Self-Reports in the Field Using Smartwatches: An Open-Source Firmware Solution
Abstract
:1. Introduction
1.1. The Experience Sampling Method
1.2. Smartwatches vs. Smartphones
1.3. Programmable Smartwatches
1.4. Other ESM Systems for Smartwatches
1.5. Free and Open-Source Software
1.6. Pilot Study
2. Materials and Methods
2.1. The Used Firmware
2.2. Participants
2.3. Design and Procedure
2.4. Measures
2.4.1. Positive and Negative Affect Schedule (PANAS; Signal-Based)
2.4.2. Assessment of Burden (Interval-Based)
- Today I felt burdened by the smartwatch/my smartphone.
- Today I felt that the notifications interrupted my everyday life.
- I felt the number of notifications was …
- The smartwatch/my smartphone was turned off since the last end-of-day questionnaire because the battery was empty.
- It was easy to ensure that the smartwatch/my smartphone had enough power.
2.4.3. Compliance Measures
3. Results
3.1. Compliance and Completion
3.2. Perceived Burden
3.3. Positive and Negative Affect
4. Discussion
4.1. Benefits of this Firmware
4.1.1. Ease of Use
4.1.2. Autonomy
4.1.3. Extensibility
4.2. Limitations
4.3. Future Outlook
4.4. Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Larson, R.; Csikszentmihalyi, M. The Experience Sampling Method. New Dir. Methodol. Soc. Behav. Sci. 1983, 15, 41–56. [Google Scholar]
- Trull, T.J.; Ebner-Priemer, U.W. Ambulatory Assessment in Psychopathology Research: A Review of Recommended Reporting Guidelines and Current Practices. J. Abnorm. Psychol. 2020, 129, 56–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiffman, S.; Stone, A.A.; Hufford, M.R. Ecological Momentary Assessment. Annu. Rev. Clin. Psychol. 2008, 4, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Nezlek, J.B. Diary Methods; SAGE: London, UK, 2012; ISBN 978-1-4462-8914-3. [Google Scholar]
- Paruthi, G.; Raj, S.; Baek, S.; Wang, C.; Huang, C.; Chang, Y.-J.; Newman, M.W. Heed: Exploring the Design of Situated Self-Reporting Devices. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 132:1–132:21. [Google Scholar] [CrossRef]
- van Berkel, N.; Merritt, T.; Bruun, A.; Skov, M.B. Tangible Self-Report Devices: Accuracy and Resolution of Participant Input. In Proceedings of the Sixteenth International Conference on Tangible, Embedded, and Embodied Interaction, Daejeon, Korea, 13–16 February 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 1–14. [Google Scholar]
- Larsen, J.E.; Eskelund, K.; Christiansen, T.B. Active Self-Tracking of Subjective Experience with a One-Button Wearable: A Case Study in Military PTSD. arXiv 2017, arXiv:1703.03437. [Google Scholar]
- Stieger, S.; Schmid, I.; Altenburger, P.; Lewetz, D. The Sensor-Based Physical Analogue Scale as a Novel Approach for Assessing Frequent and Fleeting Events: Proof of Concept. Front. Psychiatry 2020, 11, 538122. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, J.; McDuff, D.; Infante, C.; Maes, P.; Quigley, K.; Picard, R. Wearable ESM: Differences in the Experience Sampling Method across Wearable Devices. In Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services—MobileHCI’16, Florence, Italy, 6–9 September 2016; pp. 195–205. [Google Scholar]
- Laborde, C.R.; Cenko, E.; Mardini, M.T.; Nerella, S.; Kheirkhahan, M.; Ranka, S.; Fillingim, R.B.; Corbett, D.B.; Weber, E.; Rashidi, P.; et al. Satisfaction, Usability, and Compliance With the Use of Smartwatches for Ecological Momentary Assessment of Knee Osteoarthritis Symptoms in Older Adults: Usability Study. JMIR Aging 2021, 4, e24553. [Google Scholar] [CrossRef] [PubMed]
