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Abstract: This study described the on-orbit vicarious radiometric calibration of Chinese civilian high-
resolution stereo mapping satellite ZY3-02 multispectral imager (MUX). The calibration was based
on gray-scale permanent artificial targets, and multiple radiometric calibration tarpaulins (tarps)
using a reflectance-based approach between July and September 2016 at Baotou calibration site in
China was described. The calibration results reveal a good linear relationship between DN and TOA
radiances of ZY3-02 MUX. The uncertainty of this radiometric calibration was 4.33%, indicating that
radiometric coefficients of ZY3-02 MUX are reliable. A detailed discussion on the validation analysis
of the comparison results between the different radiometric calibration coefficients is presented in
this paper. To further validate the reliability of the three coefficients, the calibrated ZY3-02 MUX was
compared with Landsat-8 Operational Land Imager (OLI). The results also indicate that radiometric
characteristics of ZY3-02 MUX imagery are reliable and highly accurate for quantitative applications.

Keywords: radiometric calibration; TOA radiance; reflectance-based approach; the Baotou site;
ZY3-02 satellite

1. Introduction

The Ziyuan-3 (ZY3) satellite constellation is China’s civilian high-resolution stereo
mapping satellite system, consisting of four satellites: ZY3-01, ZY3-02, ZY3-03, and ZY3-04.
The ZY3-01 satellite was launched into orbit on 14 January 2012, is the first operational
satellite of the ZY3 series, and completed its official mission and stopped operation in 2017.
As its continuation, ZY3-02 was successfully launched at Taiyuan Satellite Launch Center
on 30 May 2016, and is still in operation. ZY3-02 carried a multispectral imager (MUX)
and three panchromatic cameras (TLC). The multispectral imagery provides repetitive
acquisition of multispectral data with a high resolution of 5.8 m, while panchromatic
imagery of 2.1-m resolution is mainly used for 1:50,000 scale topographic mapping. The
primary purpose of the ZY3 satellite constellation is to satisfy China’s need for satellite
imagery for surveying and mapping and the geographic information system industry. Most
studies of the ZY3-01 and ZY3-02 satellites have focused on geometric calibration, and
minimal work has been performed on the radiometric calibration and validation, while
quantitative applications such as surface albedo retrieval and aerosol parameter retrievals
of ZY-01 and ZY-03 images require reliable radiometric information. Since the launch
of ZY3-02, ZY3 satellite products have successfully played an important role in China’s
environmental, agricultural, and other quantitative applications, which require reliable
radiometric information.

The on-orbit absolute radiometric calibration of the satellite sensor is a critical ac-
tivity in providing highly accurate quantitative measurements of the Earth’s surface [1].
Although the technical parameters of the satellite sensor have been accurately measured

Sensors 2022, 22, 2066. https://doi.org/10.3390/s22052066 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22052066
https://doi.org/10.3390/s22052066
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2585-9984
https://doi.org/10.3390/s22052066
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22052066?type=check_update&version=2


Sensors 2022, 22, 2066 2 of 18

in the laboratory before launch, data from satellites are sensitive to post-launch changes,
regardless of the quality of the calibration data. The absolute radiometric calibration of
a satellite sensor is essential for maintaining stable satellite data quality and for identify-
ing the relationship between the image digital number (DN) and at-sensor radiance [2,3].
Reflectance-based vicarious calibration was recognized as one of the most reliable ap-
proaches for on-orbit absolute radiometric calibration of satellite sensors [4]. This approach
has been employed for on-orbit absolute radiometric calibration of numerous satellite
sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat-7
Enhanced Thematic Mapper Plus (ETM+), Landsat-8 Operational Land Imager (OLI), and
the sensors loaded on IKONOS and SPOT satellites, as well as the multispectral cameras
on board China’s Fengyun (FY), Ziyuan (CBERS), and Huanjing (HJ) satellites [5–12].

In this paper, we describe the methods and results of a reflectance-based vicarious
calibration campaign that was conducted between July and September 2016 at Baotou Site,
located in Inner Mongolia, China. A series of gray-scale permanent artificial targets and
infrastructure has been built in the Baotou site to provide effective support for satellite
sensor on-orbit calibration. A set of several radiometric calibration tarpaulins with nominal
reflectance of 5%, 20%, 40%, and 60% were designed for the on-orbit absolute radiometric
evaluation of the ZY3-02 satellite multispectral imager. The reflectance-based vicarious cali-
bration approach relies on the synchronous measurement of the surface spectral reflectance
and atmospheric parameters. In this campaign, the synchronous measurements of sur-
face and atmospheric conditions (including aerosol optical depth, amount of water vapor,
aerosol inversion products) at the Baotou site at the time of ZY3-02 satellite overpass. The
synchronous measurement of the surface spectral reflectance and atmospheric parameters
is coupled with exoatmospheric solar irradiance spectrum and relative spectral response
of the sensor as inputs into a radiative transfer model to compute the at-sensor spectral
radiance. The relationship between the at-sensor radiance and the DN recorded in the
ZY3-02 satellite image is identified. We can obtain several different radiometric calibration
coefficients determined with different target regions, such as gray-scale permanent artificial
targets or radiometric calibration tarps with nominal reflectance. A detailed discussion
on the validation analysis of the comparison results between the different radiometric
calibration coefficients is presented in this paper. The aim of our study is to obtain a reliable
and high-accuracy radiometric calibration coefficient for the ZY3-02 satellite sensor.

