ECG Data Analysis with Denoising Approach and Customized CNNs
Abstract
:1. Introduction
- Denoising the raw ECG data to extract accurate data.
- The use of custom convolution neural networks produced 94% and 93% accuracy to analyze the signals and observe the patterns.
2. Related Work
3. Methodology
3.1. Data Description
3.2. Preprocessing
3.3. Filters
- 1.
- Median Filter:
- 2.
- Gaussian Filter:
- 3.
- Moving Average Filter:
- 4.
- Savitzky–Golay filter:
- 5.
- Low-Pass Butter Filter:
- 6.
- Wavelet Denoising Filter:
3.4. Architecture
3.4.1. Model 1
3.4.2. Model 2
3.4.3. Model 3
3.5. Performance Matrix
True positive (TP) | False Positive (FP) |
True Negative (TN) | False Negative (FN) |
4. Results and Discussion
4.1. Denoising
4.1.1. Wavelet Denoising Filter
4.1.2. Median Filter
4.1.3. Gaussian Filter
4.1.4. Moving Average Filter
4.1.5. Savitzky–Golay Filter
4.1.6. Low-Pass Butterworth Filter
4.1.7. Comparison between Filters
4.2. Results of CCNNs
4.3. AUC–ROC CURVE
- Relationship between sensitivity and specificity. As sensitivity increases specificity increases.
- The classification power of the model at different thresholds. As the threshold decreases more data items are classified as positive.
- Test accuracy which can be identified as the closer the curve to the top leftmost corner of the graph accurate the model is. An ideal curve would go straight from zero up to the top-left corner and then parallel to the X-axis. The curve which will be nearer to the diagonal would be less accurate.
4.4. Confusion Matrix
5. Discussion
- The proposed CCNN model is robust.
- There is no requirement for QRS detection.
- CCNN structure consists of feature extraction, selection, and classification.
- The proposed model is light on the computation side; it is cost-effective.
- The training phase of CCNN is much higher.
- A huge database is required to fulfill the training criteria.
- CCNN required a fixed ECG signal; thus, ECG signal length must be fixed for both the training and testing phase.
6. Conclusions and Future Scope
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1 (accessed on 15 October 2021).
- Thakor, N.V.; Zhu, Y.S. Applications of adaptive filtering to ECG analysis: Noise cancellation and arrhythmia detection. IEEE Trans. Biomed. Eng. 1991, 38, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Zühlke, L.; Lawrenson, J.; Comitis, G.; De Decker, R.; Brooks, A.; Fourie, B.; Hugo-Hamman, C. Congenital heart disease in low-and lower-middle-income countries: Current status and new opportunities. Curr. Cardiol. Rep. 2019, 21, 163. [Google Scholar] [CrossRef]
- Kamaruddin, N.H.; Murugappan, M.; Omar, M.I. Early prediction of Cardiovascular Diseases using ECG signals. In Proceedings of the Congenital Heart Disease in Low-and Lower-Middle-Income Countries: Current Status and New Opportunities), Pulau Pinang, Malaysia, 5–6 December 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 48–53. [Google Scholar]
- Rajkumar, A.; Ganesan, M.; Lavanya, R. Arrhythmia classification on ECG using Deep Learning. In Proceedings of the 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 15–16 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 365–369. [Google Scholar]
- AlMahamdy, M.; Riley, H.B. Performance study of different denoising methods for ECG signals. Procedia Comput. Sci. 2014, 37, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, S.; Biswal, P.; Das, T.; Sabut, S. De-noising of ECG Signal and QRS Detection Using Hilbert Transform and Adaptive Thresholding. Procedia Technol. 2016, 25, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Gokhan, A.; Novruz, A.; Yakup, K. Diagnosis of Coronary Artery Disease Using Deep Belief Networks. Eur. J. Eng. Nat. Sci. 2017, 2, 29–36. [Google Scholar]
