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Abstract: In many studies regarding the field of malaria, environmental factors have been acquired in
single-time, multi-time or a short-time series using remote sensing and meteorological data. Selecting
the best periods of the year to monitor the habitats of Anopheles larvae can be effective in better and
faster control of malaria outbreaks. In this article, high-risk times for three regions in Iran, including
Qaleh-Ganj, Sarbaz and Bashagard counties with a history of malaria prevalence were estimated.
For this purpose, a series of environmental factors affecting the growth and survival of Anopheles were
used over a seven-year period through the Google Earth Engine. The results of this study indicated
two high-risk times for Qaleh-Ganj and Bashagard counties and three high-risk times for Sarbaz
county over the course of a year observing an increase in the abundance of Anopheles mosquitoes.
Further evaluation of the results against the entomological data available in previous studies showed
that the high-risk times predicted in this study were consistent with an increase in the abundance
of Anopheles mosquitoes in the study areas. The proposed method is extremely useful for temporal
prediction of the increase in abundance of Anopheles mosquitoes in addition to the use of optimal
data aimed at monitoring the exact location of Anopheles habitats.

Keywords: malaria; remote sensing; climate; Anopheles; Google Earth Engine; hydro-climate time
series; trend analysis

1. Introduction

Malaria is an infectious disease transmitted by the Anopheles mosquito and claims mil-
lions of lives globally every year [1]. The pattern of malaria transmission varies markedly
from region to region, depending on climate and biogeography [2]. Although malaria
has been successfully eradicated in many parts of the world in recent decades, Anopheles
mosquitoes have not become extinct. Furthermore, there is still the risk of malaria trans-
mission in areas where Anopheles mosquitoes inhabit [3]. A recent study has shown that
targeting the Anopheles larvae can be an effective tool in the fight against malaria [4]. The
growth of Anopheles mosquitoes from eggs to larvae and finally to adult mosquitoes occurs
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in water bodies at a suitable temperature, thus the abundance of Anopheles mosquitoes is
closely associated with the availability of precipitation, temperature and humidity [4–8].

Fortunately, malaria cases in Iran have dropped to zero in the last three years [9].
Therefore, according to the malaria elimination guidelines, the country represents a can-
didate for receiving the malaria elimination certificate. As the incidence of the disease
decreases, it is expected that the budget allocated to the field-based operations, such as mon-
itoring of the activity of larvae and adults of malaria vectors, which has previously been
performed regularly in endemic areas of the disease, will be reduced. Therefore, access to
the up-to-date data on Anopheles abundance and the accurate time of their temporal activity
should be obtained through alternative means that are less expensive but more accurate.
One of these ways is to study the environmental factors affecting the activity of malaria
vector mosquitoes. Due to the fact that some environmental and climatic parameters affect
the abundance of Anopheles mosquitoes, analysis and monitoring of climatic trends in the
region will be effective in determining the accurate time for vector control interventions.
The climatic trend of each region will be obtained by long-term monitoring of its climate
data. Some studies on effective environmental parameters have shown that precipitation
bears the greatest impact on the prevalence of malaria [10,11]. This phenomenon occurs due
to the storage of water in pits and water bodies after rainfall. Precipitation is necessary to
produce breeding sites for mosquitoes and for completion of its life cycle [12,13]. Moreover,
temperature plays a vital role in the spreading of vector borne diseases. Temperatures
between 13–35 ◦C are suitable for Anopheles mosquito breeding [14–17]. Land Surface
Temperature (LST) marks one of the key parameters that can provide valuable information
about the thermal characteristics of the ground, atmospheric effects of spectral radiation
and bulk emissivity of the mixture of materials within the scene. Various satellites such
as NOAA, Landsat, Terra, etc. have been designed for temperature studies. LST is posi-
tively associated with malaria incidence [12,18]. In addition to precipitation, moisture and
LST, vegetation indices are also considered as one of the important environmental factors
associated with the prevalence of malaria [3,11,19,20]. Temporal variation in Normalized
Difference Vegetation Index (NDVI) reflects temporal agricultural and phenology changes
and also tracks fluctuations in temperature and precipitation [21,22].

Vegetation indices, thus, provide an indirect measurement of the environmental
pattern that affects the population of Anopheles mosquitoes. On the other hand, epidemi-
ologic data of malaria cases are correlated with satellite based Vegetation Health (VH)
indices [23–25]. The VH indices are represented by the Thermal Condition Index (TCI)
and Vegetation Condition Index (VCI). The VCI and TCI estimate moisture and thermal
conditions, respectively. Rahman et al. [25] discovered that the number of malaria cases
was more sensitive to thermal (e.g., TCI) than moisture (e.g., VCI) conditions. Given that
water areas provide the main habitat for the growth of Anopheles larvae, the water index
such as Normalized Difference Water Index (NDWI) can also be considered as an effective
parameter in the seasonal study of malaria prevalence [6,11,26]. Additionally, the index
represents an indirect proxy for precipitation and humidity [27].