2. Materials
2.1. Overview of ZY3-02 Satellite

The ZY3-02 satellite was launched into a sun-synchronous orbit on 30 May 2016. It
covers the global region every 59 days. The ZY3 satellite carries a multispectral imager
(MUX) and three-line panchromatic cameras (TLC). The multispectral imagery provides
repetitive acquisition of multispectral data with a high resolution of 5.8 m at ground sample
distance (GSD), while the panchromatic imagery of 2.1 m resolution at GSD is mainly used
for topographic purposes and is not discussed in this paper (Table 1).

Table 1. The technical specification of ZY3-02 Satellite.

ZY3-02 Satellite Technical Specification

Launch Schedule May 2016

Orbit

Altitude: 506 km

Type: sun-synchronous,

Equator Crossing time: 10:30 AM

Cycle: 97 min

Mission duration 5 Years

Image Band of Remote Sensor Panchromatic and multi-spectral (Four-band: blue,
green, red, NIR)
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Table 1. Cont.

ZY3-02 Satellite Technical Specification

Spatial resolution

Panchromatic: nadir-view: 2.1 m (GSD)

forward-view (+22◦): 2.5 m (GSD)

backward-view (−22◦): 2.5 m (GSD)

Multi-spectral: nadir-view: 5.8 m (GSD)

Dynamic Range 10 bits/pixel; time-delayed integral imaging

Swath width 51 km

Attitude determination and control
Three-axis stabilization

Sensors: star sensor, solid inertia reference: GPS

Pointing Accuracy 0.1◦

Side-sway Ability Steer up to ±32◦

Cycle
Repeat cycle time: 59 days

Revisit time: 5 days

2.2. ZY3-02 Multispectral Imager (MUX)

The ZY3-02 multispectral imager produces a GSD equal to 5.8 m at nadir in all four
multispectral bands and a swath width of 51 km from a nominal altitude of 506 km. The
normalized spectral response function of ZY3-02 MUX is shown in Figure 1. Several of the
key characteristics of ZY3-02 MUX are listed in Table 2.
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Figure 1. Normalized spectral response function of the ZY3 MUX.

Table 2. The spectral responses properties of ZY3-02 MUX.

Band Description
Spectral
Range
(nm)

Specified Spectral Range
at 50% Transmittance

Points (nm)

Center
Wavelength

(nm)

Bandwidth
(nm)

1 Blue 450–520 462.3–512.2 490 70
2 Green 520–590 515.7–587.1 563 70
3 Red 630–690 625.8–693.0 676 60
4 NIR 770–890 763.9–885.4 807 120
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2.3. Calibration Site and Targets
2.3.1. Baotou Calibration Site

In 2013, the Committee on Earth Observation Satellites (CEOS) Working Group on
Calibration and Validation (WGCV) Infrared and Visible Optical Sensors Subgroup (IVOS)
established the Radiometric Calibration Network (RadCalNet), consisting of four inter-
national test sites located in the continental United States, France, China, and Namibia,
providing automated in situ measurements and estimates of propagated top of atmosphere
(TOA) reflectance [13]. The RadCalNet Baotou site (BTCN) is located in Inner Mongolia,
China, about 50 km from Baotou city, as shown in Figure 2 (in red circle). It covers a flat
area of approximately 300 km2. The site is dominated by sand and bare soil. A series of
targets and infrastructure has been built in the Baotou site to provide effective support for
sensor aerial test flights, satellite sensor on-orbit calibration and performance evaluation,
and remote-sensing product validation [14,15].

Sensors 2022, 22, x FOR PEER REVIEW 4 of 18 
 

 

Table 2. The spectral responses properties of ZY3-02 MUX. 

Band Description 
Spectral Range 

(nm) 

Specified Spectral 
Range at 50% Trans-
mittance Points(nm) 

Center Wave-
length 
(nm) 

Bandwidth 
(nm) 

1 Blue 450–520 462.3–512.2 490 70 
2 Green 520–590 515.7–587.1 563 70 
3 Red 630–690 625.8–693.0 676 60 
4 NIR 770–890 763.9–885.4 807 120 

2.3. Calibration Site and Targets 
2.3.1. Baotou Calibration Site 

In 2013, the Committee on Earth Observation Satellites (CEOS) Working Group on 
Calibration and Validation (WGCV) Infrared and Visible Optical Sensors Subgroup 
(IVOS) established the Radiometric Calibration Network (RadCalNet), consisting of four 
international test sites located in the continental United States, France, China, and Na-
mibia, providing automated in situ measurements and estimates of propagated top of at-
mosphere (TOA) reflectance [13]. The RadCalNet Baotou site (BTCN) is located in Inner 
Mongolia, China, about 50 km from Baotou city, as shown in Figure 2 (in red circle). It 
covers a flat area of approximately 300 km2. The site is dominated by sand and bare soil. 
A series of targets and infrastructure has been built in the Baotou site to provide effective 
support for sensor aerial test flights, satellite sensor on-orbit calibration and performance 
evaluation, and remote-sensing product validation [14,15]. 

