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Abstract: Unmanned aerial vehicles (UAVs) are increasingly used in instant delivery scenarios.
The combined delivery of vehicles and UAVs has many advantages compared to their respective
separate delivery, which can greatly improve delivery efficiency. Although a few studies in the
literature have explored the issue of vehicle-assisted UAV delivery, we did not find any studies on
the scenario of an UAV serving several customers. This study aims to design a new vehicle-assisted
UAV delivery solution that allows UAVs to serve multiple customers in a single take-off and takes
energy consumption into account. A multi-UAV task allocation model and a vehicle path planning
model were established to determine the task allocation of the UAVs as well as the path of UAVs and
the vehicle, respectively. The model also considered the impact of changing the payload of the UAV
on energy consumption, bringing the results closer to reality. Finally, a hybrid heuristic algorithm
based on an improved K-means algorithm and ant colony optimization (ACO) was proposed to solve
the problem, and the effectiveness of the scheme was proven by multi-scale experimental instances
and comparative experiments.

Keywords: unmanned aerial vehicle; vehicle routing problem; instant delivery

1. Introduction

In recent years, China’s logistics industry has developed rapidly, giving rise to more
subdivision tracks. As an emerging logistics service, instant delivery has developed into an
industry with an output value of nearly 100 billion dollars [1] in just a few years and the
scope of services has also changed from delivering catering to delivering everything. Data
show that in 2015, the number of instant-delivery users in China was 171 million, and in
2020, it reached 506 million [2], with an average annual growth rate of about 24%. With the
deepening development of the industry, more traditional express companies and various
Internet companies have entered the game, and competition in the field of instant delivery
is becoming increasingly fierce. Whoever can provide faster delivery and better service
will be able to break through in the instant-delivery market. As an emerging technology,
unmanned aerial vehicles (UAVs) have the advantages of fast speed, low cost, and are not
affected by urban congestion and terrain limitation [3]; therefore, UAVs are being gradually
employed in delivery.

In December 2013, Amazon took the lead in launching an UAV delivery package
called Prime Air [4], which delivered packages under 2.5 kg to customers in less than
30 min. Since 2015, JD.com, SF Express, Meituan, Eleme, and other companies in China
have continuously obtained UAV logistics pilot and operation qualifications and launched
corresponding UAV products and routes. UAVs are gradually being used in parcel delivery,
but UAVs have the shortcomings of limited range and insufficient load, and the limitation
of independent delivery is relatively large. If UAVs are combined with ground vehicles,
coordinated delivery can overcome these shortcomings and improve delivery efficiency.
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Therefore, how to design an efficient joint delivery scheme of vehicles and UAVs has
become an important issue.

The current research on UAV delivery is divided into three categories: (1) UAV
independent delivery, whereby the UAV completes the delivery task independently without
any vehicle support; (2) the UAVs and the vehicles are distributed in cooperation, and the
two are distributed independently of each other without interaction; and (3) joint delivery
between UAVs and vehicles, that is, UAVs and vehicles cooperate and participate in the
entire delivery process. In this study, we focused on the third category of problems. This
type of problem can be subdivided into many directions, for example, Mathew et al. [5]
conducted a study where one vehicle carried one UAV; Murray et al. [6], where one vehicle
carried multiple UAVs; and GU et al. [7], where multiple vehicles carried multiple UAVs.

However, it is worth noting that numerous existing studies have tended to assume
that UAVs serve only one customer in a single take-off, which does not match the current
development of UAV technology. For example, the FreeFly Alta 8 is capable of carrying
packages of up to 18 kg [8]. DJI also produces UAVs capable of carrying multiple packages
such as the DJI Spreading Wings S900, which is capable of carrying 8.2 kg of packages [9],
while the vast majority of packages delivered by Amazon (86%) were below 2.3 kg [4].
Therefore, conducting research on the new scenario of UAVs serving multiple customers
with a single take-off will further improve delivery efficiency, which is necessary for
instant delivery.

However, the change in the payload of the UAV will greatly affect its flight distance [10].
If the influence of the change of the payload of the UAV on energy consumption can be
considered in the model and algorithm, the solution will be closer to reality.

To this end, the focus of this study was to design a new vehicle-assisted UAV delivery
solution that allows UAVs to serve multiple customers in a single take-off and takes energy
consumption into account. Our goal was to minimize the total service time including the
total UAV delivery time for each cluster and vehicle operation time. Our work makes the
following three contributions: (1) We established models to solve the new problem that
a vehicle is equipped with multiple UAVs and the UAV serves multiple customers in a
single take-off; (2) the model considered the impact of changes in the payload of the UAV
on energy consumption, making the results closer to reality; and (3) a hybrid heuristic
algorithm was proposed to solve the problem, and the effectiveness of the scheme was
proven through multi-scale examples and comparative experiments.