- Zhang, D.; Wang, S.; Li, F.; Wang, J.; Kumar, A.; Sheng, V.; Ding, X. An ECG Signal De-Noising Approach Based on Wavelet Energy and Sub-Band Smoothing Filter. Appl. Sci. 2019, 9, 4968. [Google Scholar] [CrossRef] [Green Version]
- Chandra, S.; Sharma, A.; Singh, G.K. Feature extraction of ECG signal. J. Med. Eng. Technol. 2018, 42, 306–316. [Google Scholar] [CrossRef]
- Stalin, S.; Rajkumar, P.; Rajendran, K. Reduction of Noises in ECG Signal by Various Filters. Int. J. Eng. Res. Technol. 2014, 3, 656–660. [Google Scholar] [CrossRef]
- Bhoi, A.K.; Sherpa, K.S.; Phurailatpam, D.; Tamang, J.S.; Giri, P.K. Multidimensional approaches for noise cancellation of ECG signal. In Proceedings of the 2015 International Conference on Communications and Signal Processing (ICCSP), Melmaruvathur, India, 2–4 April 2015; pp. 66–70. [Google Scholar] [CrossRef]
- Rajeshwari, S.; Sharmila, T. Efficient quality analysis of MRI images using preprocessing techniques. In Proceedings of the 2013 IEEE Conference on Information and Communication Technologies, Thuckalay, India, 11–12 April 2013; pp. 391–396. [Google Scholar] [CrossRef]
- Pace, D.; Dalca, A.; Geva, T.; Powell, A.; Moghari, M.H.; Golland, P. Interactive Whole-Heart Segmentation in Congenital Heart Disease. Med. Image Comput. Comput. Assist. Interv. 2015, 9351, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Sraitih, M.; Jabrane, Y.; Hassani, A.H.E. An Automated System for ECG Arrhythmia Detection Using Machine Learning Techniques. J. Clin. Med. 2021, 10, 5450. [Google Scholar] [CrossRef]
- Gary, B.; David, L.; Chen, Y.-J. Filter properties of root mean square successive difference (RMSSD) for heart rate. Psychophysiology 2005, 42, 246–252. [Google Scholar] [CrossRef]
- Khan, A.H.; Hussain, M.; Malik, M.K. Arrhythmia Classification Techniques Using Deep Neural Network. Complexity 2021, 2021, 9919588. [Google Scholar] [CrossRef]
- Naz, M.; Shah, J.H.; Khan, M.A.; Sharif, M.; Raza, M.; Damaševičius, R. From ECG signals to images: A transformation based approach for deep learning. PeerJ Comput. Sci. 2021, 7, e386. [Google Scholar] [CrossRef]
- Wu, M.; Lu, Y.; Yang, W.; Wong, S.Y. A Study on Arrhythmia via ECG Signal Classification Using the Convolutional Neural Network. Front. Comput. Neurosci. 2021, 14, 564015. [Google Scholar] [CrossRef] [PubMed]
- Saira, A.; Sajid, A.; Alouini, M.-S. ECG-based machine-learning algorithms for heartbeat classification. Sci. Rep. 2021, 11, 18738. [Google Scholar] [CrossRef]
- Kiran, P.; Kumar, P. Effective Feature Extraction of ECG for Biometric Application. Procedia Comput. Sci. 2017, 115, 296–306. [Google Scholar] [CrossRef]
- Lastre-Domínguez, C.; Shmaliy, Y.S.; Ibarra-Manzano, O.; Munoz-Minjares, J.; Morales-Mendoza, L.J. ECG Signal Denoising and Features Extraction Using Unbiased FIR Smoothing. BioMed Res. Int. 2019, 2019, 2608547. [Google Scholar] [CrossRef]
- Acharya, U.R.; Sree, S.V.; Muthu Rama Krishnan, M.; Krishnananda, N.; Ranjan, S.; Umesh, P. Automated classification of patients with coronary artery disease using grayscale features from left ventricle echocardiographic images. Comput. Methods Programs Biomed. 2013, 112, 624–632. [Google Scholar] [CrossRef]
- Acharya, U.R.; Fujita, H.; Oh, S.L.; Adam, M.; Tan, J.H.; Chua, K. Automated Detection of Coronary Artery Disease Using Different Durations of ECG Segments with Convolutional Neural Network. Knowl. Based Syst. 2017, 132, 62–71. [Google Scholar] [CrossRef]