In previous research reviewed, not all effective parameters were analyzed simultane-
ously over a period of several years. In addition, field observations can be more accurate
for monitoring effective factors, but the accessibility to this data is extremely limited in
the long-term and over large areas. Certainly, in order to accurately predict the increase
of the abundance of Anopheles mosquitoes, simultaneous examination of all parameters
is important, and this analysis should be performed over a long period of time in the
region [6,28]. In addition, the study of the correlations of environmental factors can be effec-
tive in their optimal selection to analyze and predict the abundance of Anopheles. Since most
parameters affecting the increase of the abundance of Anopheles mosquitoes are climatic
parameters, long-term analysis thus provides more accurate information about the climatic
behavior of the region. If only one year is examined, the possibility of errors in the high-risk
time prediction will occur. Some years experienced drought and the results of these years
slightly differed from the typical climatic behavior of the region. Moreover, high-risk
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periods in a year can be detected using time series remote sensing data analysis. Therefore,
by extracting the climatic and trends of environmental factors, high-risk periods within a
year can be predicted. In recent years, Google Earth Engine (GEE) has rendered it possible
to analyze time series remote sensing data easily and in the shortest time by providing
fast and accessible processing space and easy access to free remote sensing data [29,30].
The aim of this study was to predict the high-risk time of increasing number of Anopheles
mosquitoes and seasonal outbreak of malaria using time series of remote sensing data in
three study areas of Qaleh-Ganj, Sarbaz and Bashagard counties in Iran. The remainder
of the paper is organized as follows. Section 2 describes the study region, datasets, and
methodology. Section 3 describes and illustrates the results. In Section 4, the results are
discussed and reviewed.

2. Materials and Methods

In this research, high-risk times in a year among three study areas of Qaleh-Ganj,
Sarbaz and Bashagard counties in Iran were studied by monitoring satellite-derived en-
vironmental factors over a period of seven years. According to this, time series of precip-
itation, LST, surface and subsurface soil moisture, NDVI and VH indices were analyzed
simultaneously using GEE. The GEE contains the ability to analyze effective parameters on
the abundance of Anopheles mosquitoes in the long-term by providing a strong processing
space as well as easy access to time series remote sensing data. Each of these data contained
its own temporal resolution, so as to equalize the temporal resolutions; the monthly average
of each data was obtained. This would also be employed to check for high-risk months. In
addition, the correlation between effective factors such as precipitation, ET, NDVI, Adaptive
LST (ALST) and soil moisture were studied for optimal selection of parameters. Then, the
risk peaks of each charts were calculated by examining the distribution of temporal data.
Finally, by fusing the results of all effective factors over a period of seven years based on
the majority voting decision, the high-risk months were identified in three study areas. To
assess the proposed method, the results were evaluated against entomological data [31–33].
The flowchart of the proposed method is shown in Figure 1.
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2.1. Study Region

According to research conducted in Iran [33–37], in recent years, cases of malaria
have been observed in the three counties of Qaleh-Ganj, Sarbaz and Bashagard. These
three counties bear the potential to provide Anopheles mosquito larval habitats due to their
subtropical climate and environmental conditions. The central point of Qaleh-Ganj county is
located at 27◦31′33.43′′ Northing and 57◦52′41.9′′ Easting in the south of Kerman Province,
the central point of Sarbaz county located at 26◦37′58.28′′ Northing and 61◦15′30.01′′

Easting in the south-east of Sistan and Baluchestan Province, and the central point of
Bashagard county located at 26◦27′29.08′′ Northing and 57◦54′7.39′′ Easting in the east of
Hormozgan Province (Figure 2). These study areas exhibit hot weather and monsoon rains
in mid-summer. The study period in all three study areas ranged from 2014 to 2020.
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Figure 2. Three study areas including the counties of Qaleh-Ganj, Sarbaz and Bashagard (red) located
in the three provinces of Kerman, Sistan and Baluchestan and Hormozgan, respectively, (pink), in
Iran (green).

