Performance Analysis of Public Safety Cognitive Radio MANET for Diversified Traffic †
Abstract
:1. Introduction
2. Cognitive Radio MANET for Military Tactical Networking
2.1. Military Network Architecture
2.2. CR MANET Modeling and Simulation
2.3. MAENA Simulator Overview
3. Source Traffic Characterization
3.1. Traffic Models
3.2. Services in Safety Support MANET
3.3. Voice Transmission
3.4. Video Transmission
- Personal camera with 1 Megapixel resolution.
- A camera on unmanned aerial vehicles and unmanned ground vehicles with the resolution of 2 Megapixels.
- A device that is equipment of ground vehicles with 4 Mpixel resolution.
3.5. Blue Force Tracking
3.6. Alerts
3.7. Chat and Email
3.8. C2 Messages
4. Traffic Modeling
- the goal of the analysis;
- the point where the network traffic is captured (henceforth simply referred to as a point of capturing);
- the targeted mobile platforms.
4.1. Assumptions
- Type of transmission—streams or blocks
- Type of connection—unicast, multicast
- Destinations addresses (NodeID, IPAddress, …)
- Type of service—real-time (RT) or NonReal Time (NRT).
- Emission timing—transmission duration (mean, variance), periodic (period mean value, period variance), duration between transmissions, Start/End
- Message size (mean, variance)
- Required bit rate (mean, variance)
- Protocols (TCP, UDP, RTP)
- Service priority
4.2. Traffic Modeling
4.3. Source Traffic Generator
4.4. MATLAB Implementation
5. MAENA Used Simulation Scenario
- PTT;
- UDP Basic;
- BFT.
6. Performance Analysis
6.1. Metrics
6.2. Simulation Results
- loss ratio lower then 5%
- delay lower then 20 s
- jitter has no impact.
7. Conclusions
- Nodes’ traffic generation for multiservice profiles in complex and dynamic battlefield operation.
- Combination of traffic generated inside particular networks taking into account multi-address traffic for messages senders and recipients.
- Combination of traffic in heterogeneous networks with defined users groups if the node can be a member of various groups.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
BFT | Blue Force Tracking |
BMS | Battlefield Management System |
BW | Basic Waveform |
C2 | Command and Control |
C4ISR | Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance |
CBR | Constant Bit Rate |
CH | Cluster Head |
CL | Connection-less |
CMMPP | Coupled Markov Modulated Poisson Process |
CN | Communication Node |
CO | Connection-oriented |
COP | Common Operational Picture |
CORASMA | Cognitive radio for dynamic spectrum management |
CR | Cognitive Radio |
CVSD | Continuously Variable Slope Delta |
DSA | Dynamic Spectrum Access |
DTM | Digital Map of Terrain |
DTEM | Digital Terrain Elevation Model |
DSA | Dynamic Spectrum Management |
DSM | Dynamic Spectrum Management |
EDA | European Defense Agency |
FER | Frame Error Rate |
FH | Frequency Hopping |
GIG | Global Information Grid |
GW | Gateway |
HDR | High Data Rate |
HMI | Human Machine Interface |
HMM | Hidden Markov Model |
IED | Improvised Explosive Device |
iMANET | Internet-based MANET |
inVANET | Intelligent VANET |
IoT | Internet of Things |
IRC | Inter-Roadside Communication |
IVC | Inter-Vehicles Communication |
LOP | Local Operational Picture |
M2M | Machine to Machine |
MAC | Medium Access Control |
MAENA | Multi bAnd Efficient Networks for Ad hoc communications |
MANET | Mobile ad hoc networks |
MANET-CR | Mobile ad hoc networks with Cognitive Radio |
ML | Machine Learning |
MMPP | Markov Modulated Poisson Process |
MOE | Metrics of Effectiveness |
MOP | Metrics of Performance |
NCN | Non-Cooperative Nodes |
NCW | Network-Centric Warfare |
ON | Ordinary Nodes |
ORBAT | Order of Battle |
OSA | Opportunistic Spectrum Access |
PDL | Packet Delay |
PER | Packet Error Rate |
PLC | Power Line Communications |
PLR | Packet Loss Rate |
