distribution
of examples according to classes per training, testing, and validation datasets.

The distribution of examples by class can be seen in Figure 2. It is apparent, that
the used dataset is slightly unbalanced. “Final” represents the distribution of examples
after applying data augmentation, ”New” represents newly created examples from a
combination of original examples, and “Original” is a distribution of examples from the
original dataset.
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Table 3. Newly created couples of activities.

Stand +
Talk-
Stand

Sit +
Talk-Sit

Talk-
Stand +
Stand

Pick +
Stand

Jump +
Stand

Walk +
Stand

Walk-
Backward
+ Stand

Walk-
Circle +
Stand

Run +
Stand

Stair-up
+ Stand

Stair-
down +
Stand

Table-
Tennis +

Stand

Stand +
Pick

Talk-sit +
sit

Talk-
Stand +

Pick

Pick +
Talk-
Stand

Jump +
Talk-
Stand

Walk +
Talk-
Stand

Walk-
backward
+ Talk-
Stand

Walk-
circle +
Talk-
Stand

Run +
Talk-
Stand

Stair-up
+ Talk-
Stand

Stair-
down +

Talk-
Stand

Table-
tennis +

Talk-
Stand

Stand +
Jump

Lay +
Sit-up

Talk-
Stand +
Jump

Pick +
Jump

Jump +
Pick

Walk +
Pick

Walk-
backward

+ Pick

Walk-
circle +

Pick

Run +
Pick

Stair-up
+ Pick

Stair-
down +

Pick

Table-
tennis +

Pick

Stand +
Walk

Sit-up +
Lay

Talk-
Stand +
Walk

Pick +
Walk

Jump +
Walk

Walk +
Jump

Walk-
backward
+ Jump

Walk-
circle +
Jump

Run +
Jump

Stair-up
+ Jump

Stair-
down +
Jump

Table-
tennis +
Jump

Stand +
Walk-

backward

Talk-
Stand +
Walk-

backward

Pick +
Walk-

backward

Jump +
Walk-

backward

Walk +
Walk-
circle

Walk-
backward
+ Table-
tennis

Walk-
circle +
Walk

Run +
Walk

Stair-up
+ Walk

Stair-
down +
Walk

Table-
tennis +

Walk

Stand +
Walk-
circle

Talk-
Stand +
Walk-
circle

Pick +
Walk-
circle

Jump +
Walk-
circle

Walk +
Run

Walk-
circle +

Run

Run +
Walk-
circle

Stair-up
+ Walk-

circle

Stair-
down +
Walk-
circle

Table-
tennis +
Walk-

backward

Stand +
Run

Talk-
Stand +

Run

Pick +
Run

Jump +
Run

Walk +
Stair-up

Walk-
circle +

Stair-up

Run +
Stair-up

Stair-up
+ Run

Stair-
down +

Run

Table-
tennis +
Walk-
circle

Stand +
Stair-up

Talk-
Stand +
Stair-up

Pick +
Stair-up

Jump +
Stair-up

Walk +
Stair-
down

Walk-
circle +
Stair-
down

Run +
Stair-
down

Stair-up
+ Stair-
down

Stair-
down +
Stair-up
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The lay-stand and stand-sit classes were omitted from pair combinations, as they
represented a transition activity already composed of a pair of activities. The goal was
to combine just two different activities and a combination of lay-stand or stand-sit with
another class would create windows with up to three activities. Another completely omitted
activity was push-up, there was no suitable activity to pair it with, which would occur
immediately before or after this activity. The only logically close activity was lay, but it was
“performed” on the back.

2.6. Finding Optimal Hyperparameters

The hyperparameters were optimized by the WanDB Sweep tool [52], which not only
provides parallel coordinates chart for visualization of various settings but also offers a
prediction of importance and correlation of hyperparameters against the selected metric.
The used metric was the best validation accuracy obtained from the best prediction over
the validation dataset during the learning process. The search method was random, which
selected settings from the predefined ranges of the hyperparameters. Progressively, these
intervals were manually adjusted to increase the accuracy of the model, and finally, the
most suitable combination of them was chosen, see Table 4.
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Table 4. Optimized hyperparameter settings.