The remainder of this paper is organized as follows. Section 2 reviews the relevant
literature. Section 3 describes the problem and explains the model. Section 4 presents
and explains the heuristic algorithms for running the models. Section 5 uses different
examples to verify the validity of the model and algorithms. Conclusions and future work
are discussed in Section 6.

2. Literature Review

The vehicle routing problem (VRP) is the basis for the development of research on
the joint delivery of vehicles and UAVs. It was first proposed by Dantzig and Ramser
(1959) [11] to solve the practical problems of gasoline transportation routes. After more than
60 years of development, the VRP problem research has expanded to VRP with loading
restrictions (Lijun Wei et al.) [12], VRP with multiple vehicles (Zheng Wang et al.) [13], VRP
with time windows (Vitória et al.) [14], VRP with simultaneous pickup and delivery (The
Jin Ai et al.) [15], and so on. Among them, the time dependent vehicle routing problems
(TDVRP) (Malandraki et al.) [16] inspired the instant-delivery operation with the goal of
minimizing the vehicle travel time. However, these studies did not consider UAVs as an
alternative delivery tool.

Some studies have considered scenarios where UAVs are independently delivered.
Chitta and Jain [17] pointed out that UAVs have great application value in the logistics field,
especially in improving delivery speed. Sundar and Rathinam [18] considered a single
UAV route problem and minimized the total fuel required for UAVs to access all targets.
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The above studies set the endurance of the UAV to a fixed value, but based on the
actual situation, the impact of the payload on the energy consumption of the UAV during
the flight cannot be ignored. Song B. D. et al. [19] discussed the influence of cargo weight
on flight capability. Dorling et al. [20] proposed two variants of the VRP problem for UAV
delivery using a linear approximation function to calculate the linear change of energy
consumption with the effective load and battery weight. Mariga et al. [21] proposed a
method to measure the UAV battery discharge curve using the LabVIEW interface and a
low-cost acquisition system to better estimate the UAV’s endurance. Jung et al. [22] used the
concept of state of charge (SOC) estimation based on the extended Kalman filter (EKF) and
complementary filter (CF) and then calculated the possible flight time by using the slope
of the SOC graph during hovering flight mode. Maryam et al. [23] proposed the battery
consumption rate (BCR), which demonstrated the impact of the UAV battery consumption
on the design of the UAV package–delivery system. However, research on these issues is
limited to the independent delivery of UAVs, and vehicles have not been considered.

Due to limited battery life and load capacity, the disadvantages of independent de-
livery of UAVs are obvious. If vehicles and UAVs are used together for distribution,
it will greatly improve the delivery efficiency. In recent years, many related studies
have appeared.

In 2015, Murray et al. [24] first proposed adding UAVs to the research of the traveling
salesman problem (TSP), called the flying sidekick traveling salesman problem (FSTSP),
where the vehicle is equipped with a drone to complete package delivery, and it is stipulated
that the UAV can only serve one customer in a single journey. They set up a mixed
integer linear programming (MILP) model and designed a heuristic algorithm to solve
the problem to minimize the completion time. Mathew et al. [5] described this problem
as the heterogeneous delivery problem (HDP) and discussed that one truck supported
delivery by one UAV, the vehicle provided long-distance transportation and support, and
the UAV completed the last part of each delivery to reduce the overall delivery time and
fuel consumption. Dayarian et al. [25] demonstrated the potential benefits of using UAVs
to resupply vehicles, both increasing the number of service orders and reducing the service
time. Sara et al. [26] and Poikonen et al. [27] proposed precise algorithms to solve the
problem of a vehicle carrying multiple UAVs, but are not suitable for large-scale situations.
Ermağan et al. [28] and Wu et al. [29] proposed intelligent heuristics to solve this problem,
suitable for large-scale situations. Chang et al. [30] considered the delivery problem of
a single vehicle carrying multiple UAVs, still assuming that the UAVs could only serve
one customer in a single trip, clustering the customer points using the K-means algorithm,
and assuming that the vehicle carried enough UAVs, all UAVs could finish serving the
customers in each cluster in a single take-off. In addition, a shift-weights process was added
to the selection of vehicle stops to shorten the total delivery time. Gu et al. [7] considered
the scenario of multiple vehicles carrying multiple drones and determined the location of
the vehicle stopping point, the assignment of customers, the assignment of UAVs, and the
route of the vehicles by building two models and solved the problem with two improved
ant colony optimizations (ACOs). Bakir et al. [31] put the problem as a mixed-integer linear
program on a time–space network and presented an efficient optimization algorithm based
on a dynamic discretization discovery approach. The above research often assumed that
the UAVs served one customer per take-off and did not consider the energy consumption
of the UAVs.