 
Figure 2. The RadCalNet Baotou site. 

2.3.2. The Gray-Scale Permanent Artificial Targets 
The Baotou site is currently maintained and operated by the Aerospace Information 

Research Institute, Chinese Academy of Science. A series of targets and infrastructure has 
been built in the Baotou site to provide effective support for satellite sensor on-orbit cali-
bration and performance evaluation, and remote-sensing product validation. Figure 3 
shows the gray-scale permanent artificial targets. The gray-scale permanent artificial tar-
gets are composed of two white, one gray, and one black uniform gravel squares, each of 
which covers an area of 48 m × 48 m, which can be used for radiometric calibration and 
validation of high-resolution optical sensors. The white, gray, and black targets with 
known spectral reflectance (56%, 18%, and 7%) have a fairly flat spectral reflectance [16]. 

Figure 2. The RadCalNet Baotou site.

2.3.2. The Gray-Scale Permanent Artificial Targets

The Baotou site is currently maintained and operated by the Aerospace Information
Research Institute, Chinese Academy of Science. A series of targets and infrastructure
has been built in the Baotou site to provide effective support for satellite sensor on-orbit
calibration and performance evaluation, and remote-sensing product validation. Figure 3
shows the gray-scale permanent artificial targets. The gray-scale permanent artificial targets
are composed of two white, one gray, and one black uniform gravel squares, each of which
covers an area of 48 m × 48 m, which can be used for radiometric calibration and validation
of high-resolution optical sensors. The white, gray, and black targets with known spectral
reflectance (56%, 18%, and 7%) have a fairly flat spectral reflectance [16].

2.3.3. The Calibration Tarps

In order to properly calibrate the ZY3-02 MUX, a set of four radiometric calibration
tarps with nominal reflectance of 5%, 20%, 40%, and 60% (with relatively stable reflectance
curve around the nominal values with an error of less than 3%) was designed and deployed
to the Baotou site. These four radiometric calibration tarps were designed as ideal calibra-
tion targets with good Lambertian properties measured and validated at the laboratory,
which should be relatively flat with little variation (less than 7% of the nominal values) in
the surface feature and be stable in a spectral sense. Two color-scaled radiometric tarps of
blue and red were also designed with quasi-Lambertian properties for on-orbit absolute
radiometric evaluation. Each of these calibration tarps covers an area of 60 m × 60 m.
The spatial variation of each calibration tarp is less than 2%. The laboratory measured
bi-directional reflectance factor (BRF) of the calibration tarp shows that the spectral varia-
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tion of the four radiometric calibration tarps’ reflectance over 400–1000 nm is less than 3%.
Figure 4 shows the arrangement of the calibration tarp at the Baotou site during the ZY3-02
calibration campaign.
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3. Methodology
3.1. Radiometric Calibration Approaches

The reflectance-based vicarious calibration approach is the most commonly used
method, which relies on synchronous measurement of the surface spectral reflectance and
atmospheric parameters (including the aerosol optical depth and amount of water vapor).
The measurement of the surface spectral reflectance and atmospheric parameters are re-
quired as inputs into a radiative transfer model, such as Moderate Resolution Atmospheric
Transmission (MODTRAN 6.0), to compute the TOA spectral radiance. The simulated
spectral radiance at the TOA from the radiative transfer model is matched with satellite
DN and is used to obtain the sensor’s absolute radiometric calibration coefficients [17–19].
The flow chart of the reflectance-based vicarious calibration approach is shown in Figure 5.



Sensors 2022, 22, 2066 6 of 18

Sensors 2022, 22, x FOR PEER REVIEW 6 of 18 
 

 

3. Methodology 
3.1. Radiometric Calibration Approaches 

The reflectance-based vicarious calibration approach is the most commonly used 
method, which relies on synchronous measurement of the surface spectral reflectance and 
atmospheric parameters (including the aerosol optical depth and amount of water vapor). 
The measurement of the surface spectral reflectance and atmospheric parameters are re-
quired as inputs into a radiative transfer model, such as Moderate Resolution Atmos-
pheric Transmission (MODTRAN 6.0), to compute the TOA spectral radiance. The simu-
lated spectral radiance at the TOA from the radiative transfer model is matched with sat-
ellite DN and is used to obtain the sensor’s absolute radiometric calibration coefficients 
[17–19]. The flow chart of the reflectance-based vicarious calibration approach is shown 
in Figure 5. 

 
Figure 5. Flow chart of the reflectance-based radiometric calibration approach. 