2.2. Datasets and Pre-Processing

Remote sensing data with medium and low spatial resolution were employed due
to high temporal resolution, free usage, extended areas as well as relatively long study
periods (Table 1). The data used include Landsat-8 OLI/TIRS satellite images to extract LST,
vegetation and health vegetation indices, PERSIANN-CDR data to extract precipitation,
MOD16A2 Evapotranspiration/Latent Heat Flux product to monitor ET and NASA-USD
Enhanced SMAP data to monitor soil moisture (Figure 3). All these data were obtained as a
time series for all three study areas of Sarbaz, Qaleh-Ganj and Bashagard counties from
2014 to 2020. The GEE, which is a cloud-based geospatial processing platform for large-
scale environmental monitoring and analysis, was used to process the remote sensing data.
This platform is a browser-based interactive development environment and a JavaScript
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programming interface provides access to a wide range of satellite products. Computations
in this environment are performed through parallel processing in Google Cloud [30].

Table 1. Specifications of the data used.

Data Spatial Resolution Temporal Resolution

Landsat8 OLI/TIRS

• Visible and near infrared
bands: 30 m

• Thermal bands: 100 m
16-Day

PERSIANN-CDR 27,830 m Daily
MOD16A2 Terra MODIS 500 m 8-Day

NASA-USD Enhanced SMAP 10,000 m 3-Day
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In addition, due to the importance of temperature conditions in the growth of Anopheles
larvae, a series of meteorological data from the beginning of 2014 to the end of 2017 were
used to better adapt temperature with LST factor. These data were prepared by the Iran
Meteorological Organization (IMO). The meteorological data include the minimum and the
maximum temperature per day from the synoptic stations of the study areas.

2.2.1. Adaptive Land Surface Temperature (ALST)

Anopheles mosquitoes encompass different species and each of them grows and sur-
vives within a certain temperature range. In general, most of the Anopheles larvae species
developed into adults at temperatures ranging from 13 to 35 ◦C [14–17,38]. In this research,
LST time series from Landsat 8 OLI/TIR images were used to monitor land surface tem-
perature changes. In order to calculate the surface temperature, first, it was necessary
to apply pre-processing on the images including applying cloud and shadow masks in
addition to atmospheric and radiometric corrections. The NDVI was applied (Equation (1))
to determine the emission capacity of the land surface.

NDVI =
NIR− Red
NIR + Red

(1)

where NIR and Red are equal to the near infrared and the red bands, respectively. After
calculating the NDVI index, based on the obtained values, Land Surface Emissivity (LSE)
was determined according to Table 2 [39].

Table 2. Emissivity values based on NDVI.

NDVI LSE

NDVI < −0.185 0.955
−0.185 ≤ NDVI < 0.157 0.985
0.157 ≤ NDVI ≤ 0.727 1.009 + 0.047 × ln(NDVI)

NDVI ≥ 0.727 0.990
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The BT is the temperature corresponding to the radiance received from the surface
of a phenomenon or object by the sensor, which is obtained by the inverse of the Planck
relation (Equation (2)).

BT =
k2

ln k1
Lλ

+ 1
(2)

where Lλ is equal to the spectral radiation, λ is the central wavelength of each band, and k1
and k2 are equal to the calibration coefficients of the sensor brightness temperature.

Then, the surface temperature is calculated through Equation (3) [39].

LST =
BT

1 +
(
λ BT

ρ

)
ln(ε)

(3)

where λ is the band wavelength and ε is equal to the LSE (Table 1). ρ can also be calculated
from Equation (4).

ρ =
hc
s

= 1.438× 10−2 mk (4)

where h is the Planck constant (6.626 × 10−34 J.s), c is the speed of light (1.38 × 10−23 J/K)
and s is the Boltzmann constant (2.998 × 10−8 m/s). Finally, in order to convert the LST
unit from Kelvin to Celsius, the value of 273.15 is reduced.

In describing the correlation between temperature and the abundance of Anopheles,
the mean value of meteorological data for the whole study period was chosen to correct
the LST results. For this purpose, the average monthly air temperature was calculated
from the average minimum and maximum temperature per day, and then the average LST
per month was matched with the corresponding average air temperature. This analysis
was performed for four consecutive years from 2014 to 2017. Based on this analysis, the
monthly median value of difference for four consecutive years was extracted as the monthly
adaptive LST threshold. It should be mentioned that considering the median value could
reduce the effective of noisy data in thresholding process.

2.2.2. Precipitation

One of the methods for estimating precipitation is the use of Precipitation Estimation
from Remotely Sensed Information using PERSIANN-CDR data. PERSIANN-CDR pro-
vides daily rainfall estimates for the latitude band 60◦ S–60◦ N. PERSIANN-CDR is aimed
at addressing the need for a consistent, long-term, high-resolution (0.25 degree), and global
precipitation dataset for studying the changes and trends in daily precipitation, especially
extreme precipitation events, due to climate change and natural variability [40]. In this
study, in order to monitor the precipitation trends of the study areas, PERSIANN-CDR data
from 2014 to 2020 were averaged on a monthly basis using GEE.