In summary, most researchers have assumed that UAVs only served one customer at
a single take-off, and the endurance of UAVs was often only set at a fixed value, which
deviates greatly from the actual situation. Therefore, this study focused on a new scenario
in which multiple packages can be delivered on the flight path of an UAV and considers
the impact of changes in the payload on the energy consumption of the UAV. Given this,
our study established a UAV energy consumption model to constrain the maximum flight
distance of UAVs under different load conditions and established an UAV task allocation
model and a vehicle path planning model to determine the UAVs’ task allocation and path
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as well as the vehicle running path and designed a hybrid heuristic algorithm to solve
them, and finally verified the feasibility of the algorithm with calculation examples.

3. Problem Description

The problem that forms the basis for this study can be described as follows: a vehicle
carrying multiple UAVs starts from the distribution center, traverses the vehicle stopping
points in each customer cluster in turn, and then returns to the distribution center. As
shown in Figure 1, when the vehicle arrives at the stopping point, multiple UAVs load
the packages and take-off at the same time, deliver the packages and return to the vehicle
under the constraints of the energy consumption model, and repeat the delivery until all
customers in the cluster have been serviced. The vehicle drives to the next stopping point.
In this situation, the vehicle is only used as a mobile warehouse and UAV charging station,
and customers near the distribution center are directly delivered by UAVs. Our goal was to
minimize the total service time including the UAVs’ total delivery time for each cluster and
vehicle operation time.
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3.1. Problem Assumptions

(1) Each UAV is homogeneous;
(2) Negligible time for take-off, landing, and battery replacement for each UAV;
(3) The UAV has a fixed service time for each customer;
(4) The UAV can serve multiple customers per take-off within its carrying capacity;
(5) The energy consumption of the UAV when taking off and landing is the same as when

traveling; and
(6) The distribution center has enough UAVs to meet the customers who are directly

delivered by UAVs near the distribution center, and the service time is much shorter
than the service time of the remaining customer points.

3.2. Problem Models

The notations that appear in the model are given in Table 1.

3.2.1. UAV Energy-Consumption Model

The maximum flight distance of an UAV is closely related to its energy consumption,
which depends on its own weight and the weight of the packages it carries. The delivery of
UAV should be completed under the limitation of battery energy. If the flight time or flight
distance of UAV is simply limited without considering the energy consumption, the UAV
may not be able to complete the delivery task due to insufficient battery power. Conversely,
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the battery is not fully utilized, and more UAVs need to be dispatched for delivery, which
makes the cost increase. Therefore, it is necessary to consider energy consumption during
UAV delivery. In the case of taking off to serve multiple customers at one time, the UAV
will load all the corresponding packages in order, then serve the customers sequentially
according to the designated route and unload the packages one by one. Once the packages
are dropped off at the customer points, the load will gradually be reduced, as will the
energy consumption. Since the energy-consumption rate can be considered to vary linearly
with the payload [10], this process was fitted to better illustrate the process. Figure 2 shows
the energy-consumption process of an UAV carrying three packages in a sub-path for
delivery. As packages are delivered to customers in turn, the payload of the UAV gradually
decreases, as does the rate of energy consumption.

Table 1. Model notations.

Notation Type Notation Description

Sets

C = {0, 1, 2, . . . , n} The set of all customer points, where 0 is the starting point of the UAVs
U = {u1, u2, . . .} The set of all UAVs
S = {1, 2, · · · s} The set of vehicle stopping points
K = {0, 1, 2, · · · k} The set of vehicle stopping points and a distribution center
R = {1, 2, · · · r} The set of service routes for each take-off of the UAVs

Parameters

Dc The distribution center
ts The service time of a single customer
W The maximum load of vehicle
Vtruck The average speed of vehicle
WH The maximum payload of the UAV
wd The weight of the UAV
P The maximum flying power of UAV
Emax The total energy of the UAV
Dmax The maximum flight radius of UAV under full load
Vdrone The UAV flying speed at maximum power
wi The weight of the package that should be delivered to customer i, i ∈ U

Gi
The payload when the UAV leaves the customer (or stopping

point) i, i ∈ C ∪ K

Eij
The energy consumed of the UAV leaves customer (or stopping point) i to

customer (or stopping point) j, i, j ∈ C ∪ K

dij
The distance of the UAV leaving customer (or stopping point) i to customer (or

stopping point) j, i, j ∈ C ∪ K

tij
The flight time of the UAV leaves customer (or stopping point) i to customer

(or stopping point) j, i, j ∈ C ∪ K

vij
The flight speed of the UAV leaves customer (or stopping point) i to customer