- Bhyri, C.; Hamde, S.; Waghmare, L. ECG feature extraction and disease diagnosis. J. Med. Eng. Technol. 2011, 35, 354–361. [Google Scholar] [CrossRef]
- Lin, S.; Li, Z.; Fu, B.; Chen, S.; Li, X.; Wang, Y.; Wang, X.; Lv, B.; Xu, B.; Song, X.; et al. Feasibility of using deep learning to detect coronary artery disease based on facial photo. Eur. Heart J. 2020, 41, 4400–4411. [Google Scholar] [CrossRef] [PubMed]
- Akella, A.; Kaushik, V. Machine Learning Algorithms for Predicting Coronary Artery Disease: Efforts toward an Open-Source Solution. Future Sci. OA 2020, 7, FSO698. [Google Scholar] [CrossRef] [PubMed]
- Valluraiah, P.; Biswal, B. ECG signal analysis using Hilbert transform. In Proceedings of the 2015 IEEE Power, Communication and Information Technology Conference (PCITC), Bhubaneswar, India, 15–17 October 2015; pp. 465–469. [Google Scholar] [CrossRef]
- Yıldırım, Ö.; Pławiak, P.; Tan, R.S.; Acharya, U.R. Arrhythmia Detection Using Deep Convolutional Neural Network with Long Duration ECG Signals. Comput. Biol. Med. 2018, 102, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Luz, E.; Schwartz, W.; Chávez, G.; Menotti, D. ECG-based Heartbeat Classification for Arrhythmia Detection: A Survey. Comput. Methods Programs Biomed. 2015, 127, 144–164. [Google Scholar] [CrossRef] [PubMed]
- Gayathri, S.; Manikandan, S.; Latha, V. ECG Arrhythmia Detection and Classification Using Relevance Vector Machine. Procedia Eng. 2012, 38, 1333–1339. [Google Scholar] [CrossRef] [Green Version]
- Rajpurkar, P.; Hannun, A.; Haghpanahi, M.; Bourn, C.; Ng, A. Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks. Nat. Med. 2017, 25, 65–69. [Google Scholar]
- Li, J.; Si, Y.; Xu, T.; Jiang, S. Deep Convolutional Neural Network Based ECG Classification System Using Information Fusion and One-Hot Encoding Techniques. Math. Probl. Eng. 2018, 2018, 7354081. [Google Scholar] [CrossRef]
- Roberta, A.; Beritelli, F. Automatic ECG Diagnosis Using Convolutional Neural Network. Electronics 2020, 9, 951. [Google Scholar] [CrossRef]
- Alizadehsani, R.; Abdar, M.; Roshanzamir, M.; Khosravi, A.; Kebria, P.; Khozeimeh, F.; Nahavandi, S.; Sarrafzadegan, N.; Acharya, U.R. Machine learning-based coronary artery disease diagnosis: A comprehensive review. Comput. Biol. Med. 2019, 111, 103346. [Google Scholar] [CrossRef]
- Acharya, U.R.; Fujita, H.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adam, M.; Tan, R.S. Deep Convolutional Neural Network for the Automated Diagnosis of Congestive Heart Failure Using ECG Signals. Appl. Intell. 2019, 49, 16–27. [Google Scholar] [CrossRef]
- Acharya, U.R.; Faust, O.; Subbhuraam, V.S.; Goutham, S.; Martis, R.; Kadri, N.A.; Suri, J. Linear and nonlinear analysis of normal and CAD-affected heart rate signals. Comput. Methods Programs Biomed. 2014, 113, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Moody, G.B.; Mark, R.G. The MIT-BIH Arrhythmia Database on CD-ROM and software for use with it. Comput. Cardiol. 1990, 17, 185–188. [Google Scholar]
- Hao, W.; Chen, Y.; Xin, Y. ECG baseline wander correction by mean-median filter and discrete wavelet transform. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 2712–2715. [Google Scholar]
- Deng, G.; Cahill, L.W. An adaptive Gaussian filter for noise reduction and edge detection. In Proceedings of the 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference, San Francisco, CA, USA, 31 October–6 November 1993; IEEE: Piscataway, NJ, USA, 1993; pp. 1615–1619. [Google Scholar]
- Available online: https://en.wikipedia.org/wiki/Moving_average#:~:text=In%20statistics%2C%20a%20moving%20average,of%20finite%20impulse%20response%20filter (accessed on 21 February 2022).