3.2. Synchronous Measurement of Surface Reflectance 
The reflectance measurements of the gray-scale permanent artificial targets and radi-

ometric calibration tarps were collected within 30 min before and after the overpass time 
of the ZY3-02 satellite. The size of each gray-scale permanent artificial target is 48 m × 48 
m, and covers about 8 cross-track pixels and 8 along-track pixels of ZY3-02 imagery. The 
spectroradiometer was configured to average five spectra per sample, and 16 samples 
were collected within each single target. During the measurements, the direction of the 
probe is nearly straight down, and, considering the Lambertian of the target, the error 
could be neglected [20]. The radiometric calibration tarps were 60 m × 60 m, covering 
about 10 cross-track pixels and 10 along-track pixels of ZY3-02 MUX imagery, five spectra 
per sample, and 25 samples were collected within each single tarp. The four gray-scale 
permanent artificial targets and six calibration tarps gave a total of 214 samples and more 
than 1000 spectra collected. It took more than 30 min to collect these data. The reflectance 
was measured by the SVC HR-1024i spectroradiometer (SVC Spectra Vista Corporation), 
which covered the wavelength range from 350 nm to 2500 nm. SVC HR-1024i is a high-
resolution field portable spectroradiometer with a spectral resolution of 1.5 nm in the 350–

Sun-target-satellite 
acquisition 
geometries

Atmospheric characteristic 
parameters measurement
(Aerosol optical depth) 

Top of Atmosphere 
Spectral Radiance

Digital Number (DN) of 
target in each band

Data Processing

Synchronous reflectance 
measurment

Radiative Transfer 
Model

Absolute radiometric Calibration 
coefficient

(Gain, Bias)

Meteorological parameter 
measurement

(Water vapor and Ozone) 

Spectral response 
function of each 

band

GPS
ZY3-02 Satellite 

Imagery

Figure 5. Flow chart of the reflectance-based radiometric calibration approach.

3.2. Synchronous Measurement of Surface Reflectance

The reflectance measurements of the gray-scale permanent artificial targets and radio-
metric calibration tarps were collected within 30 min before and after the overpass time of
the ZY3-02 satellite. The size of each gray-scale permanent artificial target is 48 m × 48 m,
and covers about 8 cross-track pixels and 8 along-track pixels of ZY3-02 imagery. The
spectroradiometer was configured to average five spectra per sample, and 16 samples were
collected within each single target. During the measurements, the direction of the probe
is nearly straight down, and, considering the Lambertian of the target, the error could
be neglected [20]. The radiometric calibration tarps were 60 m × 60 m, covering about
10 cross-track pixels and 10 along-track pixels of ZY3-02 MUX imagery, five spectra per
sample, and 25 samples were collected within each single tarp. The four gray-scale perma-
nent artificial targets and six calibration tarps gave a total of 214 samples and more than
1000 spectra collected. It took more than 30 min to collect these data. The reflectance was
measured by the SVC HR-1024i spectroradiometer (SVC Spectra Vista Corporation), which
covered the wavelength range from 350 nm to 2500 nm. SVC HR-1024i is a high-resolution
field portable spectroradiometer with a spectral resolution of 1.5 nm in the 350–1000 nm
spectral range, 3.8 nm in the 1000–1890 nm spectral range, and 2.5 nm in the 1890–2500 nm
spectral range. The output of the SVC software was interpolated at 1 nm intervals in the
350–2500 nm range. During spectra collection, five spectra were collected in each point and
these five spectra were averaged to obtain the mean spectrum in this point. Figures 6 and 7
show the reflectance measurements from the targets and tarps in the range of 400–1000 nm.



Sensors 2022, 22, 2066 7 of 18

Sensors 2022, 22, x FOR PEER REVIEW 7 of 18 
 

 

1000 nm spectral range, 3.8 nm in the 1000–1890 nm spectral range, and 2.5 nm in the 
1890–2500 nm spectral range. The output of the SVC software was interpolated at 1 nm 
intervals in the 350–2500 nm range. During spectra collection, five spectra were collected 
in each point and these five spectra were averaged to obtain the mean spectrum in this 
point. Figures 6 and 7 show the reflectance measurements from the targets and tarps in 
the range of 400–1000 nm. 

 
Figure 6. Spectral reflectance measurement data of gray-scale permanent targets. 

 
Figure 7. Spectral reflectance measurement data of calibration tarps. 

3.3. Synchronous Measurement of Atmospheric Parameters 
Aerosol parameters were collected at the time of ZY3-02 satellite overpass. An auto-

matic sun photometer (CIMEL CE318) was used to measure the aerosol optical depth 
(AOD) and the total columnar water vapor (CWV). The AOD and CWV were retrieved by 
the AERONET data process center from the CE318 sun photometer observed data at the 
Baotou site, which joined the Aerosol Robotic Network (AERONET) in September 2013. 
Figure 8 shows the measurement of atmospheric parameters of the AERONET Baotou 

0

0.2

0.4

0.6

0.8

1

400 500 600 700 800 900 1000

R
ef

le
ct

an
ce

Wavelength(nm)

AOE-Black-target

AOE-Gray-target

AOE-White-target

0

0.2

0.4

0.6

0.8

1

400 500 600 700 800 900 1000

R
ef

le
ct

an
ce

Wavelength(nm)

5%-tarp
20%-tarp
40%-tarp
60%-tarp
Red-tarp
Blue-tarp

Figure 6. Spectral reflectance measurement data of gray-scale permanent targets.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 18 
 

 

1000 nm spectral range, 3.8 nm in the 1000–1890 nm spectral range, and 2.5 nm in the 
1890–2500 nm spectral range. The output of the SVC software was interpolated at 1 nm 
intervals in the 350–2500 nm range. During spectra collection, five spectra were collected 
in each point and these five spectra were averaged to obtain the mean spectrum in this 
point. Figures 6 and 7 show the reflectance measurements from the targets and tarps in 
the range of 400–1000 nm. 