(or stopping point) j, i, j ∈ C ∪ K
pij The distance between the vehicle stopping point i and j, i, j ∈ K
Tu The total service time of UAV u in cluster, u ∈ U
T′s The waiting time of the vehicle at the stopping point s
T′ The waiting time of vehicle at all stopping points
Ttravel The vehicle running time
T The total time to serve all customers

Decision variables

xur(=1) Binary. xur Equation (1) if UAV u service line r in clusters

xrij(=1) Binary. xrij Equation (1) if on route r the UAV travels from customer (or
stopping point) i to customer (or stopping point) j

kij(=1) Binary. kij Equation (1) if vehicle from stopping point i to stopping point j

We assumed that the UAV maintained the maximum power during flight, and com-
bined with the discussion by D’Andrea et al. [10] on the energy consumption of UAVs,
we established an UAV energy-consumption model to estimate the energy consumption
of UAVs when the effective load and power vary, and then calculated the real travelable
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distance of UAV. Therefore, the flight speed and flight time from point i to j can be estimated
as follows:

vij =
370ηγ(P− e)

wd + Gi
(1)

tij =
dij(wd + Gi)

370ηγ(P− e)
(2)

where η is the conversion efficiency of the engine; γ is the lift ratio; e is the energy loss of
the UAV battery; wd is the weight of the UAV; Gi is the payload when the UAV leaves i; dij
is the distance of the UAV when it leaves i and arrives at j; and tij is the flight time of the
UAV when it leaves i and arrives at j. Therefore, the relationship between UAV payload
and energy consumption can be expressed as:

Eij = Ptij (3)

where Eij is the energy consumed when the UAV leaves i and arrives at j. When the
UAV model is determined, the unknown parameters in Equations (1)–(3) can be clarified.
Based on the above UAV energy-consumption model, we can calculate the total energy
consumed by the UAV for each UAV delivery line and thus determine whether it exceeds
the battery capacity. It should be noted that our calculation ignores the influence of weather
condition, and how the energy consumption is affected by the weather condition may
require additional estimates under different weather conditions.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 16 
 

 

consumption. Since the energy-consumption rate can be considered to vary linearly with 
the payload [10], this process was fitted to better illustrate the process. Figure 2 shows the 
energy-consumption process of an UAV carrying three packages in a sub-path for delivery. 
As packages are delivered to customers in turn, the payload of the UAV gradually de-
creases, as does the rate of energy consumption. 

 
Figure 2. Energy-consumption process of an UAV carrying three packages for delivery. 

We assumed that the UAV maintained the maximum power during flight, and com-
bined with the discussion by D’Andrea et al. [10] on the energy consumption of UAVs, 
we established an UAV energy-consumption model to estimate the energy consumption 
of UAVs when the effective load and power vary, and then calculated the real travelable 
distance of UAV. Therefore, the flight speed and flight time from point 𝑖𝑖 to 𝑗𝑗 can be es-
timated as follows: 

𝑣𝑣𝑖𝑖𝑖𝑖 = 370𝜂𝜂𝜂𝜂(𝑃𝑃−𝑑𝑑)
𝑤𝑤𝑑𝑑+𝐺𝐺𝑖𝑖

  (1) 

𝑡𝑡𝑖𝑖𝑖𝑖 =
𝑑𝑑𝑖𝑖𝑖𝑖(𝑤𝑤𝑑𝑑+𝐺𝐺𝑖𝑖)

370𝜂𝜂𝜂𝜂(𝑃𝑃−𝑑𝑑)
  (2) 

where 𝜂𝜂 is the conversion efficiency of the engine; 𝛾𝛾 is the lift ratio; 𝑒𝑒 is the energy loss 
of the UAV battery; 𝑤𝑤𝑑𝑑 is the weight of the UAV; 𝐺𝐺𝑖𝑖 is the payload when the UAV leaves 
𝑖𝑖; 𝑑𝑑𝑖𝑖𝑖𝑖 is the distance of the UAV when it leaves 𝑖𝑖 and arrives at 𝑗𝑗; and 𝑡𝑡𝑖𝑖𝑖𝑖 is the flight 
time of the UAV when it leaves 𝑖𝑖 and arrives at 𝑗𝑗. Therefore, the relationship between 
UAV payload and energy consumption can be expressed as : 

𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑡𝑡𝑖𝑖𝑖𝑖 (3) 

where 𝐸𝐸𝑖𝑖𝑖𝑖 is the energy consumed when the UAV leaves 𝑖𝑖 and arrives at 𝑗𝑗. When the 
UAV model is determined, the unknown parameters in Equations (1)–(3) can be clarified. 
Based on the above UAV energy-consumption model, we can calculate the total energy 
consumed by the UAV for each UAV delivery line and thus determine whether it exceeds 
the battery capacity. It should be noted that our calculation ignores the influence of 
weather condition, and how the energy consumption is affected by the weather condition 
may require additional estimates under different weather conditions. 