2.2.3. Soil Moisture

NASA-USDA Enhanced SMAP global soil moisture data provides soil moisture in-
formation across the globe at 10-km spatial resolution. This dataset includes surface
and subsurface soil moisture and was also created by integrating SMAP surface soil
moisture satellite-derived observations into a modified two-layer Palmer model using
a one-dimensional (1D) ensemble Kalman filter (EnKF) data assimilation approach. The in-
tegration of SMAP soil moisture observations helps improve the model-based soil moisture
prediction, especially in areas of the world that lack good quality precipitation data [41]. In
order to study changes in soil moisture over the period of seven years, the monthly average
of surface and subsurface soil moisture were obtained in GEE over the study areas.

2.2.4. Normalized Difference Vegetation Index (NDVI)

One of the most widely employed and simplest vegetation indices, used to monitor
vegetation changes, is the NDVI (Equation (1)). As outlined in the literature, changes in
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this index are directly related to the prevalence of malaria. In this study, the NDVI was
extracted as a monthly average, from 2014 to 2020, using red and near infrared bands of
the Landsat 8 OLI. This implementation was performed in the GEE for all study areas.

2.2.5. Vegetation Health (VH)

The most widely used indicators of vegetation health and drought are VCI and TCI. If
TCI increases and VCI decreases during the time, this means that drought has occurred
in that area [42]. Apart from the fact that these two indicators are employed in vegetation
health and drought, they monitor vegetation and temperature in their equations in the long-
term; thus they can also be used as an indicator of the ideal growth conditions of Anopheles
mosquitoes. Decreasing the values of VCI over a long period of time indicates a decrease in
vegetation moisture. This index compares the current NDVI to the range of values observed
over a period of time. The VCI index is defined as follows (Equation (5)) [43,44].

VCI =
NDVIi − NDVImin

NDVImax − NDVImin
(5)

where, NDVImax and NDVImin are equivalent to the maximum and minimum NDVI over
the study period, respectively, and i represents the current month.

The TCI is used to monitor vegetation drought changes over a long period of time.
This index is based on the relationship between actual (LSTi) and potential condition
temperature (LSTmin) and vegetation stress (LSTmax) (Equation (6)) [43,44].

TCI =
LSTmax − LSTi

LSTmax − LSTmin
(6)

where, LSTmin and LSTmax are equivalent to the minimum and maximum LST over the
study period, respectively, and i represents the current month. The increasing trend of
TCI in the long period of time demonstrates vegetation drought in the region [42]. In this
research, the TCI and the VCI had been implemented as a time series from 2014 to 2020
for all study areas. Accordingly, both annual and 7-year components of maximum and
minimum of NDVI and LST were used to calculate VCI and TCI. Since both VCI and TCI
were calculated from NDVI and LST, respectively; the correlation of these indices with their
related factors would be determined to reduce the feature space.

2.2.6. Evapotranspiration (ET)

The MOD16A2 Evapotranspiration/Latent Heat Flux product is an 8-day composite
product produced at 500-m pixel resolution by MODIS sensor. The algorithm applied for
the MOD16 data product collection is based on the logic of the Penman–Monteith equation,
which includes inputs of daily meteorological reanalysis data along with MODIS remotely
sensed data products such as vegetation property dynamics, albedo, and land cover [45].
The pixel values for the ET represent the sum of all eight days within the composite period.
Since the ET is related to soil moisture, water content of vegetation, temperature and
precipitation, this component could also be one of the factors considered in the malaria
prevalence. Therefore, in this study, the monthly average of ET changes from the MOD16A2
product in the seven-year period were applied using the GEE platform.

2.3. Determining the High-Risk Breeding Time of Anopheles Mosquitos

After calculating the monthly average of all seven parameters of NDVI, LST, ET,
soil moisture, TCI, VCI and precipitation, their seven-year average per month was also
determined. In this way, over a period of seven years, the climatic trend of the region
affecting the abundance of Anopheles mosquitoes was estimated. In order to define the
risk peaks, the average line of box plot for each environmental factor was used. Sudden
changes in the average line between two consecutive months were defined as the start and
the end of a risk peak. In this way, we can obtain a better observation at the distribution of
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data over time series, especially regarding the months that exhibited variable behaviors
in consecutive years (with high standard deviation). Then, a fusion of the results at the
decision level was used to identify high-risk months in which the necessary conditions
were provided for the growth and development of Anopheles mosquitoes. In this method,
the majority voting condition was used in the final decision. Thus, if out of every six
parameters, four or more parameters occurred simultaneously in each month (in its peak
interval), that month would be selected as the high-risk month. It should be noted that
temperature plays a definitive role in this process and the appropriate temperature for
Anopheles mosquitos’ growth must be considered in the final decision.