PTT | Push-to-Talk |
QoS | Quality of Service |
RECON | Recognition |
RN | Regular Node |
RTP | Real-time Transport Protocol |
RSSI | Received Signal Strength Indicator |
SA | Situational Awareness |
TCP | Transmission Control Protocol |
UAV | Unmanned Aerial Vehicle |
UDP | User Datagram Protocol |
UGS | Unmanned Ground Sensor |
UHF | Ultra High Frequency |
VANET | Vehicular Ad Hoc Network |
VBR | Variable Bit Rate |
VHF | Very High Frequency |
VioIP | Video over IP |
VoIP | Voice over IP |
VRC | Vehicle to Roadside Communication |
WB | Wide Band |
WSN | Wireless Sensors Networks |
References
- Gajewski, P.; Lopatka, J.; Lubkowski, P. Traffic Models for Military MANET Simulation. In Proceedings of the 2021 Signal Processing Symposium (SPSympo), Lodz, Poland, 20–23 September 2021. [Google Scholar] [CrossRef]
- Brubank, J.L.; Chomento, P.F.; Haberman, B.K.; Kasch, W.T. Key Challenges of Military Tactical Networking and the Elusive Promise of MANET Technology. IEEE Commun. Mag. 2006, 44, 39–45. [Google Scholar] [CrossRef]
- Kaur, S.; Beri, R.; Singh, S. A Survey on Ad Hoc Network (MANET). Int. J. Sci. Res. Dev. 2016, 4, 1064–1066. [Google Scholar]
- Haykin, S. Cognitive Radio: Brain-Empowered Wireless Communications. IEEE J. Sel. Areas Commun. 2005, 23, 201–220. [Google Scholar] [CrossRef]
- Song, M.; Xin, C.; Zhao, Y.; Cheng, X. Dynamic spectrum access: From cognitive radio to network radio. IEEE Wirel. Commun. 2012, 19, 23–29. [Google Scholar] [CrossRef]
- Ghosh, G.; Das, P.; Chatterjee, S. Cognitive Radio And Dynamic Spectrum Access–A Study. Int. J. Next-Gener. Netw. 2014, 6, 43–60. [Google Scholar] [CrossRef]
- Popoola, J.J.; van Olst, R. A Survey on Dynamic Spectrum Access via Cognitive Radio: Taxonomy, Requirements, and Benefits. Univers. J. Commun. Netw. 2014, 2, 70–85. [Google Scholar] [CrossRef]
- Lopatka, J.; Dołowski, J.; Grochowina, B.; Bryś, R. Efficiency Assessment of Coordinated Hierarchical Dynamic Spectrum Management for Mobile AD HOC Networks. In Proceedings of the 38th International Business Information Management Association Conference (IBIMA), Seville, Spain, 8 November 2021. [Google Scholar]
- Rose, L.; Massin, R.; Vijayandran, L.; Debbah, M.; LeMartret, C.J. CORASMA Program on Cognitive Radio for Tactical Networks: High Fidelity Simulator and First Results on Dynamic Frequency Allocation. In Proceedings of the MILCOM 2013—2013 IEEE Military Communications Conference, San Diego, CA, USA, 8–20 November 2013; IEEE Xplore: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Szmit, G.; Dołowski, J.; Łopatka, J. Distributed channel selection for hierarchical cognitive radio networks. In Proceedings of the MILCOM 2015—2015 IEEE Military Communications Conference, Tampa, FL, USA, 26–28 October 2015; pp. 426–431. [Google Scholar] [CrossRef]
- Gajewski, P.; Lopatka, J. MANET Cognitive Radio realtime testbed for Dynamic Spectrum Access. In Proceedings of the AFRICON—2017, Cape Town, South Africa, 18–20 September 2017. [Google Scholar] [CrossRef]
- Lopatka, J.; Gajewski, P.; Malon, K.; Krygier, J. Performance Monitoring of Cognitive Radio Mobile ad hoc Network with Dynamic Spectrum Access. In Proceedings of the AFRICON—2017, Cape Town, South Africa, 18–20 September 2017. [Google Scholar] [CrossRef]
- Kaszuba-Chęcińska, A.; Chęciński, R.; Gajewski, P.; Łopatka, J. Cognitive Radio MANET Waveform Design and Evaluation. Sensors 2021, 21, 1052. [Google Scholar] [CrossRef]
- Tatugate, A.A.; Jadhav, S.R. Tactical Communication System using MANET and WSN. In Proceedings of the International Conference on Advances in Engineering and Technology—2014 (ICAET—2014), Singapore, 29–30 March 2014; pp. 113–118. Available online: https://www.iosrjournals.org/iosr-jce/papers/Conf.16051/Volume-1/24.%20113-118.pdf (accessed on 17 January 2022).