 
Figure 6. Spectral reflectance measurement data of gray-scale permanent targets. 

 
Figure 7. Spectral reflectance measurement data of calibration tarps. 

3.3. Synchronous Measurement of Atmospheric Parameters 
Aerosol parameters were collected at the time of ZY3-02 satellite overpass. An auto-

matic sun photometer (CIMEL CE318) was used to measure the aerosol optical depth 
(AOD) and the total columnar water vapor (CWV). The AOD and CWV were retrieved by 
the AERONET data process center from the CE318 sun photometer observed data at the 
Baotou site, which joined the Aerosol Robotic Network (AERONET) in September 2013. 
Figure 8 shows the measurement of atmospheric parameters of the AERONET Baotou 

0

0.2

0.4

0.6

0.8

1

400 500 600 700 800 900 1000

R
ef

le
ct

an
ce

Wavelength(nm)

AOE-Black-target

AOE-Gray-target

AOE-White-target

0

0.2

0.4

0.6

0.8

1

400 500 600 700 800 900 1000

R
ef

le
ct

an
ce

Wavelength(nm)

5%-tarp
20%-tarp
40%-tarp
60%-tarp
Red-tarp
Blue-tarp

Figure 7. Spectral reflectance measurement data of calibration tarps.

3.3. Synchronous Measurement of Atmospheric Parameters

Aerosol parameters were collected at the time of ZY3-02 satellite overpass. An au-
tomatic sun photometer (CIMEL CE318) was used to measure the aerosol optical depth
(AOD) and the total columnar water vapor (CWV). The AOD and CWV were retrieved by
the AERONET data process center from the CE318 sun photometer observed data at the
Baotou site, which joined the Aerosol Robotic Network (AERONET) in September 2013.
Figure 8 shows the measurement of atmospheric parameters of the AERONET Baotou site.
The AOD at 550 nm is estimated from the Langley algorithm-derived AOD at the 440, 670,
870, and 1020 nm channels with the Ångström empirical equation, as follows:

τα(λ) = β · λ−α (1)

where τα(λ) is AOD at the wavelength λ, β is Ångström’s turbidity coefficient, and α

is the Ångström exponent; α and β are independent of the wavelength, and they can
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be calculated by fitting the AOD at the 440, 670, 870, and 1020 nm channels. Table 3
shows the synchronous measurement of atmospheric parameters at the time of ZY3-02
satellite overpass.
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Figure 8. The measurement of atmospheric parameter of AERONET Baotou site.

Table 3. Synchronous measurement of atmospheric parameters.

Atmospheric Parameters Synchronous Measurement

AOD @ 550 nm 0.1276

CWV 0.8763 g/cm2

The vertical atmospheric profiles of temperature, humidity, and pressure were col-
lected with a radiosonde balloon at the times of the ZY3-02 satellite overpass. In fact,
one of the most important sources of systematic error in the reflectance-based vicarious
calibration approach is caused by the assumption of aerosol properties including size
distribution, refractive index, etc., which determine the microphysical status of aerosol
particles affecting the complex interaction between light and aerosol particles [21]. In
remote-sensing applications, the aerosol properties are assumed empirically as several
types, resulting in a lot of error in radiometric calibrations. However, AERONET directly
produced aerosol properties specifically for this scenario, minimizing the error. The simula-
tion of the radiative transfer model shows that the top of atmosphere spectral radiance is
highly sensitive with different aerosol properties in a high-aerosol optical depth condition.
In other words, the assumption of aerosol properties would bring a large error in predicting
the top of atmosphere spectral radiance [22,23]. In order to reduce the uncertainty caused
by the aerosol properties assumption, we used the inversion products of the AERONET
Baotou site. AERONET collaboration provides the aerosol inversion products (such as size
distribution, refractive index, phase function, and asymmetry factor) of the Baotou site.
The aerosol inversion products from AERONET collaboration would be taken as the input
of a radiative transfer model to calculate the band-specific TOA radiance in this study, to
overcome the abovementioned problems of the reflectance-based approach.
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3.4. Radiative Transfer Calculations

The Radiative Transfer Model (MODTRAN 6.0) is commonly used for radiometric
calibration. The reflectance measurements and the atmospheric parameters are inputs for
a Radiative Transfer Model that computes a band-specific TOA spectral radiance (also
known as at-sensor radiance). The apparent reflectance of the ZY-3 02 satellite sensor
ρ∗(µs, φs; µv, φv) can be expressed as:

ρ∗(µs, µv, φs − φv) = ρa(λ) +
ρ

1 − S(λ)ρ
Tθs(λ)Tθv(λ) (2)

where µs = cos θs and µv = cos θv are the cosine values of the solar and viewing zenith
angles, θs is the solar zenith angle, φs is the solar azimuth angle, θv is the viewing zenith
angle, and φv is the viewing azimuth angle. ρa(λ) is the atmospheric path reflectance,
S(λ) is the atmospheric spherical albedo, Tθs(λ) is total transmittance from the solar to the
earth, and Tθv(λ) is the total transmittance from the earth to the satellite sensor [24]. The
band-specific TOA radiance L(θs, φs; θv, φv) can be determined as follows:

L(θs, φs; θv, φv) =
µsEsρ∗

πd2 (3)

where ρ∗ is the apparent reflectance of the satellite sensor, µs = cos θs is the cosine values
of the solar zenith angles, θs is the solar zenith angles, Es is the solar irradiance at the top of
atmosphere, and d is the Solar–Earth distance factor.