3. Results

The time series of LST, precipitation, soil moisture, NDVI, vegetation health indices
and ET were implemented in GEE.

3.1. Land Surface Temprature (LST)

LST is directly related to temperature; therefore, to analyze the time series of tempera-
ture, the monthly average LST from Landsat-8 OLI/TIR satellite images were extracted.
Moreover, in order to better adapt the LST to the air temperature to further accurately
determine the high-risk times within a year, the 4-year time series of meteorological data
from synoptic stations in all three study areas were analyzed. The median values of the
differences between the air temperature and LST in the same months from 2014 to 2017
were calculated and these values were applied as adaptive thresholds on the initial time
series of LST (Table 3). The ALST time series for the three study areas of Qaleh-Ganj, Sarbaz
and Bashagard counties are shown in Figure 4.

Finally, it was possible to use the air temperature thresholds of growth and survival
of Anopheles larvae on ALST time series data and predict high-risk times in each study
area. Therefore, the suitable ALST for the growth and survival of Anopheles mosquitoes
approximately ranged from 15 to 35 ◦C.

3.2. Normalized Difference Vegetation Index (NDVI)

Vegetation changes in study areas were analyzed using NDVI time series extracted
from red and near infrared bands of Landsat-8 OLI images. In this process, surface re-
flectance images with cloud coverage of less than 5% were applied. As can be seen from
Figure 5, the NDVI values for all three study areas were extremely low and close to zero.
These results indicate lack of vegetation in these areas.

Based on the mean line in Figure 5b, there was a peak for all three study areas from
August to March each year. The decrease in NDVI could be due to the high temperature
and drought in the summer months and its increase in winter might be due to the decrease
in temperature and drought, as well as the cultivation of winter crops.

Table 3. Adaptive thresholds to improve LST values for Qaleh-Ganj, Sarbaz and Bashagard coun-
ties, Iran.

Month Bashagard Qaleh-Ganj Sarbaz

January −9.038 −7.203 −3.269
February −7.682 −8.139 −3.766

March −13.109 −11.937 −7.864
April −15.949 −17.680 −8.566
May −16.729 −12.746 −7.599
June −15.108 −10.506 −6.066
July −11.403 −12.821 −10.821

August −11.227 −12.327 −10.573
September −11.677 −11.878 −6.560

October −13.086 −10.136 −5.630
November −11.782 −7.203 −3.450
December −9.886 −5.340 −3.227
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3.3. Precipitation

Another important parameter in increasing the abundance of Anopheles was precipita-
tion. The average daily precipitation chart within a month was prepared employing the
daily precipitation data of PERSIANN-CDR in GEE from 2014 to 2020. The horizontal axis
of the chart represents the months of a year and, its vertical axis displays the average of
precipitation in millimeters for each month. The outliers in the box plot indicate the rainy
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years within the study areas, which extended beyond the average rainfall in the long-term
(Figure 6b).
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3.4. Soil Moisture

Soil moisture represents another effective environmental factor. Relative moisture
affects the lifespan of Anopheles mosquitoes. Soil moisture of the study areas is shown in
Figure 7. In this figure, soil moisture was generated in two forms of Surface Soil Moisture
(SSM) and Subsurface Soil Moisture (SUSM) using the monthly averaging of NASA-USDA
Enhanced SMAP time series data. Based on these results (Figure 6b), all three study
areas exhibited the highest levels of SSM and SUSM from January to the end of April and
October to the end of December. A short peak was seen in July, which may be related to
summer rainfall.

3.5. EvapoTranspiration (ET)

The ET represents the next factor, theoretically related to the NDVI, LST and SSM.
Therefore, it was necessary to examine the correlation between these factors to reduce the
feature space. The risk peaks of ET for Bashagard and Qaleh-Ganj were in January to May
and September to December. In addition to the mentioned months, an extra peak of ET was
observed in July and August in Sarbaz (Figure 8).