- Naderi, E.; Asrari, A. Hardware-in-the-Loop Experimental Validation for a Lab-Scale Microgrid Targeted by Cyberattacks. In Proceedings of the 2021 9th International Conference on Smart Grid (icSmartGrid), Setubal, Portugal, 29 June–1 July 2021; pp. 57–62. [Google Scholar] [CrossRef]
- Adoni, K.A.; Tavildar, A.S.; Warhade, K.K. Random Black Hole Attack Modelling and Mitigation Using Trust-Confidence Aware OLSR in MANETs for Private Data Communications. Int. J. Sens. Wirel. Commun. Control 2020, 10, 112–122. [Google Scholar] [CrossRef]
- Srilakshmi, U.; Veeraiah, N.; Alotaibi, Y.; Alghamdi, S.; Khalaf, O.I.; Subbayamma, B.V. An Improved Hybrid Secure Multipath Routing Protocol for MANET. IEEE Access 2021, 9, 163043–163053. [Google Scholar] [CrossRef]
- Bondada, P.; Samanta, D.; Kaur, M.; Lee, H.-N. Data SecurityBased Routing in MANETs Using Key Management Mechanism. Appl. Sci. 2022, 12, 1041. [Google Scholar] [CrossRef]
- Yamini, K.A.P.; Stephy, J.; Suthendran, K.; Ravi, V. Improving routing disruption attack detection in MANETs using efficient trust establishment. Trans. Emerg. Telecommun. Technol. 2022, e4446. [Google Scholar] [CrossRef]
- Saleh, S.A.; Zuhairi, M.F.; Dao, H. A Comparative Performance Analysis of Manet Routing Protocols in Various Propagation Loss Models Using NS3 Simulator. J. Commun. 2020, 15, 537–544. [Google Scholar] [CrossRef]
- Rath, M.; Pattanayak, B.K. Performance evaluation of optimised protocol in MANET. Int. J. Inf. Comput. Secur. 2021, 14, 318. [Google Scholar] [CrossRef]
- Ben Brahim, G.; Mohammad, N.; El-Hajj, W.; Parr, G.; Scotney, B. Performance evaluation and comparison study of adaptive MANET service location and discovery protocols for highly dynamic environments. EURASIP J. Wirel. Commun. Netw. 2022, 2022, 6. [Google Scholar] [CrossRef]
- Abdan, M.; Seno, S.A.H. Machine Learning Methods for Intrusive Detection of Wormhole Attack in Mobile Ad Hoc Network (MANET). Wirel. Commun. Mob. Comput. 2022, 2022, 2375702. [Google Scholar] [CrossRef]
- Erciyes, K.; Dagdeviren, O.; Cokuslu, D.; Yılmaz, O.; Gumus, H. Modeling and Simulation of Mobile Ad hoc Networks. In Mobile Ad Hoc Networks, 1st ed.; CRC Press: Boca Raton, FL, USA, 2012; Chapter 10; pp. 134–168. ISBN 9780429192227. Available online: https://www.researchgate.net/publication/228554550 (accessed on 17 January 2022). [CrossRef]
- Martinez, F.J.; Toh Ch, K.; Cano, J.-C.; Calafate, C.T.; Manzoni, P. A survey and comparative study of simulators for vehicular ad hoc networks (VANETs). Wirel. Commun. Mob. Comput. 2011, 11, 813–828. [Google Scholar] [CrossRef]
- Jie, L.; Wang, L. Simulation tools for MANETs: A systematic survey. Int. J. Comput. Sci. Eng. Surv. 2019, 2, 1045–1053. [Google Scholar]
- Bednarczyk, W.; Gajewski, P. Performance of distributed clustering with weighted optimization algorithm for MANET Cognitive Radio. In Proceedings of the 2015 International Conference on Military Communications and Information Systems (ICMCIS), Cracow, Poland, 18–19 May 2015; IEEE Xplore: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Skokowski, P.; Malon, K.; Lopatka, J. Building the Electromagnetic Situation Awareness in MANET Cognitive Radio Networks for Urban Areas. Sensors 2022, 22, 716. [Google Scholar] [CrossRef]
- Kaszuba-Chęcińska, A. Propagation Loss Prediction at 300 MHz in Suburban Environment. In Proceedings of the 37th International Business Information Management Association Conference (IBIMA), Cordoba, Spain, 30–31 May 2021. [Google Scholar]
- Chandrasekaran, B. Survey of Network Traffic Models. Available online: https://www.cse.wustl.edu/~jain/cse567-06/traffic_models3.html (accessed on 17 January 2022).