We acquired one calibratable ZY3-02 MUX image, with a viewing zenith angle of
less than 2 degrees under clear-sky conditions. Table 4 shows the geometric conditions of
ZY3-02 for radiometric calibration.

Table 4. Geometric conditions of ZY3-02 for radiometric calibration.

Site Date Overpass
Time (UTC)

Solar
Zenith

Solar
Azimuth

Viewing
Zenith

Viewing
Azimuth

Baotou 20 July 2016 03:45:08 34.687 140.411 1.71 47.459

4. Results
4.1. Comparison of Three Radiometric Calibration Results from Different Targets

The radiometric calibration coefficients of ZY3-02 MUX were determined through
the least-squares method, linearly fitting band-specific TOA spectral radiance with DNs
corresponding to the target regions by using Equation (4):

Li = Gaini × DNi + Biasi (4)

where Li is the band-specific TOA spectral radiance with unit W·m−2·sr−1·µm−1, DNi is
the digital number of the satellite imagery in band i, and Gaini and Biasi are the radiometric
calibration coefficients Gain and Bias in band i.

There would be three radiometric calibration results from different targets. The first
radiometric calibration coefficient (coefficient A, as shown in Figure 9) was determined by
permanent artificial targets, which just covered three gray-scale reflectances of 7%, 18%,
and 56% in 400–1000 nm.

The second coefficient (coefficient B, as shown in Figure 10) was determined by the
four radiometric calibration tarps with four nominal reflectances of 5%, 20%, 40%, and 60%,
and two color-scaled radiometric tarps of blue and red.
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Figure 10. Calibration result of the radiometric calibration tarps (coefficient B).

The last coefficient (coefficient C, as shown in Figure 11) was determined by combining
permanent artificial targets and radiometric calibration tarps, which means that there would
be seven gray-scale targets and two color-scaled targets. All the calibration results show
that linear correlations between DN and TOA radiances of ZY3-02 MUX are very high, with
a correlation coefficient R2 value of up to 0.99 for each band.
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Table 5 shows the three different radiometric calibration coefficients and laboratory
calibration coefficients.

Table 5. Different radiometric calibration coefficients (in units of W·m−2·sr−1·µm−1).

Coefficients A B C Laboratory

Band Gain Bias Gain Bias Gain Bias Gain Bias

MUX-B1 0.2495 −18.36 0.2342 −17.07 0.2291 −11.62 0.2004 −0.1794

MUX-B2 0.2282 −10.55 0.2333 −13.60 0.2213 −6.241 0.2031 −0.3262

MUX-B3 0.2542 −15.48 0.2454 −12.95 0.2432 −10.29 0.2205 −0.1812

MUX-B4 0.2466 −23.33 0.2261 −16.40 0.2110 −9.552 0.2044 −0.4489

4.2. Uncertainty Analysis of the Reflectance-Based Approach

Early work with Landsat-7 ETM+, Landsat-8 OLI, SPOT HRV, IKONOS, RapidEye,
and KOMPSAT showed that the reflectance-based approach had an absolute radiometric
uncertainty of ~5% [6,20–23]. The reflectance-based uncertainty table listed the major
source of radiometric uncertainty of the reflectance-based approach. Detailed descriptions
of the uncertainty were discussed as follows. There are several basic areas of uncertainty in
the method: (1) Surface reflectance measurement, (2) Atmospheric characterization, and
(3) Inherent accuracy of the MODTRAN 6.0 radiative transfer code.

The uncertainty in a single measurement of the surface reflectance with SVC HR1024
spectroradiometer is <2%. Based on the laboratory calibration tarp BRDF measurements,
we can assign a 1.5% error accuracy for assuming a Lambertian calibration tarp. The view
zenith angle of ZY3-02 MUX was less than 3 degrees, and the BRDF effects of the artificial
calibration targets and calibration tarps were not considered in this study.

The second primary source of uncertainty in the reflectance-based approach is at-
mospheric characterization, which includes the aerosol optical depth measurement, total
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columnar water vapor, aerosol size distribution, and aerosol complex index of refraction.
The AOD and CWV were retrieved by the AERONET data process center at the AOE
Baotou site, and they led to the TOA radiance uncertainties of 0.5% for AOD and 0.4% for
CWV. A standard rural aerosol type in the MODTRAN 6.0 radiative transfer code was used
in this study. The two parameters of aerosol (the aerosol size distribution and the aerosol
complex index of refraction) resulted in uncertainties of TOA radiance less than 2.0% for
aerosol size distribution and 2.5% for aerosol complex index of refraction, respectively. The
inherent accuracy of the MODTRAN 6.0 radiative transfer code is <1%.