3.6. Vegetation Health (VH)

The last factor monitored in relation to the abundance of Anopheles mosquitoes was
vegetation health indices. Monitoring the time series of these indices over a long-time
period could also reveal the drought trend in the study areas. Both annual and 7-year
components of NDVI and LST were used to calculate VCI and TCI. The correlations
between vegetation health indices and their related parameters including NDVI and LST
were calculated in Tables 4 and 5. According to the results, the correlation between LST and
TCI measured extremely high in both annual and 7-year components cases, but for VCI,
there was a medium correlation for annual component case. Therefore, it might be useful
to retain this factor as a result of temporal prediction; and also, due to the high correlation
between TCI and LST, this factor was excluded from the results. The annual components of
the time series of LST and TCI are out-of-phase while, the annual components of NDVI
and VCI are in-phase.

Based on the mean line in Figure 9b, there was a peak for all three study areas from
August to April each year.

3.7. Data Fusion and Determining the High-Risk Time

Finally, all the above results for the parameters of ALST, NDVI, precipitation, soil
moisture, ET and VCI are shown in Figure 10. Temperature plays an essential role in the
growth of Anopheles larvae representing the main factor. Therefore, ALST was involved as
an important feature in fusing the results at the decision level, but other parameters played
a less important role in the final results. On the other hand, some factors were correlated
with each other and provided common information. The magenta ellipses in Figure 10
illustrate the simultaneous occurrence of the peak of most factors. These represented
high-risk times for the growth of Anopheles mosquitoes, and then, if there were cases of
malaria in the area, it will correlate to the spread of this disease. Simultaneous temperature
and precipitation provide suitable conditions for the growth of Anopheles larvae, but the
presence of a high amount of ALST (more than 35 ◦C) from May to September in the
study areas, provides an important factor in which the absence of cool shelter renders it
impossible for the growth and survival of Anopheles mosquitoes.

Tables 6–8 show that ALST, ET and TCI had exhibited a high correlation between
each other, and the rest of the factors in all three study areas had correlation coefficients
greater than −0.7 and less than 0.7. The types of analysis of LST and ET were based on
a thresholding process and risk peak determination, respectively. Therefore, these two
factors may bear different results in the final decision.
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Table 4. Correlation between VCI and NDVI.

Study Area Annual Interval 7-Year Interval

Bashagard 0.596727 1
Qaleh-Ganj 0.656796 1

Sarbaz 0.170149 1
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Table 5. Correlation between TCI and LST.

Study Area Annual Interval 7-Year Interval

Bashagard −0.97838 −1
Qaleh-Ganj −0.89007 −1

Sarbaz −0.98285 −1

Table 6. Correlation between effective environmental factors of Bashagard County.

Correlation ALST NDVI Precipitation SSM ET VCI TCI

ALST 1 −0.45751 −0.29909 −0.482557 −0.82527 −0.61684 −0.94131
NDVI −0.45751 1 0.246871 0.231938 0.489909 0.596727 0.355025

Precipitation −0.29909 0.246871 1 0.1854313 0.458859 0.301215 0.308806
SSM −0.48256 0.231938 0.185431 1 0.443232 0.31193 0.562521
ET −0.82527 0.489909 0.458859 0.443232 1 0.511154 0.801177

VCI −0.61684 0.596727 0.301215 0.3119299 0.511154 1 0.62705
TCI −0.94131 0.355025 0.308806 0.562521 0.801177 0.62705 1

Table 7. Correlation between effective environmental factors of Qaleh-Ganj County.

Correlation ALST NDVI Precipitation SSM ET VCI TCI

ALST 1 −0.47511 −0.35883 −0.52238 −0.7664 −0.64931 −0.82391
NDVI −0.47511 1 0.318983 0.315822 0.652536 0.656796 0.289676

Precipitation −0.35883 0.318983 1 0.286829 0.510745 0.414579 0.308386
SSM −0.52238 0.315822 0.286829 1 0.49336 0.481347 0.435632
ET −0.7664 0.652536 0.510745 0.49336 1 0.660654 0.690367

VCI −0.64931 0.656796 0.414579 0.481347 0.660654 1 0.519921
TCI −0.82391 0.289676 0.308386 0.435632 0.690367 0.519921 1
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Table 8. Correlation between effective environmental factors of Sarbaz County.