Name Description Value

Epochs Number of training episodes 50

Attention dropout rate Dropout applied to the attention matrix 0.1

Batch size Number of samples applied during training at once 64

Dropout rate Dropout applied between layers 0.1

Embedding size Size of features after projection signal and size of position embedding 128

Fully Connected (FC) size Size of the first layer in the position-wise feed-forward network 256

Global clipnorm Clipping applied globally on gradients 3.0

Label smoothing Smoothing of the hard one-hot encoded classes 0.1

Optimizer Optimizer used during training model Adam

Warmup steps Number of steps from the learning starts to reach learning rate maximum 10

Learning rate The maximum value of learning rate after warmup 0.001

Learning rate scheduler The scheduler that controls the learning rate during training Cosine

No. Heads Number of heads in multi-head attention 6

No. Layers Number of encoder blocks in the entire model 3

The level of importance of the individual hyperparameters for maximizing the best
validation accuracy metric is depicted in Figure 3. The way in which they affect this metric
is denoted by color. The red color indicates a negative correlation and the green color a
positive correlation.
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The combinations of hyperparameter values plotted on multiple y-axes is shown
in the Figure 4. The last part of the chart consists of a color scale, with light yellow
color presenting the highest accuracy and dark blue color the lowest accuracy. From the
graph, it is possible to deduce the most suitable intervals of values of hyperparameters,
and thus, guide the search for the most advantageous combinations. This technique
is advantageous for a guided random search used in this study when one can choose
from many possible combinations generated from predefined distributions [52]. Such
tuning of hyperparameters has an advantage both over the Bayesian hyperparameter
optimization as well as over the grid search, in this study, for these methods there are too
many hyperparameters to tune optimally.

3. Results

In the testing phase, previously unseen examples from test datasets were presented to
the neural network. The task was to predict activities from hitherto unseen signals with the
highest possible accuracy. Figure 5 shows the individual attention matrices from Head 1 of
the transformer model expressing only one activity.

1 
 

   

   

Figure 5. Attention heatmaps of different single activities.

The uppermost row of panes in Figure 5 shows the attention matrices during static
activities when the participants did not perform any movement. Example activities stand,
sit and lay were selected for this purpose. The second row shows the attention matrix
for dynamic activities, where participants performed active movements. The table-tennis,
walk, and jump activities were chosen for this purpose. Attention heatmaps show the
intensity of the relationship between features in different time steps, the paler the color
of a pair of features from different time series, the higher the intensity of the relationship.
The black color expresses pairs without any significance of their link for feed-forward and
successful activity classification.
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In the second row of Figure 5, it can be noticed that the model is so influenced by the
used data augmentation method that it tends to divide the time series into two halves, even
if it is one activity. This may indicate a problem with the transformer model when it does
not have enough examples and, thus, does not properly generalize to different variations
of activity ratios within the time series. Only a 1:1 ratio was used in this paper.

Similarly, Figure 6 shows selected examples of attention matrices from Head 1 of the
transformer model expressing activity pairs. From the attention matrices, you can see the
transition of activities in the exact half of the time series, in which the first half belongs to
one activity and the second half belongs to another activity. This proves the effectiveness
of the transformer algorithm in matching features from time series that contribute to
correct classifications. 

2 

 

Figure 6. Attention heatmaps of different pairs of activities.

To compare the differences between paired static and dynamic activities, the following
pairs were chosen: ”stand/stair-down” represents a static to a dynamic connection, ”sit-
up/lay” represents a dynamic to a static connection, and ”pick/table-tennis” represents a
dynamic to a dynamic connection.

The cosine similarities of the positions of features within the time series can be seen
in Figure 7. This visualization is made possible by learning position tags in the form of
position embedding. As a result, the transformer model customizes the feature label within
the time series. Therefore, it is possible to see from Figure 7 which positions are similar. It
is also possible to see the division into four square parts, which symbolize the similarity
within the first and the second 150-time step window. This divides the whole time series
of 300 steps in half. This half-and-half division is caused by the implemented method of
data augmentation, where pairs of activities are combined only in a 1:1 ratio, one after
another. However, when using other ratios, there is a higher probability of losing essential
information from the signal during downsampling; currently, there is a loss of half of the
information from the signal from both parts of the time series.
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The colors expressing similarity from pink to the dark red scale indicate positive
similarity between the vectors expressing the positions of the features within the signal; the
lighter the pink is, the more these positions are similar. Colors in the blue scale indicate
negative similarity of positions; light blue indicates dissimilar (opposite) vectors.

Figures 5–7 visualize the resulting knowledge gained during the training process and
Figure 8 shows the exact opposite, i.e., a random model without any knowledge before the
learning process.
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4. Discussion

The adapted transformer model proposed in this manuscript for human activity
recognition was studied with the goal to demonstrate its suitability as a viable alternative
to various versions of recurrent or convolutional neural networks. This goal was supported
by findings, that in other applications, the transformer model often seems to have better
representation power than the otherwise popular long short-term memory architecture of
an artificial recurrent neural network (RNN) [53]. The transformer can scale up the model
to more than one million parameters and can also be used on mobile devices. It can push
the measured signal time series directly (after a normalization) into the neural network,
without the need for pre-transformation of the data. Moreover, the transformer is also well
parallelized to run on GPU [33].