- Luo, J.; Ying, K.; Bai, J. Savitzky–Golay smoothing and differentiation filter for even number data. Signal Process. 2005, 85, 1429–1434. [Google Scholar] [CrossRef]
- Singh, B.N.; Tiwari, A.K. Optimal selection of wavelet basis function applied to ECG signal denoising. Digit. Signal Process. 2006, 16, 275–287. [Google Scholar] [CrossRef]
- Basu, S.; Mamud, S. Comparative Study on the Effect of Order and Cut off Frequency of Butterworth Low Pass Filter for Removal of Noise in ECG Signal. In Proceedings of the 2020 IEEE 1st International Conference for Convergence in Engineering (ICCE), Kolkata, India, 5–6 September 2020; pp. 156–160. [Google Scholar] [CrossRef]
- Howard, A.G. Some Improvements on Deep Convolutional Neural Network Based Image Classification. arXiv 2014, arXiv:1312.5402. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. Neural Inf. Process. Syst. 2012, 60, 84–90. [Google Scholar] [CrossRef]
- Zubair, M.; Kim, J.; Yoon, C. An automated ECG beat classification system using convolutional neural networks. In Proceedings of the 6th International Conference on IT Convergence and Security (ICITCS), Prague, Czech Republic, 26 September 2016; pp. 1–5, ISBN 978-1-5090-3766-7. [Google Scholar]
- Acharya, U.R.; Fujita, H.; Lih, O.S.; Hagiwara, Y.; Tan, J.H.; Adam, M. Automated detection of arrhythmias using different intervals of tachycardia ECG segments with a convolutional neural network. Inf. Sci. 2017, 405, 81–90. [Google Scholar] [CrossRef]
Author | Models | Disease | Datasets | Accuracy |
---|---|---|---|---|
Altan et al. [8] | Deep belief networks | Coronary artery disease | Made a dataset from collecting data | 98.88% |
Ali et al. [17] | CNN, LSTM, RNN | Arrythmia classification | Combination of different publicly available datasets | - |
Naz et al. [18] | Pretrained CNNs | ECG classification | MIT-BIH database | 91.2 |
Wu et al. [19] | Convolutional neural networks | Arrhythmia | MIT-BIH database | 97.41 |
Patro et al. [21] | Artificial neural network | Feature extraction from ECG signals. | MIT-BIH ECG ID database signal | - |
Acharya et al. [23] | Gaussian Mixture Model (GMM) | Coronary artery disease | The CAD datasets from the University California Irvine a database | 95% |
Acharya et al. [24] | Convolution neural network | Coronary artery disease | Physio net databases | 95.11% |
Bhyri et al. [25] | heart diseases | CSE ECG database | around 99% | |
Lin et al. [26] | Deep convolutional neural networks | coronary artery disease | Combination of datasets | 95% |
Akella et al. [27] | SVM, K-NN, artificial neural network | coronary artery disease | UCI dataset | 93.03% |
Yıldırım et al. [29] | 16-layer standard CNN | Arrhythmia | MIT-BIH Arrhythmia database | 86.67% |
Luz et al. [30] | Arrhythmia | MIT-BIH, EDB, AHA, CU, NST databases | - | |