Correlation ALST NDVI Precipitation SSM ET VCI TCI

ALST 1 −0.42695 −0.24467 −0.42271 −0.72366 −0.5002 −0.93313
NDVI −0.42695 1 0.13309 0.096937 0.439853 0.171084 0.345801

Precipitation −0.24467 0.13309 1 0.253735 0.239621 0.244678 0.277845
SSM −0.42271 0.096937 0.253735 1 0.30915 0.310153 0.423572
ET −0.72366 0.439853 0.239621 0.30915 1 0.167993 0.639373

VCI −0.5002 0.171084 0.244678 0.310153 0.167993 1 0.627477
TCI −0.93313 0.345801 0.277845 0.423572 0.639373 0.627477 1

4. Discussion

In this article, high-risk periods for three counties in Iran were monitored and predicted
using remote sensing data in a seven-year time series through GEE. The three parameters
of temperature, precipitation and vegetation as effective parameters in previous research
were examined separately or in combination with remote sensing satellite observations and
meteorological field observations during short periods. Given that the aim of this research
was the prediction of high-risk periods that would increase the abundance of Anopheles,
it was necessary to monitor the climatic conditions of the study areas over a long period
of time. Based on this, seven parameters of ALST, NDVI, precipitation, soil moisture, ET
and VH indices were monitored over a seven-year period by processing time series of
remote sensing data in GEE. Due to GEE’s valuable capabilities regarding easy access and
fast processing of remote sensing time series data, it was possible to monitor a variety
of environmental parameters that directly or indirectly provide the suitable conditions
for Anopheles mosquito growth and survival; and, consequently, malaria outbreaks in
susceptible areas.

According to the results obtained in Figure 10, two peaks in a year for Bashagard
and Qaleh-Ganj counties were identified as high-risk times. The first peak stemmed from
the middle of winter to the middle of spring, and the second peak was from late summer
to mid-autumn. Apart from the two high-risk times of the year similar to the high-risk
times in Bashagard and Qaleh-Ganj counties, Sarbaz exhibited another high-risk time in
the middle of summer due to summer rains.

The co-occurrence of appropriate values of ALST, precipitation, NDVI, soil moisture
and VCI would render this period of time the most high-risk time within a year concerning
the study areas. During the summer months of June and July, precipitation, LST and high
VCI were observed. If the ALST reaches above 35 ◦C on average in summer, temperatures
are not suitable for the growth and survival of Anopheles. Furthermore, if large pits and
depressions are formed, e.g., through monsoon rains in the study areas, they will exhibit
low stability due to the high dryness of the regions. Pits and depressions will grow dry
due to surface evaporation and high permeability of dry soil, and, consequently, Anopheles
larvae will lack sufficient time to grow in an aquatic environment. These conditions will be
effective for the growth of Anopheles larvae only when the vegetation in the area is high
and gardens and farmlands are available. Since these areas can provide a cool shelter for
the survival of Anopheles, and if water accumulates at the base of trees and shrubs, they
can create a larval habitat. Therefore, over time, the larvae develop into adult mosquitoes
(higher temperatures within the appropriate temperature range accelerate this process) and
cause the spread of malaria in the region.

In order to evaluate the accuracy of the estimated high-risk times in a year, field data
of the abundance of Anopheles mosquitoes were required. Due to the lack of access to
appropriate entomological data in the regions, the previous three studies [31–33] conducted
in the study areas were employed for final evaluation. The years studied in these three
research works represented neither rainy nor drought years and were consistent with the
average climatic conditions over a seven-year period.

According to a study conducted by Edalat et al. [33] in Qaleh-Ganj County, the abun-
dance of Anopheles mosquitoes began to increase in February and had been increasing until
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May, after that, the abundance rate became negative. Again, from September to November,
the abundance of Anopheles mosquitoes increased and then decreased rapidly in December.
These statistics were obtained for five different species of Anopheles mosquitoes, including
An. stephensi, An. culicifacies s.l., An. superpictus s.l., An. dthali and An. fluviatilis s.l. All five
species exhibited similar behaviors in increasing and decreasing abundance.

The next study was conducted in Sarbaz County on four different species of Anopheles
mosquitoes, including An. stephensi, An. culicifacies s.l., An. superpictus s.l., An. dthali and
An. fluviatilis s.l., from 2016 to 2017 [30]. Apart from An. culicifacies, three other species
started to increase in abundance in early February up to April and then decreased until
June. The abundance rate had increased again since September and then decreased since
the beginning of November. In An. culicifacies species in both mentioned periods, it had
increased one month earlier and decreased one month later. By comparing the results of
the proposed method (Figure 9) with entomological data for Qaleh-Ganj and Bashagard
counties, the accuracy of the predicted high-risk times was confirmed.

Nejati et al. [32] performed abundant counting on only one type of Anopheles species
called An. subpictus in Sarbaz County. According to this research, three major peaks were
observed in 2015. The first peak began in February, peaked in March and declined in
April. The second peak was observed in July and August, and finally, at the beginning of
September, the third peak started and reached its maximum in early December.