- Mohamed, A.M.; Agamy, A.F. A Survey on the Common Network Traffic Sources Models. Int. J. Comput. Netw. 2011, 3, 103–115. [Google Scholar]
- Garcia, A.E.; Hackbarth, K.D.; Brand, A.; Lehnert, R. Analytical Model for Voice over IP Traffic Characterization. Available online: https://www.academia.edu/6013060/Analytical_Model_for_Voice_over_IP_traffic_characterization (accessed on 17 January 2022).
- Haroun, R.F.; Takiedeen, A.E.; Abdelhay, E.H.; Mohamed, A.M. Performance Evaluation of QoS for VoIP and Video Streaming ove LTE Networks. Int. J. Sci. Eng. Technol. 2018, 7, 102–109. [Google Scholar]
- Choi, S.W.; Song, Y.-S.; Shin, W.-Y.; Kim, J. A Feasibility Study on Mission-Critical Push-to-Talk: Standards and Implementation Perspectives. IEEE Commun. Mag. 2019, 57, 81–87. [Google Scholar] [CrossRef]
- Chang, L.-H.; Sung, C.-H.; Chu, H.-C.; Liaw, J.-J. Design and implementation of the push-to-talk service in ad hoc VoIP network. IET Commun. 2009, 3, 740–751. [Google Scholar] [CrossRef] [Green Version]
- Alakiri, O.H.; Oladeji, A.; Benjamin, C.B.; Okolie, C.C.; Okikiola, M.F. The desirability of pareto distribution for modeling modern internet traffic characteristics. Int. J. Nov. Res. Eng. Appl. Sci. 2014, 1, 2–9. [Google Scholar]
- Ferreira, J.C.V.; Contreras, M.F.; Sierra, J.E. Modelling and Characterization Traffic Voice, Video, Data and Telemetry under Pareto Distribution-Oriented Networks have on Power Line Communications. Indian J. Sci. Technol. 2018, 11, 1–12. [Google Scholar] [CrossRef]
- Naveenrai, M.; Karthick, P.V.; Karthic, S. Traffic Analysis Using MANET in Wireless Sensor Network. Int. J. Pure Appl. Math. 2018, 118, 431–440. [Google Scholar]
- Conti, M.; Li, Q.Q.; Maragno, A.; Spolaor, R. The Dark Side(-Channel) of Mobile Devices: A Survey on Network Traffic Analysis. IEEE Commun. Surv. Tutor. 2018, 20, 2656–2713. [Google Scholar] [CrossRef] [Green Version]
- White Paper—”A 5G Traffic Model for Industrial Use Cases”, 5G Alliance for Connected Industries and Automation, November 2019. Available online: https://5g-acia.org/wp-content/uploads/2021/04/WP_5G_5G_Traffic_Model_for_Industrial_Use_Cases_22.10.19.pdf (accessed on 17 January 2022).
- Haryadi, S. Telecommunication Traffic Unit and Traffic Mathematical Model. In Telecommunication Traffic: Technical and Business Consideration, 1st ed.; Lantip Safari Media, Institut Teknologi Bandung: Bandung, Indonesia, 2018; Chapter 1; p. 40. ISBN 978-602-18578-5-4. [Google Scholar] [CrossRef]
- 3GPP TR 37.868. Study on RAN Improvements for Machine Type Communications, Releases 11. 2011. Available online: https://fdocuments.in/document/3gpp-tr-37868-v1100-2011-09.html (accessed on 17 January 2022).
- Osahenvemwen, O.A.; Edeko, F.O.; Emagbetere, J. Traffic Modeling in Mobile Communication Networks. Int. J. Comp. App. 2012, 51, 17–24. [Google Scholar] [CrossRef]
- Laner, M.; Svoboda, P.; Nikaein, N.; Rupp, M. Traffic Models for Machine Type Communications. In ISWCS 2013: Proceedings of the Tenth International Symposium on Wireless Communication Systems, Ilmenau, Germany, 27–30 August 2013; IEEE Xplore: New York, NY, USA, 2013; ISBN 978-3-8007-3529-7. [Google Scholar]
- Ji, L.; Yin, X.; Shi, X.; Wang, Z. Conversational Model Based VoIP Traffic Generation. In Proceedings of the International Conference on Networking and Services (ICNS ‘07), Athens, Greece, 19–25 June 2007; IEEE Xplore: New York, NY, USA, 2008. [Google Scholar] [CrossRef] [Green Version]
- Doci, A.; Barolli, L.; Xhafa, F. Recent Advances on the Simulation Models for Ad Hoc Networks: Real Traffic and Mobility Models. Scalable Comput. Pract. Exp. 2009, 10, 1–11. [Google Scholar]
- Zeng, Y.; Chen, T.M. Measurement-based Real-time Traffic Model Classification. In Proceedings of the 2004 IEEE International Conference on Communications, Paris, France, 20–24 June 2004; IEEE Xplore: New York, NY, USA, 2004. [Google Scholar] [CrossRef]
- Zhao, Y.; Mao, S.; Neel, J.; Reed, J. Performance Evaluation of Cognitive Radios: Metrics, Utility Functions, and Methodology. Proc. IEEE 2009, 97, 642–659. [Google Scholar] [CrossRef]
- Kumari, C.S.; Setty, P. Performance Analysis of Cognitive Radio Networks (IEEE 802.22) for Various Network Traffics. Int. J. Recent Innov. Trends Comput. Commun. 2017, 5, 348–353. [Google Scholar]
- ITU-T Recommendation Y.1540: “Internet Protocol Data Communication Service—IP Packet Transfer and Availability Performance Parameters. Available online: https://www.google.de/#q=ITU-T+Recommendation+Y.1540 (accessed on 17 January 2022).