- Ashbrook, D.L. Enabling Mobile Microinteractions; Georgia Institute of Technology: Atlanta, GA, USA, 2010. [Google Scholar]
- Intille, S.; Haynes, C.; Maniar, D.; Ponnada, A.; Manjourides, J. ΜEMA: Microinteraction-Based Ecological Momentary Assessment (EMA) Using a Smartwatch. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing—UbiComp’16, Heidelberg, Germany, 12–16 September 2016; pp. 1124–1128. [Google Scholar]
- Ponnada, A.; Haynes, C.; Maniar, D.; Manjourides, J.; Intille, S. Microinteraction Ecological Momentary Assessment Response Rates: Effect of Microinteractions or the Smartwatch? Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2017, 1, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ponnada, A.; Wang, S.; Chu, D.; Do, B.; Dunton, G.; Intille, S. Intensive Longitudinal Data Collection Using Microinteraction Ecological Momentary Assessment: Pilot and Preliminary Results. JMIR Form. Res. 2022, 6, e32772. [Google Scholar] [CrossRef] [PubMed]
- Smith, P. Open-SmartWatch. Available online: https://open-smartwatch.github.io/ (accessed on 14 December 2021).
- Bellafaire, M. ESP32 Smartwatch; GitHub, Inc.: San Francisco, CA, USA, 2021. [Google Scholar]
- Espurino Bangle.Js. Hackable Smart Watch. Available online: https://banglejs.com/ (accessed on 14 December 2021).
- PINE Store. PineTime Smart Watch. Available online: https://pine64.com/product/pinetime-smartwatch-sealed/ (accessed on 14 December 2021).
- SQFMI Watchy. Available online: https://watchy.sqfmi.com/ (accessed on 14 December 2021).
- LilyGO. LilyGO T-Watch. Available online: https://github.com/Xinyuan-LilyGO/TTGO_TWatch_Library (accessed on 14 December 2021).
- Yan, X.; Raj, S.; Huang, B.; Park, S.Y.; Newman, M.W. Toward Lightweight In-Situ Self-Reporting: An Exploratory Study of Alternative Smartwatch Interface Designs in Context. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 158:1–158:22. [Google Scholar] [CrossRef]
- Park, S.; Constantinides, M.; Aiello, L.M.; Quercia, D.; Van Gent, P. WellBeat: A Framework for Tracking Daily Well-Being Using Smartwatches. IEEE Internet Comput. 2020, 24, 10–17. [Google Scholar] [CrossRef]
- Kheirkhahan, M.; Nair, S.; Davoudi, A.; Rashidi, P.; Wanigatunga, A.A.; Corbett, D.B.; Mendoza, T.; Manini, T.M.; Ranka, S. A Smartwatch-Based Framework for Real-Time and Online Assessment and Mobility Monitoring. J. Biomed. Inform. 2019, 89, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Jayathissa, P.; Quintana, M.; Sood, T.; Nazarian, N.; Miller, C. Is Your Clock-Face Cozie? A Smartwatch Methodology for the in-Situ Collection of Occupant Comfort Data. J. Phys. Conf. Ser. 2019, 1343, 012145. [Google Scholar] [CrossRef]
- Khanshan, A.; Van Gorp, P.; Nuijten, R.; Markopoulos, P. Assessing the Influence of Physical Activity Upon the Experience Sampling Response Rate on Wrist-Worn Devices. Int. J. Environ. Res. Public. Health 2021, 18, 10593. [Google Scholar] [CrossRef] [PubMed]
- Open Source Initiative. The Open Source Definition. Available online: https://opensource.org/osd (accessed on 9 December 2021).
- GNU Project. What Is Free Software? Available online: https://www.gnu.org/philosophy/free-sw.en.html (accessed on 9 December 2021).