The quality of the result can be seen in Figure 9. The biggest numbers in the confusion
matrix of Figure 9a are on the diagonal, which is also indicated by dark blue. This shows
that the predicted labels mostly match the true labels. Figure 9b shows another statistical
evaluation of the results. Values of precision, recall, f-1 score, and support are presented for
each of the activities. The support, i.e., the numbers of samples of the true response that lie
in the activity, range roughly from 2 × 104 to 44 × 104, which are reasonably large support
sets. The precision ranges from 0.945 for the activity talk-sit, to 1.0 for the table-tennis
activity. While it seems, that table-tennis activities cannot be mistaken, from the confusion
matrix it is apparent, that the talk-sit activity is most often confused with sit activity.
Apparently, talking probably does not show significantly either on the accelerometer or
gyroscope data.



Sensors 2022, 22, 1911 15 of 18Sensors 2022, 22, x FOR PEER REVIEW 17 of 20 
 

 

 

 

(a) (b) 

Figure 9. (a) Confusion matrix; (b) class-wise performance of the transformer model for human ac-
tivity recognition. 

The proposed HAR transformer model achieved, on average, 99.2% prediction suc-
cess as compared with the original 89.67% of the KU-HAR work by [33]. It successfully 
coped with the classification of one activity contained in the whole time series as well as 
with the merging of two activities in one time series. The robustness of the predictions 
was not affected by the omission of every second signal measurement from the time series. 
A new method of signal data augmentation has also been devised, focusing on the logical 
connections between signals and their appropriate impact to enhance the accuracy of the 
transformer model predictions. The results of the experiments showed how the attention 
mechanisms found correlations in the long time series of the signal and further promoted 
the most important of them, which positively affected the classifications of activities.  

5. Conclusions 
The results presented in this manuscript showed the benefits and utility of the trans-

former model in classifying human activities. The dataset selected for testing is the largest 
currently available for smartphone motion sensor data, covering a wide range of activities 
[33,36–40]. However, since it was published in 2021, it has not yet been used for HAR 
prediction by state-of-the-art hybrid convolutional neural networks with either bidirec-
tional long short-term memory or other deep learning models, which are considered 
among top contenders [54]. The random forest method prediction accuracy on this dataset 
[36] was slightly lower than deep learning methods achieved on other datasets. However, 
the adapted transformer model proposed in the present study for HAR achieved a level 
of precision that suggest it has a potential to be included among cutting-edge methods for 
HAR, see Table 1 in Section 1.  

In the future, the adapted transformer model should be tested on an enlarged dataset, 
ideally using different sensor data. Then, the results should be usefully applied, at first 
for models of robots, which should serve as a springboard for further useful applications 
involving direct support for humans. 
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activity recognition.

The proposed HAR transformer model achieved, on average, 99.2% prediction success
as compared with the original 89.67% of the KU-HAR work by [33]. It successfully coped
with the classification of one activity contained in the whole time series as well as with
the merging of two activities in one time series. The robustness of the predictions was
not affected by the omission of every second signal measurement from the time series.
A new method of signal data augmentation has also been devised, focusing on the logical
connections between signals and their appropriate impact to enhance the accuracy of the
transformer model predictions. The results of the experiments showed how the attention
mechanisms found correlations in the long time series of the signal and further promoted
the most important of them, which positively affected the classifications of activities.

5. Conclusions

The results presented in this manuscript showed the benefits and utility of the trans-
former model in classifying human activities. The dataset selected for testing is the largest
currently available for smartphone motion sensor data, covering a wide range of activi-
ties [33,36–40]. However, since it was published in 2021, it has not yet been used for HAR
prediction by state-of-the-art hybrid convolutional neural networks with either bidirec-
tional long short-term memory or other deep learning models, which are considered among
top contenders [54]. The random forest method prediction accuracy on this dataset [36]
was slightly lower than deep learning methods achieved on other datasets. However, the
adapted transformer model proposed in the present study for HAR achieved a level of
precision that suggest it has a potential to be included among cutting-edge methods for
HAR, see Table 1 in Section 1.

In the future, the adapted transformer model should be tested on an enlarged dataset,
ideally using different sensor data. Then, the results should be usefully applied, at first
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for models of robots, which should serve as a springboard for further useful applications
involving direct support for humans.

Supplementary Materials: The HAR-transformer code and further description can be downloaded
at: https://github.com/markub3327/HAR-Transformer, (accessed on 3 February 2022).
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