3.2.2. UAV Task Assignment Model 
To solve the problem of task allocation between customers and UAVs in the cluster 

and the confirmation of UAV delivery routes, an UAV task-assignment model was estab-
lished. The goal of this model is to minimize the waiting time of the vehicle at the stopping 
point, that is, to minimize the longest UAV service time in the cluster. In particular, the 

Figure 2. Energy-consumption process of an UAV carrying three packages for delivery.

3.2.2. UAV Task Assignment Model

To solve the problem of task allocation between customers and UAVs in the cluster and
the confirmation of UAV delivery routes, an UAV task-assignment model was established.
The goal of this model is to minimize the waiting time of the vehicle at the stopping point,
that is, to minimize the longest UAV service time in the cluster. In particular, the model is
based on a single cluster and applies to all customer clusters. The specific formula of the
model is as follows:

minT′ (4)

T′ = max
U
{TU}, ∀u ∈ U (5)

Tu = ∑ r∈R ∑ i∈C ∑ j∈Ctijxurxrij + ∑ r∈R
(
∑ i∈Cxurxrij − 1

)
ts, ∀u ∈ U (6)

∑ i∈C ∑ j∈CxurxrijEij ≤ Emax, ∀u ∈ U, ∀r ∈ R (7)

∑ i∈Cxurxrijwi ≤WH , ∀u ∈ U, ∀r ∈ R, ∀j ∈ C (8)

∑ u∈U ∑ r∈Rxurxrij = 1, ∀i, j ∈ C (9)
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∑ u∈U ∑ r∈Rxurxrij = 1, ∀i, j ∈ C (10)

d0j ≤ Dmax, ∀j ∈ C (11)

∑ j∈Cxurxr0j = ∑ i∈Cxurxri0 = 1, ∀u ∈ U, ∀r ∈ R (12)

xur ∈ {0, 1}, ∀u ∈ U, ∀r ∈ R (13)

xrij ∈ {0, 1}, ∀r ∈ R, ∀i, j ∈ C (14)

Objective Function (4) minimizes the waiting time of the vehicle at the stopping point.
Constraint (5) indicates that the waiting time of the vehicle at the stopping point is the
longest UAV service time in the cluster. Constraint (6) indicates that the UAVs’ service
time includes the UAVs’ in-transit operation time and the stay time at the customer points
where ts is the service time of a single customer. Constraint (7) is the energy consumption
constraint of the UAV line where Emax is the total energy of the UAV. Constraint (8) is the
load constraint of the UAV line. Constraint (9) ensures that each customer is served by only
one UAV. Constraint (10) ensures that all customers must be served once. Constraint (11)
ensures that all customers are within the scope of the UAV service. Constraint (12) indicates
that the UAV must return to the stopping point after starting from the stopping point.
Constraints (13) and (14) define the decision variables.

3.2.3. Vehicle-Path Planning Model

The vehicle-path planning model takes the minimum vehicle running time as the
objective function to calculate the vehicle travel path. The specific formula of the model is
as follows:

minTtravel (15)

Ttravel =
∑i∈K ∑j∈K kij pij

vtruck
(16)

∑ i∈Kkij = 1, ∀j ∈ K (17)

∑ i∈K ∑ j∈Kkij = k (18)

∑ i∈Kk0i = ∑ i∈Kki0 = 1 (19)

∑ i∈Cwi ≤W (20)

∑ i∈N ∑ j∈Nkij ≤ |N| − 1, ∀N ∈ K, N 6= ∅ (21)

kij ∈ {0, 1}, ∀i, j ∈ K (22)

Objective Function (15) minimizes the running time of the vehicle on the way.
Constraint (16) indicates the calculation process of the vehicle running time, where pij is the
distance between the vehicle stopping points i and j. Constraints (17) and (18) ensure that
all vehicle stopping points are passed and passed only once. Constraint (19) ensures that
the vehicle leaves the distribution center and eventually returns to the distribution center.
Constraint (20) ensures that the transportation route meets the maximum load of vehicles,
where wi is the weight of the package that should be delivered to i. Constraint (21) avoids
subloops. Constraint (22) defines the decision variables.

When the waiting time of the vehicle at each stop and the running time of vehicles
in transit are calculated, the minimum total service time can be obtained, as shown in
Equation (23).