- Feller, J.; Fitzgerald, B.; Hissam, S.A.; Lakhani, K.R. (Eds.) Perspectives on Free and Open Source Software; MIT Press: Cambridge, MA, USA, 2005; ISBN 978-0-262-06246-6. [Google Scholar]
- Stallman, R. FLOSS and FOSS. Available online: https://www.gnu.org/philosophy/floss-and-foss.en.html (accessed on 9 December 2021).
- GNU Project. Various Licenses and Comments about Them. Available online: https://www.gnu.org/licenses/license-list.en.html (accessed on 9 December 2021).
- Open Source Initiative. Open Source Licenses by Category. Available online: https://opensource.org/licenses/category (accessed on 9 December 2021).
- Lewetz, D.; Stieger, S. ESMira. Available online: https://esmira.kl.ac.at/?lang=en (accessed on 17 February 2022).
- Thompson, E.R. Development and Validation of an Internationally Reliable Short-Form of the Positive and Negative Affect Schedule (PANAS). J. Cross-Cult. Psychol. 2007, 38, 227–242. [Google Scholar] [CrossRef]
- Krohne, H.W.; Egloff, B.; Kohlmann, C.-W.; Tausch, A. Untersuchungen Mit Einer Deutschen Version Der “Positive and Negative Affect Schedule” (PANAS). [Investigations with a German Version of the Positive and Negative Affect Schedule (PANAS).]. Diagnostica 1996, 42, 139–156. [Google Scholar]
- van Berkel, N.; Ferreira, D.; Kostakos, V. The Experience Sampling Method on Mobile Devices. ACM Comput. Surv. 2017, 50, 1–40. [Google Scholar] [CrossRef]
- Yan, X.; Li, Y.; Huang, B.; Park, S.Y.; Newman, M.W. User Burden of Microinteractions: An In-Lab Experiment Examining User Performance and Perceived Burden Related to In-Situ Self-Reporting. In Proceedings of the 23rd International Conference on Mobile Human-Computer Interaction, Toulouse, France, 27 September–1 October 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 1–14. [Google Scholar]
Group | Scheduled (S) | Received (R) | Answered (A) | Compliance (A/S) | Completion (A/R) |
---|---|---|---|---|---|
Smartwatch | 245 (100.0%) | 240 (98.0%) | 193 | 78.8% | 80.4% |
Smartphone | 210 (100.0%) | 203 (96.7%) | 119 | 56.7% | 58.6% |
Group | “Too Much” | “Appropriate” | “Too Little” |
---|---|---|---|
Smartwatch | 3 | 35 | 1 |
Smartphone | 2 | 24 | 4 |
Fixed | Random | |||||
---|---|---|---|---|---|---|
B | CI | SE | t | p | SD | |
Positive Affect | ||||||
Intercept | 17.82 | 15.53–20.12 | 1.16 | 15.31 | <0.001 | 2.74 |
Device type | −1.68 | −5.16–1.79 | 1.58 | −1.07 | 0.309 | |
Negative Affect | ||||||
Intercept | 8.52 | 6.91–10.13 | 0.82 | 10.43 | <0.001 | 1.89 |
Device type | −1.73 | −4.16–0.70 | 1.11 | −1.57 | 0.146 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volsa, S.; Batinic, B.; Stieger, S. Self-Reports in the Field Using Smartwatches: An Open-Source Firmware Solution. Sensors 2022, 22, 1980. https://doi.org/10.3390/s22051980
Volsa S, Batinic B, Stieger S. Self-Reports in the Field Using Smartwatches: An Open-Source Firmware Solution. Sensors. 2022; 22(5):1980. https://doi.org/10.3390/s22051980
Chicago/Turabian StyleVolsa, Selina, Bernad Batinic, and Stefan Stieger. 2022. "Self-Reports in the Field Using Smartwatches: An Open-Source Firmware Solution" Sensors 22, no. 5: 1980. https://doi.org/10.3390/s22051980
APA StyleVolsa, S., Batinic, B., & Stieger, S. (2022). Self-Reports in the Field Using Smartwatches: An Open-Source Firmware Solution. Sensors, 22(5), 1980. https://doi.org/10.3390/s22051980