- ITU-T Recommendation Y.1541: “Network Performance Objectives for IP-Based Services”. Available online: https://www.itu.int/rec/T-REC-Y.1541/en (accessed on 17 January 2022).
Name of Service | Type of Service | Type of Transfer | Type of Transm. | Size [kB]/Required Bit Rate [kbps] | Protocols |
---|---|---|---|---|---|
Voice | RT | CO | Packets streams | 2.4/16 kbps | UDP |
Video | RT | CO/CL | Bit-stream | UDP, UDP/RTP | |
- Low - Medium - High | 17–33 kB 200–500 kB 400–1000 kB | ||||
BFT | NRT | CL | Data blocks | 0.2–2 kB | UDP |
Alert | NRT | CL | Data blocks | 0.2–2 kB | |
Chat | NRT | CL | Data blocks | TCP | |
Formatted messages Free text Short messages | 10 kB 2 kB 160 B | ||||
NRT | CL | Data blocks | TCP | ||
Formatted messages Formatted messages with attachments | 5–50 kB 5–50 + 500–2000 kB | ||||
C2 maps: | RT | CL | Data blocks | UDP | |
- tactical overlay - thematic maps Pictures: Sensor data: | 500 kB 2000 kB 17–33 kB to 0.2 kb/s |
Parameter | Description |
---|---|
No. of nodes | 183 |
No. of UHF networks | 4 |
No. of VHF networks | 28 |
No. of radio interfaces for each node | from 2 to 4 |
No. of UHF interfaces | 183 |
No. of VHF interfaces | 236 |
No. of UHF frequencies | 40 |
No. of VHF frequencies | 1500 |
No. of PTT sessions | 19 sessions |
No. of BFT sessions | 13 sessions |
No. of UDP sessions | 36 sessions |
PTT traffic | each session takes 5 s, repetition period 10 s. |
BFT traffic | 20 kb/s rate, each session takes 40 s. |
UDP traffic | 500 b/s, 40 kb/s, 160 kb/s—each session takes about 30 s. |
Path loss model | exponential path losses (𝛼 = 3.5) |
Size of Initial Hopset | VHF: 20 frequencies UHF: 4 frequencies |
IP routing | BEUN (Baseline Extended Upper NET)—routing protocol developed for MANETs |
Area of operation | 8.2 km × 6.0 km |
Order of Battle | 1 mechanized battalion, 4 companies, 18 platoons |
Simulation time | 100 s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajewski, P.; Łopatka, J.; Łubkowski, P. Performance Analysis of Public Safety Cognitive Radio MANET for Diversified Traffic. Sensors 2022, 22, 1927. https://doi.org/10.3390/s22051927
Gajewski P, Łopatka J, Łubkowski P. Performance Analysis of Public Safety Cognitive Radio MANET for Diversified Traffic. Sensors. 2022; 22(5):1927. https://doi.org/10.3390/s22051927
Chicago/Turabian StyleGajewski, Piotr, Jerzy Łopatka, and Piotr Łubkowski. 2022. "Performance Analysis of Public Safety Cognitive Radio MANET for Diversified Traffic" Sensors 22, no. 5: 1927. https://doi.org/10.3390/s22051927
APA StyleGajewski, P., Łopatka, J., & Łubkowski, P. (2022). Performance Analysis of Public Safety Cognitive Radio MANET for Diversified Traffic. Sensors, 22(5), 1927. https://doi.org/10.3390/s22051927