All of the analyzed uncertainty sources above were assumed independent, and the
overall uncertainty in the TOA radiance in this reflectance-based approach is 4.57%, less
than 5%, as shown in Table 6.

Table 6. Sources of uncertainties in TOA radiance in the reflectance-based approach.

Source of Uncertainty Accuracy % TOA Radiance
Uncertainty %

Surface reflectance measurement 2% 2.0%
Lambertian assumption of targets 1.5% 1.5%

Aerosol optical depth 0.5%
Total columnar water vapor 0.4%

Aerosol size distribution 2.0%
Aerosol complex index of refraction 2.5%
MODTRAN 6.0 Radiative transfer 2.0% 2.0%

Overall Uncertainty 4.57%

4.3. Validation of Three Radiometric Calibration Coefficients

For the automated radiometric calibration and validation of moderate and high-
resolution satellite sensors, a desert area (300 m × 300 m) was established in October
2015. This is 1.8 km away from the permanent target region to the north-west and has
been flattened. Figure 12 shows the desert area at Baotou site. The distance between the
gray-scale permanent artificial targets and the desert area is approximately 3 km.
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In order to validate the reliability of the three radiometric calibration results, the desert
area (300 × 300 m2) was taken as a validation target. We obtain the surface reflectance of
the desert and the atmospheric parameters (AOD and CWV). The TOA predicted radiance
of the target Lpredicted can be calculated with the radiative transfer model MODTRAN.

Lpredicted =
ρλ · ESUN · cos θSZA

π · d2 (5)
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The average DN values of the desert area were extracted from ZY3-02 MUX imagery.
The measured radiance Lmeasured was radiometrically calibrated from DN with three differ-
ent coefficients, and was compared with the TOA predicted radiance.

Lmeasured = Gaini × DN + Biasi (6)

∆L% =

∣∣∣∣∣ Lmeasured − Lpredicted

Lpredicted

∣∣∣∣∣× 100% (7)

where Lmeasured is the TOA measured radiance, and ∆L% is the relative difference between
the TOA predicted radiance and the TOA measured radiance.

With regard to the comparison between the measured radiance and TOA predicted
radiance in Table 7, the relative difference between measured radiance C and TOA predicted
radiance were lowest for the blue band (2.25%), followed by the green band (2.52%), red
band (2.91%), and NIR band (2.98%), less than 3% in all bands (Figure 13). The calibration
result of combining the permanent artificial targets and the radiometric calibration tarps
(coefficient C) shows the best agreement between the measured radiance and TOA predicted
radiance. Largest relative differences occurred in the laboratory radiometric calibration
results, which indicated that the on-orbit radiometric calibration is a critical activity that
must be regularly performed.

Table 7. The relative difference between the TOA predicted and measured radiance (in units of
W·m−2·sr−1·µm−1).

Band Blue Green Red NIR

TOA Predicted Radiance
by MODTRAN 6.0 Lpredicted

97.233 106.576 113.235 96.328

ZY3-02
MUX measured

radiance
Lmeasured

Laboratory
Coefficients 105.642 113.173 121.068 89.449

Coefficients A 101.327 112.289 116.940 90.686

Coefficients B 102.243 112.587 118.436 92.375

Coefficients C 99.419 109.267 116.530 93.456

Relative difference
∆L%

Diff_Lab 8.65% 6.19% 6.92% 7.14%

Diff_A 4.21% 5.36% 3.27% 5.86%

Diff_B 5.15% 5.64% 4.59% 4.10%

Diff_C 2.25% 2.52% 2.91% 2.98%
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4.4. Cross-Validation with Landsat-8 OLI Using the Three Determined Radiometric
Calibration Coefficients

To further validate the reliability of the abovementioned three radiometric calibration
results, the calibrated ZY3-02 MUX was compared with Landsat-8 Operational Land Imager
(OLI), which is considered as a reference sensor of ZY3-02. The radiometric accuracy of
Landsat-8 OLI is typically within 3% for all solar-reflective bands [24]. The Dunhuang test
site was carefully selected as reference standard test site for cross-validation of ZY3-02 MUX
with Landsat-8 OLI. The Dunhuang test site was China’s national radiometric calibration
site, which had been used to calibrate the Chinese satellites such as Feng-Yun series of
satellites and the Gao-Fen series of satellites [25]. Figure 14 shows the Dunhuang test site
in Landsat-8 OLI and ZY3-02 MUX imagery.
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The Dunhuang test site was used for cross-validation based on the stability and
homogeneity of the Gobi Desert (Figure 15).
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Figure 15. Surface reflectance and standard deviation of Gobi in Dunhuang test site.

Figure 16 shows the flow chart of cross-validation with Landsat-8 OLI. The correspond-
ing subset areas with 900 × 900 m from ZY3-02 and Landsat-8 were selected to acquire
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the homogenous areas within the Dunhuang Gobi site. In the case of ZY3-02 MUX, a total
of 150 × 150 pixels were used, while Landsat-8 OLI was 30 × 30 pixels. Table 8 shows
geometric conditions of ZY3-02 and Landsat-8 OLI for cross-calibration.
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Table 8. Geometric conditions of ZY3-02 and Landsat-8 OLI for cross-calibration.