Gayathri et al. [31] | Relevance vector machine | Arrhythmia | MIT/BIH database | RVM boosts generalization capability |
Rajpurkar et al. [32] | 34-layer convolutional neural network | Arrhythmia | Own dataset with a combination of datasets | |
Li et al. [33] | CNN-based classification on ECG signals. | ECG classification | MIT-BIH arrhythmia database, | 99.1% |
Avanzato et al. [34] | Convolutional neural networks | coronary artery disease | MIT-BIH arrhythmia database | 98.33% |
Alizadehsani et al. [35] | ML algorithms | Coronary artery disease | Combination of different datasets | - |
Acharya et al. [36] | 11-layer deep convolutional neural network | congestive heart failure | BIDMC: Congestive Heart Failure Database, Fantasia Database, MIT-BIH database | 99.01% |
Acharya et al. [37] | Time level and frequency domain analysis | Coronary artery disease | CAD dataset | 96.8 |
Filters | Wavelet Transform | Low-Pass Butterworth Filter | Savitzky–Golay Filter | Moving Average | Gaussian Filter | Median Filter |
---|---|---|---|---|---|---|
PSNR | 56.9 | 78.6 | 80.5 | 81.05 | 86.5 | 87.3 |
Model | Training Loss | Training Accuracy | Training Sensitivity | Training Specificity | Training Recall | Training Precision | Training F1-Score |
---|---|---|---|---|---|---|---|
Model-3 | 0.0533 | 0.9829 | 0.9598 | 0.9933 | 0.9598 | 0.9853 | 0.9708 |
Model-1 | 0.0373 | 0.9888 | 0.9771 | 0.9942 | 0.9771 | 0.9872 | 0.9762 |
Model-2 | 0.0357 | 0.9907 | 0.9824 | 0.9946 | 0.9824 | 0.9890 | 0.9848 |
Model | Validation Loss | Validation Accuracy | Validation Sensitivity | Validation Specificity | Validation Recall | Validation Precision | Validation F1-Score |
---|---|---|---|---|---|---|---|
Model-3 | 0.3831 | 0.8671 | 0.4081 | 0.8250 | 0.3888 | 0.4351 | 0.3833 |
Model-1 | 0.3171 | 0.8737 | 0.4525 | 0.8502 | 0.4030 | 0.4438 | 0.3859 |
Model-2 | 0.2754 | 0.9325 | 0.4214 | 0.8625 | 0.4214 | 0.5207 | 0.4338 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, A.; Dharahas, G.; Gite, S.; Kotecha, K.; Koundal, D.; Zaguia, A.; Kaur, M.; Lee, H.-N. ECG Data Analysis with Denoising Approach and Customized CNNs. Sensors 2022, 22, 1928. https://doi.org/10.3390/s22051928
Mishra A, Dharahas G, Gite S, Kotecha K, Koundal D, Zaguia A, Kaur M, Lee H-N. ECG Data Analysis with Denoising Approach and Customized CNNs. Sensors. 2022; 22(5):1928. https://doi.org/10.3390/s22051928
Chicago/Turabian StyleMishra, Abhinav, Ganapathiraju Dharahas, Shilpa Gite, Ketan Kotecha, Deepika Koundal, Atef Zaguia, Manjit Kaur, and Heung-No Lee. 2022. "ECG Data Analysis with Denoising Approach and Customized CNNs" Sensors 22, no. 5: 1928. https://doi.org/10.3390/s22051928
APA StyleMishra, A., Dharahas, G., Gite, S., Kotecha, K., Koundal, D., Zaguia, A., Kaur, M., & Lee, H. -N. (2022). ECG Data Analysis with Denoising Approach and Customized CNNs. Sensors, 22(5), 1928. https://doi.org/10.3390/s22051928