T = ∑ s∈ST′s + Ttravel (23)

4. Algorithm Design

In this section, we propose a hybrid heuristic algorithm to deal with the preceding
formula and introduce the algorithm flow in detail.
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During the process of solving the vehicle-assisted UAV delivery problem, the following
decisions must be determined. This includes the selection of customer clusters and vehicle
stopping points, the assignment of UAV tasks, and the determination of delivery routes
and vehicle operating routes. We determined several sets of feasible customer clusters and
vehicle stopping points by improving the K-means algorithm and combined it with the
center-of-gravity method. Then, through the improved ACO, the UAV, and vehicle routes
are solved and optimized. Due to the existence of multiple sets of feasible customer clusters
and vehicle stopping points, the above process produces multiple sets of vehicle and UAV
operation schemes. Finally, the goal was to minimize the total service time to obtain the
optimal vehicle and UAV operation scheme.

The overall solution process is shown in Figure 3, which is divided into the following
five steps.
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Step 1: UAV delivery has faster delivery speed and lower delivery costs. Customers
who meet the UAVs’ service capabilities near the distribution center will be delivered
directly by the UAVs, which will further shorten the total service time. With the distribution
center as the center of a circle, the maximum service distance of the UAV under full load
is the radius of one scan. Customers within the range will be delivered to directly by the
UAVs from the distribution center, and customers outside the range will proceed to the
next step.

Step 2: The division of customer clusters and the determination of vehicle stopping
points. We can divide the remaining customers into the number of clusters and use the
center-of-gravity method to determine vehicle stopping points. After the vehicle arrives
at the stop, the UAVs take off for delivery and rush to the next stop after the service is
completed. Since different cluster divisions will affect the final total service time, the
improved K-means algorithm is used to divide multiple sets of feasible customer clusters
and carry them into the subsequent steps.

Step 3: Determine the UAVs’ delivery routes. By minimizing the delivery time of the
UAV with the longest flight time among all UAVs in each cluster, the total delivery time of
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UAVs can be minimized. At the same time, each take-off of the UAV is constrained by the
energy consumption model and the effective load.

Step 4: Plan the route of the vehicle. After determining multiple sets of feasible vehicle
stopping points, the ACO is used to obtain the shortest path of each group of vehicles;

Step 5: Taking the minimum total service time as the goal, we can compare the total
time of each group of feasible solutions to determine the optimal vehicle and UAV delivery
plan. Among them, the total service time includes the sum of the vehicle’s stay time at each
stop and the transit time.

4.1. Determination of Customer Clusters and Vehicle Stopping Points

In this study, the improved K-means algorithm was used to divide the remaining
customers into several customer clusters, and the center-of-gravity method was used to
determine the vehicle stopping point of each cluster. The traditional K-means algorithm [32]
needs to specify the initial K cluster centers and then iterate continuously, according to the
Euclidean distance between the samples to make the distance between the samples in each
cluster as close as possible to achieve the clustering effect. However, for the actual scenario
of joint vehicle and UAV delivery, it is difficult to determine the initial K value. Therefore,
this study improved the K-means algorithm and combined it with the center-of-gravity
method to determine customer clusters and vehicle stopping points. The algorithm flow is
shown in Figure 4.
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Specific steps are as follows:
Step 1: Initialization. Set the number of samples N as the maximum number of

clusters, and the initial number of clusters K starts from 1.
Step 2: Randomly select K samples from all samples as cluster centers.
Step 3: Assign each sample to the nearest cluster through K-means iteration and

update the position of the cluster center until the position of the cluster center can no longer
be optimized.

Step 4: Use the center-of-gravity method to optimize the positions of K cluster centers.
The center-of-gravity method is a common method in logistics facilities. The center of
gravity of a logistics system is often the best setting point for logistics nodes. According to
the distance between the sample point and the cluster center and the demand quantity, the
distance coefficient and demand weight can be obtained, and the position of the cluster
center is updated as the position of the vehicle stopping point.

Step 5: Determine whether all sample points in each cluster are within the service
range of the UAV. That is, whether Constraint (11) is satisfied. If it is not satisfied, make
K + 1 and return to Step 2; if satisfied, continue to run down.

Step 6: Save the current feasible solution.
Step 7: Continue to increase the number of K until the final total service time curve

begins to increase and save the result.
In the above process, the division of clusters determines each customer cluster, and

the calculation of the cluster center position determines the vehicle stopping point. Among
them, Steps 6 and 7 will generate multiple sets of feasible customer cluster division plans,
and these plans are substituted into the subsequent steps to find the overall optimal plan.