Sensor Date
Overpass

Time
(UTC)

Solar
Zenith

Solar
Azimuth

Viewing
Zenith

Viewing
Azimuth

AOD@
550 nm

Cloud
Condition

ZY3-02
MUX 22 July 2016 04:31:48 24.966 137.774 0.899 186.249 0.0892 no cloud

Landsat-8
OLI 25 July 2016 04:20:20 27.759 132.077 0 51.462 0.1022 no cloud

The TOA radiance of the ZY3-02 sensor is calculated by Formula (8).

LMUX
measured = Gain × DN + Bias (8)

where LMUX
measured is the TOA radiance at ZY3-02 MUX band, expressed in units of

W·m−2·sr−1·µm−1. DN is the digital number from the reference satellite imagery. Gain
and Bias are the official calibration coefficients in units of W·m−2·sr−1·µm−1.

As the relative spectral responses (RSR) of each band from “reference sensor” Landsat-
8 OLI and “sensor to calibrate” ZY3-02 MUX were strictly different, the TOA radiance of
Landsat-8 OLI imagery needed to be transferred to ZY3-02 sensor imagery with a spectral
band adjustment factor (SBAF).

The differences in the RSR between different satellite sensor were compensated by
SBAF, as in Formula (9).

SBAFRadiance
MUX/OLI =

∫
LMUX(λ)·RSRMUX(λ)dλ∫

RSRMUX(λ)dλ∫
LOLI(λ)·RSROLI(λ)dλ∫

RSROLI(λ)dλ

(9)

The TOA radiances of the Landsat-8 OLI imagery were transferred to ZY3-02 sensor
imagery by the formula which follows, in which LSBAF

OLI is the TOA radiance from “reference
sensor” Landsat-8 OLI after SBAF correction.

LSBAF
OLI = LOLI × SBAFRadiance

MUX/OLI (10)
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The average relative difference (ARD) between the TOA radiance from Landsat-8 OLI
after SBAF correction LSBAF

OLI and the TOA radiance of the ZY3-02 MUX LMUX
measured is:

ARD = mean(
LSBAF

OLI − LMUX
measured

LSBAF
OLI

)× 100% (11)

Finally, the calibrated ZY3-02 MUX with coefficient C shows the best cross-validation
results, and the average relative difference between ZY3-02 MUX Measured TOA Radiance
and Landsat-8 OLI TOA radiance after SBAF correction is less than 3.5% in all bands of
ZY3-02 MUX (Table 9, Figure 17). The Dunhuang Gobi cross-validation results also show
good agreement with the Baotou desert area validation results. The results show that
radiometric calibration coefficient C of combining the permanent artificial targets and the
radiometric calibration tarps is best.

Table 9. Comparison of results between ZY3-02 MUX Measured TOA Radiance using different
calibration coefficients and Landsat-8 OLI TOA Radiance after SBAF correction.

Calibration
Coefficients

Average Relative Difference (%)

Blue Green Red NIR

Laboratory
Coefficients 8.86% 6.63% 6.06% 7.35%

Coefficients A 6.14% 6.67% 5.30% 5.68%

Coefficients B 5.34% 5.73% 5.17% 4.43%

Coefficients C 2.76% 2.77% 2.43% 3.11%
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5. Conclusions

In this study, the methods and results of a reflectance-based vicarious calibration
campaign were described. The relationship between the DN and TOA radiance exploiting
radiometric calibration coefficients was obtained via an absolute radiometric calibration
campaign at the RadCalNet Baotou site. We obtained three radiometrically calibrated
coefficients of ZY3-02 MUX using different targets and tarps. The calibration results show
that linear correlations between DN and TOA radiances of ZY3-02 MUX are very high,
with a correlation coefficient R2 value of up to 0.99 for each band. A detailed discussion on
the uncertainty analysis of the radiometric calibration is presented in this paper, and the
overall uncertainty of this reflectance-based approach is 4.57%.
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The aim of our study was to obtain a reliable and high-accuracy radiometric cali-
bration coefficient for ZY3-02 MUX. In order to consolidate the ZY3-02 MUX absolute
radiometric calibration, the three calibration coefficients were validated by the synchronous
measurement of surface reflectance and atmospheric characterization in the RadCalNet
Baotou desert site, and also cross-validated with Landsat-8 OLI in the Dunhuang Gobi
site. A detailed discussion on the validation analysis of the comparison results between the
different radiometric calibration coefficients is presented in this paper. The reasonably good
agreement of the radiometrically calibrated coefficients of the ZY3-02 MUX is encouraging,
which shows that the percentage difference in coefficient C was within 4% in the MUX
bands. The radiometric coefficient C was determined by combining permanent artificial
targets and radiometric calibration tarps, which means that there would be seven gray-scale
targets and two color-scaled targets. It should be noted that absolute radiometric calibration
incorporating the permanent gray-scale target and calibration tarps significantly enhances
the accuracy and quality. The results also indicate that radiometric characteristics of ZY3-
02 are reliable and high-accuracy quantitative applications. The radiometric calibration
coefficients would be useful for users when utilizing ZY3-02 MUX imagery.
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