By comparing the research results with the entomological data of Sarbaz County,
three time periods from February to May, July and also from October to November
were confirmed.

Although the annual average of effective factors was separate from the monthly study
of them, it was useful to display the impact of each factors on the prevalence of malaria.
Unlike other parameters, temperature was associated with a delay in the abundance of
Anopheles. Temperature represents one of the most important factors in the growth of
Anopheles larvae, but in the results of quantitative description exhibited a low correlation.
This is due to an increase in temperature at the end of winter and the provision of favorable
habitats, including temperature and aquatic bodies, taking 650 Degree/Day (DD) [38] for
the Anopheles larvae to grow into adult mosquitoes. As a result, at an average temperature of
20 degrees per day, 32 days are required for larvae to develop into adult mosquitoes. In the
meantime, there is a delay of about one month between the increase of Anopheles mosquitoes
and the increase of temperature, and then with the increase of temperature above the
allowable limit, the adult mosquitoes seek refuge in shadowy areas and vegetation and
finally perish under very high temperature conditions. In this case, we were faced with
two completely nonlinear trends that exhibited little correlation between them. Therefore,
the most ideal evaluation for interpreting the results is the thresholding method.

According to a study conducted by Saberi et al. [46], 522 cases of malaria were reg-
istered in Kerman Province from 2009 to 2018. A total of 88 out of 522 cases belonged
to Qaleh-Ganj county. Therefore, in this study, the correlation of effective environmental
factors were compared annually from 2014 to 2018 with malaria cases (Table 9). The results
show that apart from the temperature factor as a definitive parameter in decision making,
precipitation represented another important parameter in study areas. Precipitation in-
creased humidity and greenery in all three study areas (due to their hot and dry climates),
and provided a suitable environment for the growth of Anopheles larvae.

Based on the proposed method, it is possible to estimate the maximum activity of
Anopheles mosquitoes each year without the need for extensive entomological studies.
Moreover, the exact time of spraying can be determined.
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Table 9. Correlation between effective environmental factors and malaria cases.

Average Malaria
Cases ALST NDVI Precipitation SSM ET VCI TCI

2014 18 32.11317 0.088 0.396 1.285 0.183048 0.301149
2015 23 28.25653 0.082 0.395 3.42 1.003 0.196581 0.424858
2016 32 28.06708 0.078 0.622 3.32 0.823 0.137821 0.429651
2017 74 29.25537 0.088 0.767 4.01 1.071 0.268697 0.421172
2018 22 28.90742 0.077 0.181 3.22 0.673 0.134081 0.437947

Correlation −0.1867 0.437 0.8153 0.9605 0.115 0.7848 0.3113

5. Conclusions

The results of this article demonstrated that in order to accurately predict high-risk
times over a yearly period for a specific area, sufficient knowledge of the climatic behavior
of the area is extremely important. Moreover, employing all the effective and optimal
environmental parameters simultaneously will help accurately predict the exact times of
malaria outbreak for a given region. In this article, high-risk times for the three study
areas of Qaleh-Ganj, Bashagard and Sarbaz were estimated based on the time series of
factors affecting abundance of Anopheles. These times were compared with entomological
data and malaria cases. Among these parameters, ALST, precipitation, soil moisture and
VCI represented the most effective factors in increasing the abundance of Anopheles. Some
factors could be removed from the final decision due to their high correlation with other
parameters (e.g., TCI). It remains possible to accurately predict the appropriate times for
malaria vector control operations among different areas using the proposed method and
at a low cost. GEE rendered it possible to analyze the time series of climatic data in the
shortest time using its processing capability and easy access to a variety of free remote
sensing data. Finally, these results will help optimize the selection of data with high spatial
resolution that can better locate Anopheles habitats for growth and survival and provide an
overview of the situation in dealing with malaria outbreaks in the region. The optimization
method is recommended for use in future research in order to evaluate the results and
selection of the effective parameters for each region, and to perform the final analysis
without the need for user supervision.
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Abbreviations
The following abbreviations are used in this article:
NDVI Normalized Difference Vegetation Index
LST Land Surface Temperature
ALST Adaptive Land Surface Temperature
LSE Land Surface Emissivity
GEE Google Earth Engine

PERSIANN-CDR
Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks—Climate Data Record

NASA-USDA Enhanced SMAP
National Aeronautics and Space Administration-United States
Department of Agriculture Enhanced Soil Moisture
Active Passive

ET EvapoTranspiration
MODIS Moderate Resolution Imaging Spectroradiometer
TCI Thermal Condition Index
VCI Vegetation Condition Index
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