4.2. Determination of the UAVs’ Delivery Routes

After each customer cluster is identified, the delivery routes of the UAVs within the
cluster can be calculated. We propose an improved ACO to determine the delivery routes
of UAVs. The algorithm is an improvement to the standard ACO [33], and its core is the
candidate list, visibility, and pheromone concentration. In this problem, the ant selects the
next point j to be visited at the point i through the candidate list. The candidate list is all of
the undelivered customer points in the cluster, and Constraints (7) and (8) must be satisfied
during the selection.

The visibility calculation of ants is expressed Equation (24).

1
dij

(24)

Higher visibility means that the distance between customer points is smaller, and the
probability of being selected is higher. After ants pass the customer point, they will leave
behind pheromones, and the pheromone concentration τ will influence the selection of
subsequent ants. The updated method of pheromone concentration for each iteration is
shown in Equations (25) and (26).

τnew = (1− ρ)τold + ∆τ (25)

∆τ =
Q

∑s∈S T′s
(26)

where ρ is the pheromone volatilization coefficient; ∆τ is the pheromone increment; and
Q is a constant indicating the pheromone intensity. If there are m ants, m kinds of UAV
delivery paths will eventually be generated. To make the results converge to the minimum
total service time faster, we only updated the pheromone of the shortest UAV service time
scheme in each iteration. The specific algorithm flow is shown in Figure 5.
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4.3. Determining the Route of the Vehicle

When multiple sets of feasible vehicle stopping points are generated, the classic ACO
is called to solve them, and multiple sets of vehicle driving routes are obtained. In this way,
multiple sets of feasible vehicle and UAV delivery plans will be obtained, with the goal
of minimizing the total service time. By comparing the total service time of each plan, the
optimal vehicle and UAV delivery plan can finally be determined.

5. Simulation and Results

In this section, we present the results of all numerical simulations, and use a case study
as an example to illustrate our simulation process.

5.1. Simulation Process

Referring to the simulation results of Gu et al. [7] on the number of immediate delivery
orders in Shanghai, we randomly generated 15 test examples. The size of the examples
ranged from 20 to 250 including large, medium, and small scales, with case numbers from
C1 to C15. The calculation examples were randomly and evenly distributed within a radius
of 10 km. We solved the examples through MATLAB and CPLEX 12.8. The software runs
on a Windows 10 operating system, with Ryzen 9-5000HS 3.30GHz CPU, 16GB memory. In
this simulation, it was assumed that a vehicle was equipped with four UAVs for delivery.
The parameters used in the simulation are shown in Table 2.

Table 2. Simulation parameters and values.

Parameter Value

UAV weight wd = 9 kg
UAV maximum load Gi = 6 kg
UAV operating speed Vdrone = 45 km/h

UAV maximum flight power P = 1.316 kW
Lift ratio γ = 3

Conversion efficiency of the engine η = 0.5
The total energy of the UAV Emax = 0.31 kW·h

The energy loss of the UAV battery e = 0.1 kW
The service time of a single customer ts = 0.05 h

The average speed of vehicle Vtruck = 35 km/h
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To better demonstrate our simulation process, we used the large-scale case C1 as
an example to show the realization process of the vehicle-assisted UAV delivery scheme
proposed in Figure 6.
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First, customers near the distribution center will be delivered to directly by UAVs,
and these customer points will be removed in subsequent calculations (Figure 6a). Then,
the remaining customer points are divided into five clusters and the positions of the
corresponding vehicle stopping points are determined (Figure 6b). Following this, planning
the delivery routes of vehicles and UAVs is carried out to determine the total time to serve
all customers (Figure 6c). Finally, we can see the impact of the change in the number
of vehicle stopping points K on the total service time (Figure 6d). When K = 5, the
inflection point appears and the overall optimal scheme can be determined. Figure 6e
shows the results using vehicle delivery alone, which contrasts with the scheme proposed
in this study.

5.2. Simulation Results

Fifteen cases were simulated and their results are shown in Table 3. Among them,
some parameters need to be explained. The initial K value refers to the minimum number
of clusters that meet the constraint conditions output by the algorithm for the first time,
which produces the initialization result. The optimized K value refers to the optimal K
value after increasing the number of clusters and calculating, which produces the optimized
result. Init T′, Init Ttravel , and Init T refer to the waiting time of the vehicle at all stopping
points, the vehicle running time, and the total time to serve all customers, respectively, at
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the initial K value. T′, Ttravel , and T refer to the results under the optimized K value. Then,
the optimization ratio RT reflects the degree of optimization before and after optimization.
Ttruck is the time required to complete the delivery using the vehicle alone under the same
calculation example conditions. The efficiency improvement rate is Re f f ect, which reflects
the improvement rate of the timeliness of the scheme proposed in this paper compared
with the distribution scheme using vehicles alone.

Table 3. Simulation results of the example.

Example Size Initial K
Initial Result

Optimized K
Optimized Result

RT Ttruck Reffect
Init T′ Init Ttravel Init T T′ Ttravel T

C1 250 4 5.6458 1.1921 6.8379 5 5.5284 1.2324 6.7608 1.13% 20.5089 203.35%
C2 234 4 5.596 1.1543 6.7503 6 5.427 1.2708 6.6978 0.78% 17.234 157.31%
C3 218 3 4.41277 0.94203 5.3548 4 4.0158 1.1846 5.2004 2.88% 14.8541 185.63%
C4 202 5 3.6042 1.1446 4.7488 5 3.6042 1.1446 4.7488 0% 13.7586 189.73%
C5 186 4 3.6349 1.1378 4.7727 4 3.6349 1.1378 4.7727 0% 13.0729 173.91%
C6 170 4 3.6242 1.1828 4.807 5 3.4944 1.2881 4.7825 0.51% 12.7721 167.06%
C7 154 4 3.1998 1.1007 4.3005 4 3.1998 1.1007 4.3005 0% 11.552 168.62%
C8 138 3 2.84078 0.92892 3.7697 4 2.7467 1.0072 3.7539 0.42% 10.3038 174.48%
C9 122 5 3.6877 1.1703 4.858 6 3.3046 1.4208 4.7254 2.73% 9.0531 91.58%
C10 106 5 2.6696 1.193 3.8626 5 2.6696 1.193 3.8626 0% 7.7213 99.90%
C11 90 3 2.0828 1.245 3.3278 3 2.0828 1.245 3.3278 0% 6.7366 102.43%
C12 74 4 1.9551 1.2605 3.2156 4 1.9551 1.2605 3.2156 0% 5.64 75.39%
C13 58 3 1.6376 1.0418 2.6794 3 1.6376 1.0418 2.6794 0% 4.1955 56.58%
C14 42 4 1.9124 1.1892 3.1016 4 1.9124 1.1892 3.1016 0% 3.6304 17.05%
C15 20 2 1.4005 0.8231 2.2236 2 1.4005 0.8231 2.2236 0% 2.9905 34.49%

The optimization ratio RT = Init T−T
Init T ∗ 100% the efficiency improvement rate Re f f ect =

Ttruck−T
T ∗ 100%.

Through the simulation results in Table 3, the vehicle-assisted UAV delivery scheme
proposed in this paper is suitable for various examples of different scales, and relatively
optimal results can be obtained. Judging from the initialization results and the results after
optimizing the K value, the initialization results of most calculation examples were the
optimal results. When the K value increased, it was often accompanied by a decrease in
T′ and an increase in Ttravel . In addition, we found that when the scale of the calculation
example was enlarged, it was easier to increase the cluster number K to significantly
improve the overall efficiency such as the calculation examples C1, C2, C9, etc. On the
other hand, through the analysis results in Figure 7, it can be concluded that compared
with the traditional independent vehicle delivery, the proposed scheme had a significant
improvement in efficiency. In the 15 cases, the efficiency improvement rate Re f f ect ranged
from 17% to 203.35%, and the average Re f f ect was 126.5%. When the sample size was larger,
the advantages of the proposed scheme were more obvious.
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6. Conclusions

This study focused on the problem of vehicle-assisted UAV delivery in instant delivery
scenarios. In response to a new problem where a vehicle is equipped with multiple UAVs
and the UAVs serve multiple customers in a single take-off, a solution was proposed, taking
into account the impact of changes in the payload of the UAV during the delivery process on
energy consumption. First, a UAV energy-consumption model was established to constrain
the energy consumption in the UAV-delivery process. Then, an UAV task-allocation model
and a vehicle-path planning model were established to determine the UAV task allocation
and path as well as the vehicle running path to obtain the minimum total service time.
Finally, a hybrid heuristic algorithm was proposed to solve the problem, and it was verified
by multi-scale calculation examples and comparative experiments. The research results
showed that the solution to the problem of vehicle-assisted UAV delivery proposed in this
paper can optimize the location of vehicle stopping points and the delivery routes of UAVs
and vehicles and can help related companies that deal with instant delivery improve their
operational efficiency.

However, there is still room for improvement and there are application challenges in
this study such as for the estimation of UAV energy consumption. The assumptions we
made are too strict, and the effects of wind and temperature on UAV energy consumption
should be taken into account to fit a more accurate formula for estimating the energy
consumption of UAVs while integrating low-cost sensors to cope with the unstructured
and changing environment of UAV delivery.
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